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Chaotic Turing-Hopf mixed mode
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An alternative scenario for the onset of spatiotemporal chaos in one-dimensional extended systems
arising from a phase instability of a Turing-Hopf mixed mode is presented. This mechanism leads
to weak and defect turbulences. The transition between these two is either continuous or hysteretic,
depending on the values of the parameters.

PACS number(s): 47.20.—k, 05.45.+b

The study of spatiotemporal chaos in driven extended
systems has been the focus of a large activity these last
years [1]. One scenario has been clearly identified where
the Benjamin-Feir instability of a homogeneous limit cy-
cle first drives the system into a regime of weak turbu-
lence [2] followed by a more chaotic state characterized
by the proliferation of topological defects (defect turbu
lence) [3,4]. On the other hand, the homogeneous steady
states of reaction-diffusion systems may also be destabi-
lized by another type of diffusion-driven instability lead-
ing to Turing patterns [5]. These steady periodic con-
centration structures have now been obtained experimen-
tally in open gel reactors [6,7]. In the region where Tur-
ing and Hopf bifurcations interact, spatiotemporal com-
plexity may appear in these experimental patterns [8,9].
The scenario presented above can, however, not explain
this "chemical turbulence, " as the Benjamin-Feir and
the Turing instabilities are mutually exclusive for most
reaction-difFusion systems [2,10]. In this Rapid Commu-
nication we report an alternative mechanism based on
the phase instability of mixed Turing-Hopf modes which
may arise in the vicinity of the Turing-Hopf codimension-
2 point [11,12]. We focus here on one dimensional (1D)
systems.

In the vicinity of this codimension-2 point the con-
centration Geld c, which appears in the chosen reaction-
diffusion system, may be expressed in terms of two com-
plex amplitudes T and H:
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(ii) a one-parameter family of plane waves,
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with the frequency renormalization, O~ ——
P;IHIP' l

D, K, where HK is the preexponential factor in H;
(iii) a two-parameter family of mixed modes,

where p~ and pT ——p,~+v are the two unfolding parame-
ters. We assume in the following that g, P„,DT, and DP
are positive so that both bifurcations are supercritical.

The dynamical system of Eqs. (2) and (3) possesses
three nontrivial global solutions:

(i) a family of Turing structures,

c(x, t) = co + eT Te*~ + eHHe* ' + c.c.
i(Q~q~ —KX) (6)
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cp is the uniform reference state, ez. and eH are respec-
tively the critical Turing and Hopf eigenvectors of the
linearized reaction-diffusion operator. u is the critical
frequency of the limit cycle while q, is the critical Tur-
ing wave vector. c.c. stands for complex conjugate. The
competition between these modes can be described by
amplitude equations that are obtained by the use of stan-
dard techniques of bifurcation analysis [13]. If X and r
are the slow space and time scales, then [ll]

with t-) = L3 g —Ab and AlcQ = ~'IHscQI ~' IT~QI
D,. K, where HKg and TKg are the preexponential fac-
tors of H and T. The relative stability of these three
sets of modes may lead to various bifurcation scenarios.
When 4 ( 0, the mixed mode is always unstable and
bistability between the limit cycle and the Turing mode
occurs. Various localized structures have been charac-
terized in this domain [14]. In the following, we con-
centrate on situations where the mixed modes are stable
toward spatially homogeneous perturbations (6 ) 0).
This condition can indeed be fulfilled for some range of
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DP (P,g —Ab, ) + DP (P g —A8„)
(7)

Let us remark that the standard Benjamin-Feir instabil-
ity criterion of a homogeneous limit cycle is recovered
when all the parameters related to the coupling between
the two modes are set equal to zero, i.e. ,

DHP +DHP ( 0 (8)

It is important to note that the inequality (7) may be sat-

parameters in reaction-diffusion systems. On increasing
the bifurcation parameter p~ one then typically observes
the following sequence of states (when v ) 0): Turing
structures ~ mixed mode ~ homogeneous oscillations.
In the absence of spatial modulations, Eqs. (2) and (3)
are invariant under the transformations T ~ Te' and
0 ~ IIe'~. As a result, the corresponding linearized
matrix about the mixed state has two zero eigenvalues.
When spatially inhomogeneous perturbations are taken
into account these marginal modes may induce diffusive
instabilities of the phases. In particular, the most stable
mixed mode (Q = 0, K = 0) undergoes such an instabil-
ity when

isfied even when (8) is not fulfilled, i.e. , when the limit
cycle is stable with respect to the modulational instabil-
ity.

We have numerically integrated Eqs. (2) and (3) by
means of a fourth-order Runge-Kutta scheme (NAG li-

brary) complemented by finite-difFerence methods. The
behavior of the system is followed on a system of length
L = 512 with periodic boundary conditions. These simu-
lations show that, when B & 0, the mixed mode is indeed
unstable. According to the value of the parameters, the
system enters then either a phase-turbulent regime simi-
lar to that of the Kuramoto-Sivashinsky equation [15,16]
or a defect chaos regime [2,17] characterized by phase
defects and large-amplitude fluctuations on both T and
H.

These dynamics can be illustrated by space-time maps
of the concentration c(x, t) and of the amplitude and
phase of the Hopf mode (Fig. 1). In the example shown
here, the parameters are chosen such that an initially
stable mixed mode is brought into a defect chaos regime
after one-third of the time run. In the first part of the
time, we see that the lines of constant phases are con-
tinuous [Fig. 1(a)]. The amplitudes of the Turing and
Hopf modes are constant [Fig. 1(b)]. The concentra-
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FIG. 1. Space-time plots representing the evolution in a 1D box of length 512 during 700 units of time (running
upwards). We bring a stable mixed mode in the region of instability toward defect chaos. The parameters are
p~ = 0.3, iuT = 0.5, g = 2, A = 1.5, P„=6 = Dz = D = 1. We take D, = 5, P, = 1.6, 6, = 3. Highest values are
in white. (a) Lines of constant phase of the Hopf mode. Spatiotemporal defects of phase appear at the points where the
amplitude of the Hopf mode locally reaches zero. (b) Amplitude of the Hopf mode. (c) Concentration c reconstructed as
Te' + He' ' + c.c. We recognize in the first third of time the "polygonal" space-time pattern characteristic of a mixed
mode.
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tion c is periodic both in space and time leading to a
"polygonal" space-time pattern characteristic of a mixed
mode [Fig. 1(c)]. In the second part of the time, the
defect chaos regime exhibits on the contrary space-time
phase dislocations appearing when the amplitude of the
Hopf mode locally reaches zero. On the other hand, in
the phase chaos regime the amplitudes of the Turing and
Hopf modes are Ouctuating around their stationary value
because the phase of the Hopf solution is turbulent. This
weak type of chaos cannot be clearly distinguished on
space-time plots from the stable mixed mode, because,
though the phase fluctuates, lines of constant phase re-
main continuous. This phase chaos dynamics is therefore
not represented in the figure.

%'e have studied the transition between the two forms
of turbulence by plotting the absolute minimum of the
amplitude of the Hopf mode 0;„in a given space-time
area versus P, or 8, . This method clearly distinguishes

between transitions of first and second order. In this lat-
ter case, the transition between phase and defect chaos
is continuous like in the conditions of Fig. 2(a). On the
contrary, for first-order transitions there is a hysteresis
phenomenon characteristic of bistability between phase
and defect chaos [Fig. 2(b)]. We use these graphs to de-
termine the transition points between both regimes. The
behavior of the system is then considered for different
sets of parameters. In the (~i, , P;) plane, the transition
between phase and defect chaos appears to be always
discontinuous, leading to a hysteretic behavior, as sum-
marized in Fig. 3(a). On the contrary, in the (DP, P;)
plane, both first- and second-order transitions can be ob-
served [Fig. 3(b)]. Moreover, the defect chaos regime
may persist in the stable region of this plane where it
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FIG. 2. Minimum of the amplitude of the Hopf mode H
vs parameter P, . Following a delay of 3000 units of time
after a quasistatic increase (crosses) or decrease (circles) of
P, , H;„is determined in a space-time area of 512 x 500. The
solid line stands for the stability limit of the mixed mode [Eq.
(7)]. (a) D, = 4. Continuous bifurcation characteristic of a
second-order transition; (b) D; = 0.6. Hysteresis typical of
a first-order transition. Below the stability limit of the mixed
mode (P, = 1.83), defect chaos coexists with the phase chaos
regime. For p, ) 1.83, defect chaos coexists with the stable
mixed mode. Note that the measure of H;„is not a good
means to distinguish a stable mixed mode from phase chaos
of the mixed mode. All other parameters are the same as in
Fig. 1.

FIG. 3. Phase planes (iI, , P, ) and (D, , P, ) summarizing the
region of stability of the phase and defect chaos. The solid
line corresponds to the limit of stability of the Turing-Hopf
mixed mode [Eq. (7)]. (a) (b, , P, ) plane for D, = 1. Crosses
stand for the lower limit of stability of the defect chaos regime
when b, is decreased, while circles represent the upper limit
of stability of the phase chaos dynamics when b, is increased.
The transition between phase and defect chaos regimes is hys-
teretic (bichaos). (b) (D, , P, ) plane for 6, = 3. Crosses stand
for the upper limit of stability of the defect chaos regime when
P, is increased, while circles represent the lower limit of stabil-
ity of the phase chaos dynamics when P, is decreased. Tran-
sitions of second order between the two regimes are observed
for higher D, 's. For lower D; 's, the transition is of first
order (bichaos). Moreover, defect chaos may persist in the
region where the mixed mode is stable. All other parameters
are the same as in Fig. 1.
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thus coexists with the stable mixed mode [Figs. 2(b) and
3(b)].

We have shown that the mixed modes resulting from
the interaction between Turing and Hopf modes may be-
come unstable toward diffusion-induced phase instabili-
ties. This bifurcation gives rise to weak and strong spa-
tiotemporal chaos in the sense that two di8'erent regimes
of phase and defect chaos are observed. This behavior is
reminiscent of the dynamics of the one-dimensional corn-
plex Ginzburg-Landau equation beyond the Benjamin-
Feir instability [4]. Its origin lies however genuinely in
the coupling between Turing and Hopf modes. Indeed,
for the values of parameters we have chosen, the corn-
plex Ginzburg-Landau equation alone [i.e. , Eq. (3) with

= b, = 0] does not exhibit a Benjamin-Feir instability.
However, when it is coupled with the amplitude equation
for the Turing pattern, the corresponding mixed mode
may undergo a phase instability as shown here. From a
theoretical point of view, one may test these two phase
instabilities to determine if the characteristics of chaotic
behaviors may be described in terms of similar univer-
sal laws and properties. Moreover, this new mechanism
offers another scenario for the onset of spatiotemporal
chaos in all degenerate systems where two instabilities

breaking, respectively, spatial and temporal symmetry
interact. Experimentally, this may be relevant to recent
experimental observations in gas discharge [18] and chem-
ical [9] systems. In the latter case, the Turing patterns
obtained in the chlorite-iodide —malonic acid (CIMA) re-
action arise because the activator species forms a com-
plex of low mobility with starch, the color indicator of
the reaction [19]. This gives rise to the diB'erence be-
tween the efFective mobilities of the reactants necessary
to shift a competing Hopf bifurcation so that the Tur-
ing structures may exist. When this complex formation
eKect is progressively relaxed, the shift fades away and
both bifurcations start interacting. It is in this transition
region that the complex spatiotemporal behaviors have
been observed. In this regard, the study of spatiotempo-
ral chaos in a chemical reaction-diffusion model has also
been undertaken.
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