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Prototypes of attractors in four dimensions
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We study an extension of DuKng's equation to three variables with external forcing. Starting
from a phase-space preserving chaos, three prototypes of chaotic attractors with a dimension larger
than 3 can be derived. We provide examples of hyperchaos and a "bifractal" in a four-dimensional
Bow. The second-order Poincare cross section of hyperchaotic How is qualitatively equivalent to the
first-order cross section of Ueda's attractor with the same forcing.

PACS number(s): 05.45.+b, 02.60.—x

I. INTRODUCTION

A four-dimensional fj.ow can be realized either as a sys-
tem of four autonomous ordinary differential equations
or as a three-variable system with external forcing. The
asymptotic dynamics of such systems can be described
by the four Lyapunov characteristic exponents (LCE's).
Leaving aside the zero exponent in the direction of the
trajectory (or forcing, respectively), the three remaining
LCE's can be used to classify the possible types of behav-
ior. Two criteria have been introduced for the distinction
of chaotic behavior. (i) Exponents can be either positive
or nonpositive. Using the spectrum of ordered LCE's,
Aq & A2 & As, P, z A; & 0, there are thus two possibili-
ties in the case of four-dimensional fIows: Aq ) 0, A2 & 0
(chaos), and At, A2 & 0 (hyperchaos). Two examples
of autonomous four-variable systems exhibiting hyper-
chaos have been described [1,2]. However, in these ex-
amples outside the range of parameter with hyperchaos
the trajectory either escapes to a stable steady state or
to infinity. There seem to be no detailed studies of pro-
totypic four-dimensional Hows which illuminate generic
features; e.g. , the bifurcation sequences to hyperchaos.
Therefore findings of two positive LCE's in experimental
time series have had no deeper explanation in terms of
model equations so far [3—5]. (ii) Two exponents of oppo-
site sign compete with each other. This allows for three
cases of chaos with one positive Lyapunov exponent: (A)
(Aq+ A2) & 0, ordinary chaos with a Lyapunov dimension
2 & DL, & 3; (8) (A, + A, ) & 0 and (Aj + As) & 0, chaos
with a Lyapunov dimension 3 & DL, & 4 and a sheetlike
cross section [6]; (C) (Aq + A2) & 0 and (A] + A3) &
chaos with a Lyapunov dimension 3 & DL, & 4 and a
second direction of fractalization in the cross section (a
"bifractal" [7]). These types have been characterized in
a three-dimensional nonlinear map [8]. We are not aware
of simple generic four-dimensional (4D) flows where all
these types have been found.

II. RESULTS

We provide a prototypic ordinary differential equation
where all four types of chaotic attractors including hy-

perchaos can be observed due to the systematic design of
the system:

x=9~
y = ki y —x + B cos(t) —Cj z,
z = k2z —C2x,

with x, y, z, k&, k2, B,C&, C2 c IR.

For Ci ——0 the subsystem x, y is DuKng's equation
as studied by Ueda [9]. Variable z possesses one term
which contributes to the trace of the Jacobian governed
by parameter k2, and Cq and C2 are used to linearly
couple Duffing's oscillator to variable z. When ki ——k2 ——

Ci ——0, variable z is coupled passively to the subsystem
x, y and DuKng's oscillator is known to display volume-
preserving chaotic orbits [10]. The spectrum of LCE's of
this volume-preserving chaos is (+, 0, —). Here, the zero
exponent rejects the passively coupled third variable.

Parameters kq and k2 (together with nonzero coupling
Cq) can now be exploited to tune this spectrum in three
different directions to yield attracting solutions. The
trace of the Jacobian is globally constant and equals
ki + k~, therefore k~ + k2 & 0 is required for attractors.

A. k& &«ndk2)0
For numerically small values of kq and k2 the LCE

spectrum refIects the deviation from the conservative
case. Negative kq (i.e. , the negative contribution to the
trace of the Jacobian) will increase the absolute value
of A3, the negative exponent of the former conservative
case moves farther from zero. Positive k2 brings a pos-
itive contribution to the trace of the Jacobian. Due to
this expansion in variable z (governed by parameter k2)
a second positive Lyapunov exponent can arise from the
former zero exponent and therefore hyperchaos can be
found. For kg ———0.04, k2 ——0.02, B = 34, Ci ———0.11,
and C2 ——3.0, we have found hyperchaos to exist. The
LCE's are (0.1634, 0.0237, —0.2180) yielding a Lyapunov
dimension of 3.858. Figure 1 shows a second-order cross
section of this hyperchaotic How. The plot is qualita-
tively equivalent to the first-order cross section of Ueda's

1063-651X/93/48(6)/4172(3)/$06. 00 48 R4172 1993 The American Physical Society



48 PROTOTYPES OF ATTRACTORS IN FOUR DIMENSIONS R4173

15

10—

0—

in absolute value (move closer to zero) due to positive
k», but the zero exponent of the conservative case gets
negative due to negative k2. With k» + k2 ( 0 an at-
tractor will result which fulfills both (Ai + Az) ) 0 and
(Ai + As) ) 0. The stroboscopic plot of this attractor
resembles the hyperchaotic case, but the different spec-
tral composition leads to a new type of fractal structure.
Exemplary parameter values are k» ——0.02, k2 ———0.04,
B = 34, C» ——5.9, and C2 ——0.1. This attractor has
a Lyapunov spectrum of (0.1940, —0.0479, —0.1752), and
thus a dimension of DL, ——3.834.

—10— III. DISCUSSION

—15

FIG. 1. Second-order cross section of hyperchaotic How for
parameters as given in the text. The first-order cross section
was taken at intervals of 2'. For the second cut an e band of
+1 around z = 0 was applied. The z variable lies in the range

[
—150; 150]. 261 301 points are drawn.

attractor at the same forcing amplitude and frequency
(see [10]). This confirms that the building-block princi-
ple for higher-dimensional flows [11]works. Hyperchaotic
solutions are found in a finite parameter range.

We have performed a 1D continuation on Eq. (1) with
different fixed val'ues of ki and varying values of B (other
parameters as given above for hyperchaos). In the (B,ki)
plane around the region with hyperchaos we found a
"bump" of torus bifurcations similar to the pitchfork
"bump" from Ueda's system (denoted "IV" in [10]). Also
there is evidence of a cusplike saddle-node bifurcation
curve, but in our model this curve is interrupted by pitch-
fork bifurcations. The pitchfork bifurcations keep exist-
ing for quite high values of the damping k». No evidence
of period-doubling bifurcations was found.

B. k~ &Oandk~ &0

With both k» and k2 negative both A2 and A3 become
more negative compared to the conservative case. For nu-
merically small values of k» and k2 the chaotic solutions
can be characterized by (Ai + A2) ) 0 and (Ai + As) & 0,
and the resulting attractors thus have a Lyapunov dimen-
sion 3 & Dl. & 4 and a smooth sheetlike cross section.
This type of chaotic behavior is described in [6].

Increasing dissipation, e.g. , by decreasing parameter
k2, simple chaos with (A, + A, ) & 0 and with a Lyapunov
dimension 2 & DL, & 3 can be found. Here the cross
section is a Cantor set of folded lines.

C. k& ) 0 and k2 & 0

For small values of both parameters the negative Lya-
punov exponent of the conservative case will decrease

The dynamic behavior of DuKng's oscillator was
known as a function of the dissipation parameter from
the study in [10]. The key to the results presented above
was the set of parameters that gives rise to a positive
LCE in DufBng's equations. A linearly coupled third
variable creates a new direction with zero divergence in
the phase-space preserving case (ki + k2 ——0). Then the
introduction of nonzero k» and k2 with k»+ k2 & 0 allows
the manipulation of the two nonpositive exponents. In
particular, k2 ) 0 creates a new direction of expansion
orthogonal to the chaotic divergence of the conservative
system. The single nonlinearity with the correct symme-
try (third order) is capable of keeping this (second) ex-
pansion bounded, and stable hyperchaotic solutions are
obtained for small positive values of k2. Note that Duff-
ing's equation is a physical model and was not tailored
to create hyperchaos as the Rossler system. Hyperchaos
in the context of DufI»ng's oscillator was also observed
by Kapitaniak [12], but periodic forcing of four coupled
nonlinear oscillators was required to achieve this result.

If k2 & 0, a new direction of convergent behavior is
created (compared to the volume-preserving case) and a
stable attractor results immediately. For small negative
values of k2, the exponent resulting from this convergent
behavior is (in absolute value) smaller than the positive
exponent from the mean divergence. This leads to the
familiar situation where on the average one local rate of
convergence to the attractor is weaker (in absolute value)
than the local rate of divergence [8]. The result is an
attractor of Lyapunov dimension larger than 3.

Parameter k» can be used to adjust the value of the
more negative Lyapunov exponent. If k» ) 0, then the
third Lyapunov exponent A3 can be managed to move
closer to zero and for small positive values of k» condition
(Ai + As) ) 0 is satisfied for a finite range of parameter.
This means there is a second mean value of convergence
in the system which is smaller (in absolute value) than
the mean divergence of the chaos. Thus there is a second
situation where the local rate of convergence is on the
average smaller (in absolute value) than the local rate
of divergence at that point. In contrast to the first case
there can be no second increase of the attractor dimen-
sion over the next integer because phase space is only
four dimensional. Now the competition of rate of conver-
gence with the rate of divergence leads to a second direc-
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tion of fractalization orthogonal to the first fractalization
caused by the stretching-and-folding operation in phase
space. This feature has been observed only numerically
so far and an analytic proof seems out of reach. However,
the same transition has been shown for a nonlinear three-
dimensional map in a situation close to invertibility [8]
and the transition criteria from smooth to bifractal at-
tractors could be given analytically in a piecewise linear
map with explicitly controllable rates of convergence and
divergence [13].

To summarize we conjecture that, according to our
classification, there are three types of attractors with

Lyapunov dimension 3 ( DL, ( 4, which are prototypic
for four-variable Qows.
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