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Stochastic electronic motion and high-eSciency free-electron lasers
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We consider the asymptotic behavior of high-power Compton free-electron laser oscillators. We ob-
serve that the electronic motion along the wiggler presents intrinsic stochasticity. We show that the
high efficiency in the broad spectrum regime is due to chaotic diffusion of the electrons toward lower en-
ergies, rather than to standard synchrotron motion. We obtain simple estimates of the properties of the
system at saturation, which agree with complete numerical simulations. Namely, both efficiency and
spectral width are predicted to behave like the square roots of the electronic density, of the cavity quali-
ty factor, and of the wiggler length, in such a way that their ratio is a universal brightness of the order of
v'3/2.

PACS number(s): 41.60.Cr, 52.35.Mw, 52.35.Ra

High-power free-electron lasers (FEL's) are typical of a
wide class of dynamical systems where particles are cou-
pled to waves, comparisons and cross validations of
which should be profitable. For instance, they are for-
mally described in the same way as a "cold-
beam" —plasma instability. Because of the simplicity of its
ingredients, the FEL model offers a favorable context for
the specific study of such phenomena. The linear regime
is by now well understood [1], but an analytical descrip-
tion in the nonperturbative domain up to saturation is
still to be built. Our aim is to obtain the most simple glo-
bal description of the dynamics in the system at satura-
tion, in order to obtain a qualitative understanding and
quantitative estimates of the efficiency and spectral width
as simple functions of the physical and operating parame-
ters.

In an FEL oscillator, an electron beam of linear energy
E, =p, yomc travels through a wiggler (p, is the electron
linear density), where it experiences a periodic static
magnetic field of vector potential:

A (z)= a cos(k z) .
e

AL (z, t) = Re g 6„(z)e
e

n n

EL = ghE„,

Since radial effects are of little importance at saturation
for FEL oscillators, we will consider that the radial
profiles T and S of the electron and photon beams are
frozen, so that the only sequel of the radial dimensions is
a filling factor (ST)= J2mr dr S(r)T(r). However,
complete simulations, including dynamical variations of
the radial profiles, have been performed, without chang-
ing the conclusions. Under the action of A„, the elec-
trons radiate a field AL. We introduce a reference wave
number kL, which is fixed later by Eq. (2), and discretize
k„=(1+nb)k sLo that the radiated field and the linear
laser energy are

where E„—:(mc/e) ~6'„~ /2@oh is the energy spectral
density. Note that h is small and will eventually go to
zero: it does not describe the structure of the spectrum,
which is determined by the field components C„only.
The averaged dynamical equations for the electrons are

d,f=k~ —
z (1+a~ /2),

2y'

2yd, y =g a %,~6„~ (ST ) sin[(1+ nb)f nhk„z——P„],

(la)

(lb)

where

kL =2yok (1+a /2) (2)

When this mode reaches saturation, and if the coupling is
strong enough, a sideband instability with a wave number
slightly lower than kI develops [4]. Nonlinear-mode
couplings may then generate new laser modes [2,5], until
complete saturation, where both the laser energy and
spectral width remain essentially constant from one
round trip to the other. During each pass, a fraction—AE, =b,EL of the electron energy is transferred to the
electromagnetic field, and a fraction 1/Q of the laser en-
ergy is -extracted as the output of the system. The ex-
tracted efficiency is then p = b.E, /E, =EL /QE, . —

@„=~@„~e ", y=(k +k )z ck t, —

A', =Jo(g) —J, (g), /=a /(4+2a ) .

The retroaction of the electrons on the electromagnetic
field is given by the Maxwell equations [2]. This model is
basically equivalent to the Colson-Freedman model with
periodic boundary conditions [3]. Although the complete
self-consistent dynamics is very intricate, we will show
that a very crude description of the laser field is sufficient
to reach a first analytical description of the average
characteristics of the system at saturation.

The linear analysis shows that an instability develops
near the resonant wave number kI .
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Extensive simulations have been used to investigate the
FEL nonlinear behavior. This is performed by solving
self-consistently Eqs. (1), together with a multifrequency
laser field, from noise up to saturation. To get relevant
results, a large number of electrons ( ~ 10000) and laser
modes are required. Compared to the sideband frequency
shift (say, for example, 3%%uo), the computed spectral
domain is large ( =20%) and the discretization step small
enough (0.3%%uo). The numerical results provided in the
following are consistent with and complementary to
those given in [2].

It has been observed in these systematic numerical
simulations that the extracted efficiency and the relative
spectral width 2 = ( ( k ) —( k ) )

'~ /kL at saturation
both increase with the coupling in such a way that their
ratio, the spectral brightness S, is largely independent of
all the physical and operating parameters [2]. This is a
remarkable result, since, before entering the broad spec-
trum regime, the spectral brightness may vary by orders
of magnitude from one case to the other. One finds that
S is always slightly smaller than a maximum value XM,
with typically

0.6 ~S~ %M —0.8 . (3)

The existence of such a "universal" brightness there-
fore means that high currents can indeed lead to high
efFiciencies, but only at the expense of a proportional
spectrum broadening. Although, in some cases, tapering
allows sideband inhibition with an improved efficiency
[6], this is in general not the case for FEL oscillators
where one has to use short wigglers [7]. This constraint
on the spectral brightness is an important issue concern-
ing the possible outputs of high current FEL oscillators.
From a more fundamental point of view, this universality
suggests that some important features of the dynamics do
not depend on the precise values of the operating param-
eters, but only on the fact that the couplings and the in-
teraction time are large enough to bring the system in the
broad spectrum regime.

Equation (1) can be derived from a Hamiltonian H for
the variables P and p =(y —yo)/yo:

II(g,p)=&(p)+ g &„(g), (4a)

where

T(p) =k [p —ln(1+p)], (4b)

(4c)

Now we are interested in the saturation, where the gain
is equal to the losses 1/Q, that is, typically a few percent.
It is therefore legitimate to consider, as a first step, that
the 6„are constant during one given round trip of the
electrons. Each term V„generates a resonance at p„=nh
corresponding to d, g =nh /( 1+nh ), with a synchrotron
pulsation 0„:

and

a.m, !c„!&sz)
V„(g)= cos[(1+nb)P nhk z —P„] . —

(1+nb)yo

&.=(2p,h)'" k.a.u, (SZ. )
' 1/2

~
—1~ 1/4

The motion of the electrons in this column of reso
nances depends on the E„'s. If they were very small,
each resonance would keep its identity, and electrons
with p =p„would remain trapped around p„. However,
for larger E„'s, resonances overlap and merge into a
column coming down from p =0 to p =p;„=hn
= —2&3X. In this regime, the electrons are no longer
confined to a given bucket [8]. On the contrary, their
motion is chaotic [9] and eventually leads to an equiparti-
tion over all the available phase space.

Let us now consider the electrons entering the wiggler,
when the large spectrum regime has been reached. The
detuning and the initial energy spread of the electrons
have little effect in this case, so that we can consider that
the electrons start with p=0. The chaotic diffusion leads
to an equipartition between p=0 and p =p,„=—2v'3X.
Therefore the average p variation for the electrons across
the wiggler will be given by —bp =&3X for an infinite
wiggler, so that —bp ~&3X for a finite wiggler. The
corresponding laser energy variation is then
b,E~ = b,E, ~

—,
'v'3X—E, . Since we consider the asymp-

totic equilibrium, this is also the energy EEI =El /Q ex-
tracted from the cavity so that

=0 86M (6)

which is in agreement with the values issued from exten-
sive numerical simulations [Eq. (3)].

The diffusion of electrons along the p axis may be de-
scribed by a Fokker-Plank equation [9]. The width of the
p distribution then evolves like z', so that the electrons
have p ——L' at the end of the wiggler, and couple
only to laser modes with b,k/kl ~(hk/kI ),„-L'~ .

We see then that the spectral width is controlled by the
diffusion coefficient and the wiggler length, so that the
spectral width and the extracted efficiency should be both
proportional to I ' . This has been tested by complete
self-consistent numerical simulations, as shown in Fig. 1.
Note that this behavior is radically different from the
monochromatic regime, where the efFiciency is essentia11y
determined by the detuning and therefore behaves like
L

—1
W

As a first step we may not consider the corrections due
to the fluctuations of the laser field, and suppose that the
average spectrum is smooth enough to avoid trapping.
Then the diffusion coefFicient D„around p„ is locally
determined in p, and can be evaluated by replacing in Eq.
(4) our stochastic column by an infinite and uniform
column, with the local value of A„. The Hamiltonian is z
periodic, with period Az =2m. /hk . Within the quasilin-
ear (or random-phase) approximation, which considers
that the phase g is rapidly decorrelated by the dynamics,
the diffusion coefficient along p is D =((bp) )/b, z,
where ((Ap) ) is the average over g of the quadratic
momentum variation during one period hz. Now since itj

is considered as a random variable, the relative given



48 STOCHASTIC ELECTRONIC MOTION AND HIGH-EFFICIENCY. . . R3261

6 I I

5-

Q
g3-
0)

~ p
Q

~~z-

0
0

J
/

/

200 400 600 800
Round trip number

10

p 8-

+ 6-
~ +

0 4-
~ g

0)gz-

0
0

ter long wiggler
ters Long uriggler

200 400 600 800
Round trip number

1.0

0.8

+ 0.6

g 0.4

0.Z- I

0.0
0

1 meter long wriggle
———2 meters long miggler

ZOO 400 600 800
Round trip number

FIG. l. Efficiency p, relative spectral width X, and spectral brightness %=p/X, as functions of pass number, for two wiggler
lengths. When the wiggler length is multiplied by 2, the eKciency and the spectral width at saturation are both multiplied by &2, so
that the spectral brightness is invariant.

slowly varying laser phases P„have no effect, and can be
set to zero without changing the diffusion coefficient (the
corrections to the quasilinear value will, however, be sen-
sitive to the P„'s [10]). Then the dynamical equations
can be integrated on hz intervals, giving ((bp) )=

—,'(2mQ„/hk„), so that, taking Eq. (5) into account,
the diffusion coefficient is found to be proportional to the
spectral density of laser energy (it does not depend on the
discretization parameter h ):

1

~

QD(p„)
n min pg

2.m, &ST ) y,-"k.-'XgE, .
Pal C

Neglecting for the moment the effects of the lower bound
at p =p;„, the solution of Eq. (7) is

8 g (z,p) = '8 D (p}B g (—z,p),
with

2

(7)
2

g (z,p) =p, e( —p)
mDz

' 1/2
p

2Dz

D (p„)=2povr a Wi ( ST ) yo 4k 'E„.
UlC

The precise z dependence of the density g(z, p) will de-
pend on the detailed shape of the spectrum. However,
the asymptotic distribution for 1arge z is uniform between
0 and p;„, and does not depend on this spectrum shape.
Furthermore, as long as the spectrum is smooth, and be-
cause of the regularizing properties of the diffusion equa-
tion, the speed at which the asymptotic distribution is
reached depends very little on the details of the variations
of D (p) with p. It is mainly controlled by a mean value D
of the diffusion coefficient over the available p interval:
the lowest-magnitude eigenvalue of the Sturm-Liouville
problem corresponding to the diffusion equation [Eq. (7)]
is A.O=O, which corresponds to equilibrium. The next ei-
genvalue can be estimated [11] by A, i

——
m [ f dp /

&D(p)], which is the same as if the diffusion coeffi-
cient were uniform with 1/&D =—(1/&D(p)), or
D = ( D (p) ) up to the second order in the relative varia-
tions 1 D(p)/(D (p) ). This eige—nmode dominates the
route to equilibrium, since the next eigenvalue can be

similarly estimated to be four times larger than A, &. Then,
everything goes on just as if the diffusion were uniform,
with

where e is the Heaviside function, so that the average en-

ergy is (p (z) ) = —(2Dz/m)'~ . This leads to the
efficiency p = —

—,
' (p (z =L ) ):

—~(Qp L )1/2 (9a)

With

2

a = (a A'i(ST)) yo
m 2 3

(9b)

A first estimation aM of the coefficient a is available since
we know that the spectral brightness is smaller than, and
of the order of magnitude of, XM=v 3/2. A complete
ab initio evaluation of the brightness would necessitate
refining the argument stating that laser modes do not ap-
pear where electrons do not have time to diffuse within
one wiggler length. This means taking into consideration
the whole self-consistent dynamics, which cannot be done
analytically at that time.

We see in Eq. (9) that the extracted efficiency and the
spectral width are both proportional to the square root of
the wiggler length, as previously stated. They are also
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proportional to the square root of the electron density
and to the square root of the cavity quality factor Q: the
more we close the cavity, the more we extract energy
[12]. Now, there is no difficulty in calculating the correc-
tions to ct induced by the lower bound p;„=—2&3X of
the phase-space region available for diffusion, and one
finds a theoretical value a,h slightly lower than a~. The
scaling law [Eq. (9a)] has been tested, and is in good
agreement with full numerical simulations (Fig. 2).

The model described in this Rapid Communication has
enabled us to obtain in a simple way most of the average
characteristics of the high-power saturation regime, oth-
erwise issued from heavy numerical simulations. It
shows that the electronic energy is transferred to the
laser via chaotic diffusion toward lower energies, rather
than via a coherent synchrotron motion as suggested by
the standard models [1,4]. This is why the efficiency is no
longer simply related to the detuning, which we neglect
here, but appears to be more directly related to the spec-
tral width. One of the purposes of the ELSA experiment
by Joly et al. [13]will be to reach high efficiency and test
this behavior.

The quantitative consequences of this idea could be
made more precise with a detailed analysis of the
diffusion behavior, testing the relevance of the quasilinear
approximation, and of our crude description of the laser
spectrum. They could also be made more complete by
taking into account the time evolution of the laser field
along the wiggler. In particular, the values and dynamics
of the laser phases may affect the diffusive behavior [10].
Furthermore, an analysis of the self-consistent coupling
between the electrons and the laser could provide some
insight into the transient regime, and into the nature of
the fluctuations in the asymptotic regime.

It appears from this discussion that FEL's may be
efficient experimental devices to investigate the issues re-
lated to wave plus particle systems with self-consistent
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couplings. Finally, and from a more practical point of
view, we have shown how allowing a broad laser spec-
trum makes possible an important increase of the expect-
ed efficiencies for high current FEL oscillators.

FIG. 2. Efficiency vs linear electron density p, . For a mono-
chromatic laser (dotted curve), the efficiency (related to the de-
tuning Ak/kI &0.41/N, N =31) remains below 1%. If the
spectral dynamics is not constrained [dashed curve from full
self-consistent numerical simulation, solid curve from Eq. (9a)
with a =a,h], the spectrum broadens and the efficiency increases
like the square root of the charge. The considered numerical
values are o =1.075, yt', =0.9, y0=33, Q=25, L =1 m,
(ST)=0.22 mm '. Equation (9b) gives aM=7. 38X10, the
corrected theoretical value is a,h=6. 12X10, while the ob-
served value is a„„=5.72X10 (the relative error is about
7%)~
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