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Relativistic solitary wave in an electron-positron plasma
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Relativistic solitary-wave propagation is studied in a cold electron-positron plasma embedded in an
external arbitrary strong magnetic field. The exact, analytical, solitonlike solution corresponding to a lo-
calized, purely electromagnetic pulse with an arbitrarily large amplitude is found.
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Recently, the problem of wave propagation and related
phenomena in electron-positron (e-e+) plasmas, or more
generally in plasmas with equal-mass components, has at-
tracted considerable attention [1]. Such plasmas are, for
example, found in Van Allen belts, in active galactic nu-
clei, and near the polar caps of pulsars [2]. The e-e+ pair
production and subsequent plasma formation are also
possible when electrons are accelerated to relativistic ve-
locities either by intense laser beams, or by large-
amplitude wake fields generated by intense short laser
pulses [3]. Under certain conditions, even an ultrarela-
tivistic electron-proton plasma can behave very much
like an electron-positron plasma [4].

It is also obvious that different types of such plasmas
will be the essential constituents of the early universe [5].
It is conjectured that intense relativistic plasmas could
exist in the vicinity of cosmic defects like strings [6].
Most of all, the dynamics of an e-e+ plasma could be of
great interest to further our understanding of the MeV
epoch in the evolution of the universe; it may, indeed, be
possible that a deeper insight into the behavior of an in-
teracting e-e+ Quid in this era may provide valuable
clues to its later evolution. A stable localized solution
with density excess may, coupled with gravity, create
templates for confining matter and creating inhomo-
geneities necessary to understand the observed structure
of the visible universe.

Although our investigations could have a wider scope,
we concentrate in this paper primarily on finding local-
ized pulselike solutions which may be of relevance to the
early universe dynamics. We deal with a pure e-e+ plas-
ma embedded in an arbitrary strong magnetic field
Bp=Bpz. The two-cold-Quid system is exactly solved for
arbitrary electric- and magnetic-field perturbations that
propagate following the z direction of the ambient Geld.
We find that the equal-mass constraint, coupled with the
demands of a pulselike (localized) solution, forces strict
charge neutrality leading to a pure electromagnetic pulse.

The cold magnetized relativistic electron-positron plas-
ma can be described using two-Quid hydrodynamic equa-
tions together with the set of Maxwell equations:

BN +V.(X u )=0,
Bt

VXB= + g s XuBE
Bt a=e, e

VXE=- BB
Bi

(3)

(4)

V E=N+ —N, )

8=VX A.
Without any loss of generality we work in the gauge
V. A=O.

We look for the propagating localized solutions (van-
ishing at infinity) described by Eqs. (1)—(6), in which all
fields depend only on the combination g=z —vt. Since
we are interested in localized solutions, we consider only
the subluminous case where the normalized wave velocity
v (given in c units) is always less than 1. The chosen spa-
tial dependence (on z alone) coupled with the gauge con-
dition implies that A, =0.

Multiplying the vector equation of motion (2) by the
velocity u and integrating it together with its longitudi-
nal component, we can derive the relation

~a U+az l ~a V

V B=O, (6)

where a is the species index (e for the electron and e + for
the positron) so that s, and s + denote, respectively, the

negative sign and the positive sign. In these equations all
variables are dimensionless. The time and space variables
are respectively normalized to the electron plasma fre-
quency to, and the collisionless electron skin depth c/to, .
The electric (E) and magnetic (B) fields of the wave are
given in units of m, co,c/e. In these units the constant
external magnetic field is

I Bo I

=II, /to, where 0, is
gyrofrequency. The relativistic momentum vector p is
in units of m, c and the particle number density X is
normalized to the equilibrium number density
np=nep=n +p.

For definiteness we choose the constant external mag-
netic field Bp to be parallel to the z axis. It is also con-
venient to write the equations in terms of the scalar (q&)

and vector ( A) potentials defined by the standard rela-
tions

BA
Bt

—Vy,
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where

y.=V I+p'.i+P', (9)

where D reads

D =[(1—s y) —(1+ P I )y„] (21)

where

=y [U(1 s y) D ]

—[(1 )2 (1+ 2
) 1]i/2

(10)

Also the relativistic factor y for the particles can be ex-
pressed in terms of the transverse momentum

y =y, [(l—s q) —vD ] . (12)

Using Eqs. (10) and (12), we integrate the continuity
equation (1) for the boundary condition that all variables
are vanishing at infinity and we get the positron and the
electron density perturbation

5N =N —1 =y„[(1 sy)u/D——1] . (13)

The remaining two components of Eq. (2) for the trans-
verse momenta can be expressed [using Eqs. (10) and
(11)]as follows:

and the transverse momentum p J is defined as

paJ =p«&+paly, where x and y are unit vectors along
the two independent transverse directions.

The longitudinal component of the momentum is now
written more explicitly using Eq. (8) and the factor

( I 2) —i/2 IP, I'=
I p, +I', (22)

which is the analog of a relation derived in Ref. [7] for
electron-ion plasrnas. Due to their equal masses, the ra-
diative pressure is the same for electrons and positrons.
In addition to effecting considerable algebraic
simplification, Eq. (22) leads to a most interesting feature
about the localized pulses in an e-e+ plasma. To demon-
strate this remarkable result, we begin with the Poisson
equation [Eq. (17)] with Eq. (22) substituted in it,

1+y
[(1+ )' —(1+IP I') -']'"

1 —y
[(1—

q )' —(1+ I p, I')y. ']'" (23)

Naturally, the structure of y depends upon the structure
of the other field variable IP I, which is the same for the
two species. As g~ ~, both of the field variables y and
IP, I

must become much less than unity for localized
pulses. Thus, as g —+ ao, Eq. (23) must reduce to

with new variables. Equation (20) for positrons and for
electrons is integrated once using Eqs. (14) and (15).
Combining the obtained first-order differential equations
with their complex conjugates leads to the relation

dp d A pay BO

dg dg D
(14)

v
2 +2P[l+(3U 1)IP, I

]=o (24)

dp dA

dg dg
p Bo

D
(15)

To close the system, we need Maxwell's equations,

and

d AJ

d g2
2 &aPaJ.= —y„g s

~aa=e, e+
(16)

1 spp
dg2 y~ +- ii

7

(17)

A =A +iA (18)

and

We shall now demonstrate that this system of equa-
tions contains an arbitrary-amplitude, propagating, local-
ized, electromagnetic pulse as a solution. It is convenient
to solve our system for the transverse momentum, elirn-
inating the vector potential. Introducing the complex
variables

2 d~P
4 +ipp(1 —IPI )

' ' +p P(1 —IPI )
dn
—2P (1—

I
pl') (25)

which does not allow a decaying solution; the solution
must oscillate (spatially) with a wavelength of order uni-
ty. The only way for y to go to zero as g~~ is to be
zero everywhere. If IP, I

VIP +I, then Eq. (24) would

contain inhomogeneous terms proportional to IP I, i.e.,
terms independent of y, and one could seek decaying
solutions. Thus the equal mass of the constituent parti-
cles forbids the existence of an electrostatic potential and
forces a localized pulse to be purely electromagnetic.
From Eqs. (14)—(16) one can see that for y=0 only linear-
ly polarized electromagnetic stationary localized radia-
tion can propagate.

The system of equations for electrons and positrons
(20) is integrated once. Then, two first-order equations
are reduced into a single one, using the fact that the po-
tential (y) is zero in the expression for D [see Eq. (21)]:

Pa pax+Vay ~ (19)

we derive [from Eqs. (13)—(15)] the basic equation of this
paper,

where g=2y, g,

p p (y2 1)
—I/2

and

(26)

d P d P P„
(20)

p —g (y2 1)
—i/2 (27)

Equation (25) is an exact consequence of Eqs. (1)—(6)
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P =
l Pl exp(i8), (28)

and eliminate the phase 0 from the set of coupled equa-
tions, obtaining

describing a purely electromagnetic propagating pulse in
e-e+ plasma. In order to solve this equation we express
the complex momentum as

R
0. 6

0.
0.

Rm
.8

d'IPI +,
[1+(1—lPl )i~ ]

P
(29)

Integrating once Eq. (29) with the boundary conditions
lPl ~0 for g~ ~, we get

+2p ( l l) +(1 lpl)~
dt's

FIG. 1. Solution R as function of space coordinate g and am-
plitude R

—P —1=0 . (30)
y =(y, —1)R+1 (37)

Equation (30) can be simplified making the substitution

(31)

and

y, R
Mt (38)

where R is constrained to the range 0 ~ R & 1. In the new
variable R Eq. (30) takes the following form:

2
dR

deaf

R (2 —P —R) =0.
(1—R)

(32)

R 1/2

R =R sech [lgl+2(R —R)' ] (33)

This equation has an implicit soliton-type solution given
by

The electric field E =(E„+E»)'~ is obtained from Eqs.
(7), (14), and (15),

E =2(y, —1)R ' (39)

Equations (37)—(39), together with Eq. (33), completely
describe the characteristics of a solitary wave in e-e+
plasma.

From Eqs. (27) and (39), it can be seen that the max-
imum value of electric field and the factor y, [velocity of
the soliton v =y„'(y,—1)' ] are interrelated,

where the maximum amplitude R is E =2(y„—1)[2—Bo(y„—1) ']' (40)

R =2—P (34)

Since the variable R is always positive and smaller than 1,
the parameter P must satisfy the following inequality:

1&P' 2, (35)

which, for a given y„imposes a restriction on the
strength of the ambient magnetic field. Naturally, this
solution ceases to exist when Bo~0. In spite of the fact
that the pulse soliton is expressed in an implicit form, it is
not dif5cult to calculate its physically relevant features.
For example, the half width of soliton reads

(36)

It can be seen from Eqs. (33)—(36) that both the shape and
width of the soliton depend on its amplitude. It is also
clear that the large-amplitude (R ~1) soliton tends to
be spiky, while for sm.aller amplitudes, the wave train is
spread out. Such an amplitude dependence of the soliton
is displayed in Fig. 1.

Let us now express all relevant physical quantities in
terms of the solution R. The particle relativistic factor
y and the density perturbation 5% [see Eqs. (12) and
(13)] are respectively given by

In this relation the dimensionless magnetic field
Bo =0, /co, is an external parameter which, taking into
account the inequality (35), restricts the range of the
maximal electric field and hence of y„

0&E &2B,',
B,'/2+1 ~ y' &B,'+1 .

(41)

(42)

When the electric field approaches its upper limit (2BO) a
big density excess (Mt) appears [see Eq. (38)]. If the elec-
tric field exceeds its upper limit, wave breaking will
occur. In this case the electromagnetic waves are over-
turned and cause multistream motion of the plasma. In
order to study such a situation a kinetic approach is
necessary. When Bo « 1, it is impossible to have solitons
with relativistically big amplitudes, since the particle s
kinetic energy is less than the rest energy (y —+1). In the
opposite case, when Bo »1, the velocity of the soliton is
close to the velocity of light, and the amplitude can be re-
lativistically big (1«y,„&Bo).A minimal possible
width of the relativistic soliton is A, =L, /2y„=BO '.

In conclusion, it is shown that the radiative pressure is
the same for electrons and positrons, which means the
absence of the charge separation, i.e., the vanishing of the
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scalar potential. Solving exactly the system of nonlinear
equations, we found the one-dimensional propagating lo-
calized purely electromagnetic pulse with relativistically
large amplitude. The subluminous case of the relativistic
solitary-wave propagation is considered in an arbitrary
strong magnetic Geld. The obtained exact unique solu-
tion can lead to a density bunching and as a result to the
creation of large inhomogeneities in plasma.

The existence of coherent pulselike exact solutions in
the e-e Quid is interesting, and in a future paper we
shall investigate its stability, as well as what kind of phys-
ical effects could be associated with such concentrated,
high-amplitude probes. It will be very important to ex-
pand the analysis to include kinetic, collisional, and radi-
ation effects to study the interaction and energy exchange
between the pulse and the particles.
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