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Core structure of a screw disclination in smectic- A liquid crystals
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The core structure of a screw dislocation in the smectic-A matrix is studied using the covariant form
of the Landau —de Gennes free-energy density. Three qualitatively different core structures are found.
In solution (i) the screw dislocation is singular only in the smectic component, while in solution (ii) the
defect is also present in the nematic director field. In solution (iii) smectic layers bend significantly out
of the undistorted reference plane and the core is singular in both components. In addition, it is shown

that, if the smectic phase is composed of a mixture of conformers with opposing twist sense, the screw
dislocation can cause spatial variation of individual mixture component concentrations. This can in turn
influence the core structure itself.

PACS number(s): 61.30.Jf, 61.30.Eb, 61.30.Cz

In ordered media competing ordering mechanisms
often exist which force the system to form defects [1]. At
a defect site some system-ordering properties are no
longer uniquely defined. Recently there has been a grow-
ing interest in this field of research, not only because the
defect classification depends in detail on the nature and
topology of the order parameter manifold, but also be-
cause the defects can often mediate phase transitions be-
tween different phases, and can potentially play an impor-
tant role in various applications.

Liquid crystals [2] (LC's) are particularly suitable as a
probe of these phenomena. They form an extremely rich
variety of different defects, known also as disclinations in
this context, which can reach their equilibrium structure
relatively easily, precisely because they are liquid. There
have been numerous detailed [3—6] theoretical studies of
defect core structures in nematic (N) LC's. However,
there have been only preliminary studies of defect struc-
tures in the smectic phase [1,2,7—9]. Following the
discovery of the twist grain boundary (TGB) phase
[10—12] there has been renewed interest in the structure
of the screw dislocation (Fig. 1) in the smectic-3 (Sm-3)
phase. This phase is the result of a frustrated comprom-
ise between the cholesteric and Sm-2 phases. It consists
of a lattice of screw dislocations in a Sm-3 matrix, and
was first predicted theoretically [10] on the basis of an
analogy [13] between the Sm-A phase and superconduc-
tors. In this analogy the screw dislocations play the role
of vortices in type-II superconductors.

To our knowledge there have been two studies con-
cerned with the core structure of the screw dislocation
[8,9]. Day, Lubensky, and McKane established [8] the
connection between dislocation in liquid crystals and vor-
tices in superconductors. They show that the structure of
the nematic director field n(r) is similar to that of the
magnetic vector potential within a vortex. Loginov and
Terent'ev studied [9] the core structure using a harmonic
elastic approach. But if the result of this theory is inter-
preted in the director-field representation, the resulting
structure differs from the predictions of the model of
Day, Lubensky, and McKane. In addition, the harmonic

approach indicates that the director field is singular at
the disclination axis, suggesting strong spatial variation
of the nematic orientational order parameter.

The purpose of this paper is to extend these studies to
the case where nematic order parameter variations are
taken into account. In particular, we show that this in-
clusion enables the existence of new structures not seen in
the theory of superconductivity. This complexity is fur-
ther increased by including the case where the LC is com-
posed of conformers with competing molecular chirality.
Details will be published elsewhere.

The free-energy density of our model is expressed as
[2,13,14]

f(r) =f~'(r)+ fg'"(r)+fs"(r)+fs'"(r)+f„„p)(r),

2 3 ~4
fÃ"'= A(T —TN)

2
—bÃ
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FIGr. 1. Schematic presentation of the screw dislocation in a
layer of the smectic-A matrix. The smectic layer rotates around
the dislocation axis in a screw-staircase fashion. Far from the
dislocation axis the nematic molecules tend to lie along the lay-
er normal.
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fg'"= —,'[kr~(n Vs) +ki(nXVs) ]

S2+ [k, (V n) +k2(n. VXn) +k3(nXVXn) ],
(lb)

fs" =~s (T Ts )lW +bs +cs
2 3

n V —i«)q '+y, lnXVql',

(lc)

(ld)

(le)

n=e coscx sin8+e sinu sin8+e, cos8-, (2)

where (e,e,e, ) denote the unit vector triad of the cylin-
drical coordinate system (p, y, z).

The existence of the screw dislocation is enforced by
the following form for P:

In these equations f ' denotes the local and f;"'" the
nonlocal part of the free-energy density of the smectic
(i =Sm) and nematic (i =N) phase contributions. The
nematic orientational order parameter s(r) describes the
degree of orientational Auctuation around the average lo-
cal orientation n(r). The smectic ordering is described by
the one-dimensional density wave f(r)=e(r)e'~r'. The
smectic translational order parameter e(r) measures the
amount of smectic ordering, and the phase factor P(r)
specifies the position of the smectic layers. The quantities
y; (i =J. , ll) and k, (i =1,2, 3, l, ll) are the smectic and
nematic elastic constants; yll, y~ are associated with smec-
tic layer compression and bending, respectively. A posi-
tive value of y~ is crucial for the stability of the Sm-A
phase: it tends to lock nematic molecules along the smec-
tic layer normal. At y~=0 the Sm-2 phase becomes un-
stable with respect to the smectic-C phase. s k; corre-
sponds to the splay (i =1), twist (i =2), and bend (i =3)
Frank elastic nematic constant; and k~, kll determine the
preferred director n(r) orientation at the nematic-
isotropic interface. The quantity T is the temperature;
qo=2m. /d with d being the average separation between
adjacent smectic layers. The values of Tz, Ts, a&, b&,
c&, as, bs, and cs are given by the LC material prop-
erties. The term (le) couples the smectic and nematic or-
der parameters and is crucial if the Sm-A —% phase
transition [2,15,16] is to be described correctly. For
D =0, the Sm- 2 —X phase transition is continuous
at T = Ts, while the I N transition —(I denotes
isotropic) is discontinuous at T —Tz =2hz/(9azcz)
As D is increased, one reaches (a) a tricritical
po int at D„;, Qbsm(&-x(T T~)/2 bivs—b+3c~~—b/2)
and higher temperature T, satisfying the
relation a s ( T —

Tsm ) /bshe =sb(ax( T —T~ )/2 bzs&—
+3cJvsb/2), beyond which the N Sm Atransition —is-
first order, and (b) a triple point, beyond which the N
phase no longer is stable and there is a direct I—Sm-2
transition [16]. Here s&=sb(T) denotes the bulk value
of s.

In order to study the structure of a screw dislocation in
a Sm-3 phase we describe the nematic director in terms
of angles a(r) and 8(r) as

P(r) =qo(z —u(p) }+My, (3)
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FIG. 2. The normalized 8/0b and order parameter s/sb,
e/eb spatial variation of the DT solution. 8 is scaled
with respect to 6b to demonstrate departures from the elastic
continuum theory solution. In the calculations we set
k I gocN /bN —bs eN9 0'v

II
es bN ) = 100, bs eN /~ es bN ) = 1,

» ~II 1, k /k, =k3/k, =30, k /k, =kll/k, =1, (T—TN)/

TN = —0.02, Ts /TN =0.97, es as Ts /bs =eNaN TN /bN
=50.

where u (r)~0 as p —+ ~. Here the winding number M is
the integer less than 0 measuring the strength of the
screw dislocation whose axis is set along e, . The minimi-
zation of the free energy in terms of these parameters
yields five coupled Euler-Lagrange equations for s(r),
8(r), a(r), u(r), and e(r). We limit our interest to solu-
tions preserving cylindrical symmetry, i.e., the parame-
ters quoted depend solely on coordinate p, and for the
case D =0 in which the Sm-A —N transition is continu-
ous. The resulting set of coupled nonlinear differential
equations is solved using standard relaxation techniques
[17].

For conventional values of liquid-crystal material and
elastic constants in the Sm-A phase (k2-k3))k, ), we
find two qualitatively different ways in which the frustra-
tion along the dislocation core can be relieved. We
denote these as the "double-twist" [8,10] (DT)
and "classical" (CL) solutions. The spatial variation
of variables describing these structures is presented in
Figs. 2 and 3 in units of smectic correlation length
gi=Qyi/[2as (Ts —T)]. In these solutions a(p) and
u(p) have constant values: a(p)=sr/2 and u (p)=0.

In the DT structure (see Fig. 2) the Sm-A phase avoids
a smectic layer discontinuity by forming a semidefect
[18], i.e., the singularity is only in the smectic order pa-
rameter; the nematic ordering remains continuous. The
core is nematic. Within it the director tends to lie along
the disclination axis [6(p ( 1) ~ p] and twists in
a reverse sense to its sense in the asymptotic (and elastic)
limit far from the core: n(p))1)-e sin8b+e, cos8&,
8b(p) =arctan[M/(qop)], a&(p) =m. /2. This director
field variation is predicted by the analogy with the theory
of superconductivity [8]. The extent of nematic fiuid sur-
rounding the defect is progressively enhanced with in-
creased winding number M which plays a role similar to
the centrifugal force. In the neighborhood of the defect
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FIG. 3. The spatial dependence of the normalized order pa-
rameters 0/8b, s/sb, e/eb for the CL solution. The values of
material constants and temperature are the same as in Fig. 2.

the smectic order parameter behaves as e ~p and ap-
proaches its bulk value eb as 5@=a eb ~ ——1/(ebp ). In
the CL solution (Fig. 3) the director field is similar to the
result [9] of the classical elastic continuum approach, i.e.,
8(p)-8b(p). In this case the screw dislocation is singu-
lar in both the smectic and nematic order parameter (a
so-called [18] "full defect"). The core is isotropic, and
the core region is an "unescaped" nematic disclination of
index 1. This defect is topologically unstable in that the
nematic director field can avoid singularity by escape
along the screw dislocation axis. Escape can be achieved
in a uniaxial [3] way or via intermediate biaxiality [4],
which is here not taken into account. Nevertheless, un-
der specific circumstances this solution can be stable in
the "physical" sense. To estimate the core radius of the
isotropic (p,") and nematic liquid (p("') surrounding the
screw dislocation, we discard the Vs and Ve terms
in Eqs. (lb) and (ld), set 8(p)=8b(p), and define
p', "'"' as a maximal value of p where the correspond-
ing higher-temperature phase is locally still stable,
yielding p~,'~-M ( —k3/(qo(a&(T —T&)—2/3bs sb

parameters given in Fig. 2 we get p,"/gi-0. 3M ~ and

p,'"'/gi -0.3M, which is in good agreement with more ac-
curate numerical calculations. Note that eb —+0 on ap-
proaching the X—Sm-A transition, providing D &D„;,.
Therefore the value of p,'"' diverges at this temperature.
The core radius of the CL solution is apparently smaller
than in the DT case. This is because the structure of the
CL solution is more consistent with a layered structure;
the smectic order in the CL case thus persists closer to
the defect axis. The nematic bulk ordering relaxes much
more quickly than the smectic ordering. We find
s —

sb ~ —I/p, while e—eb ~ 1/p, just as in the case of
the DT solution.

We now discuss the stability of the DT and CL defect
structures. Under normal circumstances the CL solution
is considerably more costly in the nematic free-energy
contribution. The isotropic core is highly energetic. But
this cost can be substantially reduced near a first-order
I—Sm-A phase transition. This can be achieved with
strong nematic-smectic order parameter coupling [Eq.
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FIG. 4. The spatial dependence of g=8/8b (full line) and
g=a/ab (dash-dotted line) of the BP solution. In the inset the
dependence of g =u (p )qo (full line), normalized nematic

g =s /sb (dash-dotted line), and smectic order parameter
g=e/eb (dashed line) is shown. The values of material con-
stants and temperature are the same as in Fig. 2, except
k2/kl =1.

(le)]. In addition, the stability of structures can be con-
siderably influenced by the ratio k2/k3 of the twist to
bend nematic elastic constant. The nematic free-energy
contribution of the DT solution comes almost entirely
from the twist contribution, but in the CL case the bend
deformation dominates. Therefore for kz/k3) 1 the CL
solution is preferred. The CL solution can be also stabi-
lized by a high y~/y~~ ratio, which tends to lock nematic
molecules perpendicular to smectic layers. Normally,
however [2], yi/y~~ (0.2.

We have also found a solution which breaks the polar
symmetry of the system (Fig. 4). In this configuration-
the "broken polar" (BP) solution —the smectic layers
near the dislocation axis bend significantly out of their
asymptotic plane, in which the layer normals are perpen-
dicular to the axis. The core forms a full defect with the
director field emerging radially from the disclination axis.
However, this configuration is only stable in a rather un-
physical regime of the Sm-2 phase (k2-k i, k3 ))k, ).
For larger k2/ki or smaller k3/k, ratios the region cor-
responding to a =0 rapidly shrinks, ruling out the escape
of smectic layers. This structure is stable, however, if
ki /k

~~

)) l. In this regime it is the existence of a
nematic-isotropic interface which favors a radial nematic
director.

Finally we have investigated the behavior of the core of
the DT solution consisting of a mixture of molecules of
opposite chirality. In this case the core may have a com-
position significantly different from that of the asymptot-
ic regime; the resulting difference may even affect the size
of the core itself. To estimate this effect we introduce
into the free-energy density expression [Eq. (1)] the entro-
py term po( kTc&ln(c&) —kTc„ln(c„))—and add to fg"
[Eq. (lb)] a chiral term —k2s y(cI —c„)nVXn. Here
the constant y describes the molecular twisting power,
which is assumed to be equal for both conformers and po
the molecular density. The concentration of left- and
right-handed chiral molecules is denoted by c&,c„,respec-
tively. The effect is demonstrated in Fig. 5 for the DT
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FIG. 5. The effect of the DT structure of the screw disloca-
tion on the concentration profile. The feedback of the hc(p)
variation on 8(p) is also shown. Ac =cl —c„,hc(p —+Do)=0,
k2yqol(ppkT)=10, k2~/(k&q )=0.01. the values of other pa-qo

rameters are the same as in Fig. 2.

solution, in which the twist deformation plays a dom-
inant role. Close to the disclination there is a significant
interaction between the twist direction and the concen-
tration of the component with the same molecular chiral-
ity. The director-field distortion at the core boundary is
enhanced but the core size is not significantly increased in
this case.

In conclusion, we have studied the structure of a smec-
tic screw dislocation within Landau —de Gennes theory,

taking into account spatial variation of both nematic and
smectic order parameters. The major weak point of our
model concerns the behavior of fs'" in the presence of a
varying nematic order parameter. This term explicitly
depends on the director n(r). However, if s(r) vanishes,
fs'" should lose its n( r ) dependence. Unfortunately
there seems to be no easy cure for this pathological
feature in the model. A better model would have to use
the Saupe tensor Q; =s/2(3n;n —5;J), but then other
problems emerge. We shall return to this problem else-
where.

For conventional values of material constants in the
Sm-A phase we find two possible solutions, both having
constant a(p) and u (p) values. We also find a
symmetry-breaking solution, but for values of nematic
elastic constants apparently incompatible with the
smectic-A phase. In addition, we have studied the case
in which the LC is composed of conformers of different
chirality. The twist character of the screw dislocation
can induce spatial concentration variations of mixture
components, which can weakly inAuence the core struc-
ture itself. This effect may play an important role at the
cholesteric —Sm- A transition.
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