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We describe an exact integer algorithm to compute the partition function of a two-dimensional

+J Ising spin glass.

Given a set of quenched random bonds, the algorithm returns the density

of states as a function of energy. The computation time is polynomial in the lattice size. We
investigate defects, low-lying excitations, and zeros of the partition function in the complex plane.
We also discuss the potential to examine other types of quenched randomness.

PACS number(s): 05.50.+q, 64.60.Cn, 75.10.Nr

The last 15 years have witnessed a great deal of work
on spin glasses [1,2]. Nevertheless, the description of the
phase transition and the nature of the ordered state re-
main controversial [3-6]. The starting point for most
theoretical work is the Edwards-Anderson Hamiltonian

(7]
H[{o:}] ZJi]UlJJ ) (1)

where the J;; are quenched random variables and the o;
are Ising spins on a regular lattice. Interactions with infi-
nite range [8] lead to a solution with broken replica sym-
metry [2]. It is not known, however, to what extent this
mean-field result captures the behavior of short-range in-
teractions [4,9].

A widely studied model is the +J spin glass [10], in
which the sign of each bond is random but its magni-
tude fixed. In two dimensions, the +J spin glass with
nearest-neighbor interactions exhibits a phase transition
only at zero temperature [11]. The properties of this
T = 0 transition have been studied by high-temperature
expansions [12], Monte Carlo (MC) simulations [13-15],
and exact calculations of partition functions on small lat-
tices [11,16]. In this paper, we describe an exact integer
algorithm to calculate the partition function of this sys-
tem. The algorithm takes as input a set of quenched
random bonds and returns the density of states as a func-
tion of energy. In contrast to other exact methods [11],
the computation time of our algorithm is polynomial in
the lattice size [17]. Partial output for a 10 x 10 +J
spin glass is shown in Table I. Here we discuss only the
basic elements of the algorithm; further details will be re-
ported elsewhere [18]. We also refer the interested reader
to other integer algorithms [19-21], based on transfer-
matrix methods on finite lattices that compute exact par-
tition functions of Ising systems.

We consider Ising spins o; = +1 on an L x L lattice.
The Hamiltonian is given by Eq. (1), with the sum re-
stricted to pairs of nearest neighbor spins. The quenched
random bonds J;; are chosen from the bimodal distribu-
tion

P(Jij) =

with J > 0. On a lattice with periodic boundary con-

1 1
55(Jij—J)+ 55(Jij+J), (2)
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ditions (BC'’s), there are exactly 2N bonds and N = L?
spins. The partition function is given by

zZ =) e PHle (3)
{‘7:

with 8 = 1/T. A high-temperature expansion of the par-
tition function yields a power series in tanh(8J) whose
terms have a diagrammatic representation as closed
graphs on the square lattice [22]. Motivated by this
diagrammatic representation, Kac and Ward [23] trans-
formed the problem of summing the high-temperature
series into one of evaluating a local random walk. In par-
ticular, they showed how to use a 4N x 4N hopping ma-
triz to compute the coefficients of the high-temperature
expansion [22]. The columns of this hopping matrix cor-
respond to directed bonds on the square lattice. The fi-
nal result of Kac and Ward, valid in the thermodynamic
limit, is that

InZ

N = In[2 cosh?®(8J)]

i %tr(U‘ tanh(3J),
e:

(4)

where tr(U?) denotes the trace of the £th power of the
hopping matrix. These traces count closed loops of
length £ on the square lattice, reproducing the high-
temperature expansion of Z. Equation (4) can be written
in the more compact form

Z = 2V cosh®M (8J)/det[1 — U tanh(BJ)] (5)

TABLE 1. Partition function, Z = Y, g(E)e™?%, for a
10 x 10 +J spin glass. The calculation took 110 s on an
INDIGO 4000 workstation.

E/J g9(E) = g(—F)
142 1714
138 393704
134 26810830
10 111388263537730445390041718418
6 130618789608427927645846927382
2 141440475064667109660456174158
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using standard matrix identities. The problem is thus
reduced to evaluating the determinant of a 4N x 4N ma-
trix.

For models with translational symmetry, one can use
Fourier transforms to diagonalize this matrix and obtain
analytic results in the thermodynamic limit. Of course,
the same techniques do not apply to random systems,
such as the *+J spin glass. We can, however, use the
Kac-Ward method to compute the partition function for
a *J spin glass of finite size. In this case, Eq. (5) must
be slightly modified to incorporate periodic BC’s.. The
correct result, based on the combinatorics of closed loops
on periodic lattices [24],is Z = (—Z1 + Z2+ Z5s + Z4) /2,
with

Zo = 2N cosh® (3J)+/det[1 — U, tanh(8J)].  (6)

Here, U, are four distinct 4N x 4N hopping matrices
related to one another by boundary transformations.

We have implemented this algorithm on the computer
as follows. Given a set of bonds {J;;}, we first construct
the 4N x 4N matrices U, and compute the traces tr(U%)
for £ < N. This step of the algorithm is the most compu-
tationally intensive. The coefficients of the series expan-
sions for In Z, are related to the traces by Eq. (4). Next,
we compute the high-temperature series for Z. This is
done by exponentiating the series for In Z, and taking
the linear combination that incorporates periodic BC’s.
The high-temperature expansion for Z is a polynomial in
tanh(B8J) with integer coefficients; the last term, of order
2N, is derived from the graph that traverses every bond
on the square lattice. These 2N coefficients have an end-
to-end symmetry that enables one to compute them from
the first NV powers of the hopping matrix. Finally, we ex-
pand powers of cosh(8J) and tanh(8J) and rewrite Z as
a polynomial in e™#7; the end result Z = " g(E)e PP
yields the density of states. For an Ising model with +J
bonds, we can perform all these operations using only
integer arithmetic.

The algorithm has several desirable features. Like the
numerical transfer-matrix (TM) method [11], it returns
an exact result and avoids the sampling errors of MC
simulation. Another bonus is that it executes in poly-
nomial time [17]. Computing the traces requires O(N?)
arithmetic operations on integers of order 2V so that the
computation time scales as 7 ~ N, with 3 < § < 4. [In-
deed, the computation of the traces can be broken down
into O(N) independent processes, so that a faster, paral-
lel implementation of the algorithm on a supercomputer
or spread across several workstations should be possible.]
This stands in contrast to the TM method [11], which
must keep track of 2T spin configurations to compute
the partition function on a strip of width L. We look at
larger square lattices than previous TM studies [11,16].
With the integer density of states, we can also compute
new quantities, such as the roots of the partition function
in the complex plane [21].

We examined lattices of size L = 4 to L = 36. Several
realizations of randomness were studied: 8000 for L =
4,6,8; 2000 for L = 10,12,14; 800 for L = 16,18; 80
for L = 20,22,24; and 4 for L = 32,36. We performed
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FIG. 1. Scale dependence of the entropy difference between
the ground state and the lowest excited states for the 1D Ising
model, the 2D FF model, and the 2D +J spin glass. The
dashed line shows In(N/4).

quenched averages by assigning an equal probability to
each random sample: 6 = (1/S)Y",0,. To reduce the
amount of statistical error, we only considered lattices
in which exactly half the plaquettes were frustrated [11].
For the average ground state energy and entropy per spin,
we find €5/J = —1.404 £+ 0.002 and 55 = 0.075 £ 0.002.
These results are consistent with previous MC [13,14] and
TM [16] estimates.

We also used the algorithm to study the number of
low-level excitations. On a lattice with periodic BC’s, the
lowest excited state has an energy 4J above the ground
state. The quantity e®S = g(Eo + 4J)/g(Eo) measures
the degeneracy ratio of excited and ground states. Fig-
ure 1 shows a semilog plot of ASsg versus the number of
spins N. The fact that ASsg grows faster than In N sug-
gests that the low-lying excitations of the +J spin glass
involve spin flips on large length scales.

The abundance of low-lying excitations affects the low-
temperature behavior of the heat capacity. In a finite
system with energy gap 4J, the heat capacity vanishes
as C ~ (3%2e~*87, As pointed out by Wang and Swendsen
[13], this behavior can break down in the thermodynamic
limit. The 1D Ising model with periodic BC’s shows how
this can happen: the energy gap is 4J, but the heat ca-
pacity of an infinite system vanishes as Ci;p ~ 32e—287.
The anomalous exponent reflects the fact that the num-
ber of lowest excited states grows as N2. From MC
and TM studies, Wang and Swendsen [13] conclude that
Csc ~ B%e~%87 for the 2D =+J spin glass as well. For
purposes of comparison, we have included data for the
1D Ising model in Fig. 1. The disagreement in slope be-
tween AS;p and ASsg leads us to suggest a different
form for Csg. As motivation, we appeal to another ex-
actly soluble model with a phase transition at T = 0: the
fully frustrated (FF) Ising model on a square lattice [25].
On a periodic lattice, the lowest excited states of the FF
model have energy 4J above the ground state. The large
number of low-lying excitations, however, causes the heat
capacity to vanish as Cpr ~ B%e~%%7. Note the extra
power of temperature. Comparing ASpr and ASsc in
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FIG. 2. (a) Roots of partition functions in the complex
u = e~ %7 plane. (b) Scale dependence of the smallest root.

Fig. 1, we suspect a similar behavior may describe the
+J spin glass, e.g., Csqg ~ B%tPe~%8J with p # 0. As
we shall see below, there are other reasons to favor this
form.

One way to investigate a phase transition is to look
at the zeros of the partition function in the complex
temperature plane [26]. The condensation of these ze-
ros onto the real axis in the thermodynamic limit signals
the existence of a phase transition. We found the ze-
ros of Z for the +J spin glass on four lattices of size
L = 4,6,8, and 10. Figure 2(a) shows these zeros in
the v = e~*8Y complex plane; they condense around the
origin, indicating a phase transition at T' = 0. The ze-
ros of partition functions are subject to finite-size scal-
ing [27]. At a finite-temperature phase transition, the
complex zero u(L) closest to the positive real axis obeys
|u(L) — uc|~ L~Y; likewise, the correlation length di-
verges as { ~ (T' — T.)™%, with v = 1/y,. On the other
hand, at a T = 0 phase transition, such as in the 1D
Ising model or 2D FF model, one finds |u(L)|~ L™«
with & ~ u=1/¥u,

In the +J spin glass, we observed that, for most re-
alizations of randomness, the smallest root u(L) fell on
the negative real axis. Figure 2(b) shows a log-log plot
of |u(L)| versus lattice size L, where the average was for
computational reasons [28] restricted to realizations with
Im[u(L)] = 0. The fit shows y, = 2.2 +0.1; this suggests
to us that the correlation length in the +J spin glass
diverges as & ~ €287, Additional powers of temperature
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FIG. 3. Scale dependence of the fraction, p(L), of effective
block couplings with J' # 0.

and/or finite-size effects might explain the slight devia-
tion from y, = 2 in Fig. 2(b). Note that this behavior
for the correlation length is consistent with hyperscaling
and our claim that, up to powers of temperature, the
heat capacity diverges as C ~ e~%87. It also suggests a
lower critical dimensionality d; = 2 for the £+J spin glass.
Our result disagrees with previous studies [13,15,16] that
report £ ~T7%, with v =~ 2.6-2.8.

A great deal of information on spin glasses has been
obtained by examining “defects” (droplets) in finite sys-
tems. The cost of a defect of size L is related to the differ-
ence in free energies with periodic and antiperiodic BC’s.
At T = 0, this reduces to the difference in energy between
the ground states. On an L x L lattice, the defect energy
measures the effective block coupling [3-6,9] J' on length
scale L. Let p(L) be the fraction of L x L blocks for which
J' # 0. Scaling arguments [5] suggest that p(L) ~ L™,
where 7 is the critical exponent that characterizes the
power law decay of correlations (poor)? at T = 0. Plot-
ting p(L) versus L (Fig. 3), we find » = 0.22 £ 0.06 in
agreement with previous results [5,13,15]. Besides the
defect energy, we also looked at the defect entropy 8Sr,
i.e., the difference in zero-temperature entropies with pe-
riodic and antiperiodic BC’s. The data in Fig. 4 show
852 ~ L?s with ys = 0.49+0.02. This is curiously close
to the result S, ~ L/2, expected if entropy changes due
to reversing the different bonds along the boundary are
statistically independent.

FIG. 4. Scale dependence of the mean square defect en-
tropy.
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In summary, we have developed an exact integer algo-
rithm to compute the partition function of the 2D +J
spin glass in polynomial time. The algorithm comple-
ments the numerical TM method [11] and can serve as
a strict check on MC techniques [13,14]. It can also be
used to study a variety of other outstanding problems
in the physics of 2D random systems. An obvious ex-
tension of this work is treating Ising models with +J
and/or missing bonds. A large number of random bond
and percolation problems fall into this category. It would
also be interesting to vary the concentration of frustrated
plaquettes on the square lattice [11]. As a final note, we
point out that a determinant, analogous to the one in
Eq. (5), can be used to compute the partition function of
any 2D planar Ising model in polynomial time [17]. The
restriction to +J bonds is only necessary to obtain an
exact integer result [20,21]. For continuously distributed
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random bonds, one can use floating-point techniques to
evaluate the determinant, and hence the partition func-
tion, at any given temperature. Hopping matrix formulas
also exist for spin-spin correlations in 2D Ising models
[29], making it possible to study magnetic susceptibili-
ties. Polynomial-time algorithms based on these ideas
should therefore complement well-established methods in
the further study of 2D Ising models with quenched ran-
domness.
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