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Extended self-similarity in turbulent flows
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We report on the existence of a hitherto undetected form of self-similarity, which we call extended
self-similarity (ESS). ESS holds at high as well as at low Reynolds number, and it is characterized by the
same scaling exponents of the velocity difFerences of fully developed turbulence.

PACS number(s): 47.27.—i

There is experimental and numerical evidence that the
energy spectrum E(k) of fully developed turbulence ex-
hibits a well-defined scaling law, close to k, as pre-
dicted by the Kolmogorov theory [1]. More generally let
us consider the probability density function (PDF) of the
velocity increments 6 V (r) = V(x + r) V(x), whe—re
V(x +r) and V(r) are velocities along the x axis at two
points separated by a distance r and q «r «L, L being
the integral scale of motion and g the dissipation scale.
The Kolmogorov theory predicts (Av(r)") =r»'"' with
g(n) =n/3 in the fully developed regime, and, in particu-
lar, one can rigorously prove, see below [2], that g(3) = 1.
The Kolmogorov predictions are based upon the assump-
tions that the statistical properties of the velocity field are
locally homogeneous and isotropic and that there exists a
constant-energy cascade from large to small scales. In
this case one can assume that the PDF of EV(r) depends
only on r and the average rate of energy dissipation e.
Extensive experimental and numerical investigations
have highlighted slight deviations from the Kolmogorov
prediction g(n) =n/3, n&3, which are due to the strong
intermittent character of the energy dissipation [3—5].
However, in addition to the quantitative predictions of
the Kolmogorov theory for the scaling exponents g(n),
the existence of universal scaling laws for ( 6 V ( r )") has
been verified for a variety of different turbulent fiows at
high Reynolds number. This is equivalent to saying that
the statistical properties of the velocity field are self-
similar within the inertial range, i.e., for g «r «L, at
high Reynolds numbers. The aim of this Rapid Com-
munication is to show that the statistical properties of

turbulence could be self-similar also at low Reynolds
number, and moreover they could be characterized by the
same set of scaling exponents g(n) of the fully developed
regime.

Let us start by remembering that, within the assump-
tions of local homogeneity and isotropy, from the
Navier-Stokes equations one can deduce [2] the following
relation:

(aV(r)') = 'er + ev —(-a V(r)'),
5 dp'

where v is the kinematic viscosity and ( ) stands for
average over the PDF of Ev(r). For r))g=v e
the second term of the right-hand side (rhs) in Eq. (1) can
be neglected, showing that g(3)=1, as previously men-
tioned. The existence of an inertial range in data analysis
is usually deduced by probing the scaling of (Av(r) )
versus r: the range of scales where such a scaling law is
verified indicates the "inertial range. " Because of (1),
within the inertial range, one can readly write

( ~aV(r) ~" &
= ~„~(aV(r)'& ~»'"'

=B„((~ V(r) (')»'",
where A„and B„are two different sets of constants and
the relation )(Av(r) )~=(~hv(r)~ ), which cannot be
trivially deduced by the Navier Stokes equations, is
verified experimentally. Our claim is that Eq. (2), with
the same scaling exponents of fully developed turbulence,
is valid not only in the fully developed regime but also at
moderate low Reynolds number, i.e., even if no inertial
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range (according to the usual definition given above) is es-
tablished. Moreover, it will be shown that the range of
scales for which scaling (2) is much larger than the iner-
tial range (when it exists), i.e., self-similarity of the veloci-
ty field extends far beyond the usual inertial range deep
into the dissipation range.
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FICx. l. (a) Log-log plot of
~ ( b V(r)')

~
vs r for three difFerent

values of Reynolds number in the case of How past a cylinder:
6000 (squares), 22500 (circles), and 47000 (crosses) ~ Only for
Reynolds number 47000 can a rather small inertial range (indi-
cated by the line with slope 1) be observed. (b) Same as (a) for
the second-order structure functions, namely, (b, V(r) ). The
corresponding Reynolds numbers are 6000 {squares), 22 500 (cir-
cles), and 47000 (crosses). (c) Log-log plot of (EV(r) ) and
(6 V(r)2) vs r for the case of the jet flow.

Our claims are supported by a number of experimental
and numerical results, some of which are described else-
where [6]. Here we confine our attention to a set of ex-
perimental data obtained by hot-wire measurements of
the velocity field in a wind tunnel [6]. Turbulence is gen-
erated either by a flow past a cylinder or by a jet. The
cylinder has a diameter of 6 cm and we considered Rey-
nolds number Re = UL Iv =6000, 22 500, and 47 000,
where U is the incoming flow velocity in the wind against
the cylinder, v=0. 156X10 m sec ' is the kinematic
viscosity of air, and L is the diameter of the cylinder.
The measurements reported here are taken at about 20L
down flow. The results discussed below do not depend on
this distance. The jet has a diameter of 12 cm and the
flow velocity at the exit of the jet is of the order of 35
m/s. Thus the Reynolds number is on the order of
300 000.

In Figs. 1(a) and l(b) we show ( b, V(r) ) and
(b, V(r) ), respectively, for the three different values of
Re in the case of the flow past a cylinder. Only at
Re=47000 is a (very questionable) scaling law propor-
tional to r observed for ( b, V(r) ) in a very small interval
of r. A value of g(2) can be estimated from Fig. 1(b) us-
ing the same range of scales. This yields g(2)=0.7. In
the same way the exponents g(n) for n =1,4, 6, 8 can be
estimated. The corresponding results (see Fig. 2) are not
very di6'erent from the values reported for turbulent flows
at much higher Reynolds numbers [3]. We expect, how-
ever, a quite large statistical error due to the limited
range of scales of the inertial range. In Fig. 1(c) we show
( b, V(r) ) and ( b. V(r) ) for the case of jet fiow at Re of
order 300000. In this case a clear scaling is observed at
least for one decade in r with slope g(6)=1.78 and
g(2) =0.7, respectively.

Next in Fig. 3(a) we plot (b, V(r) ) versus ( b, V(r)
~

)
for Re=6000 and 47000 in the case of the flow past a
cylinder (Re=22500 is not displayed in order to clarify
the figure). A striking and much wider scaling range is
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FICx. 2. Scaling exponents gin) computed for n =1,2,4, 6, 8.
Triangles represent the values obtained by measuring the scal-
ing of (b, V(r)") against r at Re=47000; circles and crosses
represent the scaling exponents computed using ESS (see text)
for Re =6000 and 47 000, respectively. The straight line
represents the Kolmogorov scaling n /3.
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displayed in Fig. 3(a) [a similar result is obtained by plot-
ting &EV(r) & versus &b, V(r) &]. In Fig. 3(b) we plot
& bv (r) & versus & b, V(r) & for the case of jet liow, and
once again we observe a much wider range of scaling al-
most down to the Kolmogorov scale, which is in this case
of the order of 10 m. The results shown so far are nei-
ther predicted by Kolmogorov theory nor by any other
theory developed in the last few years to explain intermit-
tency effects in scaling laws of fully developed turbulence.
In the case of the flow past a cylinder a fit of the data at
Re=6000 yields g(2)=0.700+0.005. The same fit ap-
plied to the full data set (the three different values of Re)
yields g(2) =0.701. Note that there is statistical evidence
that g(2) differs from the "naive" value —', . Results simi-
lar to those shown in Fig. 3 hold for & ~b, V(r)~" & and
n )3. From these scaling laws we have extracted the ex-
ponents g(n) at Re=6000, and in Fig. 2 we compare the
different sets of exponents; the agreement is excellent.
Equivalent results (i.e., same exponents) have been ob-
tained from an experiment on grid turbulence and in the
case of jet flow.

The previously described results allow us to argue that

self-similarity as expressed by Eq. (2) is somehow more
fundamental than the self-similar scaling with respect to r
usually observed at very high Reynolds numbers. In the
following we shall refer to Eq. (2) as extended self-
similarity (ESS) of the velocity field. It is reasonable, al-
though still speculative, to predict that ESS holds for
many other turbulent flows such as those arising in mag-
netohydrodynamics, thermal convection, two-
dimensional turbulence, quasigeostrophic turbulence. In
all cases ESS could produce far reaching consequences
both from an experimental and a numerical point of view.
For instance, an accurate estimate for the scaling ex-
ponents g(n) could be obtained at low Reynolds number
for which direct numerical simulations are already able
to provide quite accurate data sets.

In order to further investigate the validity of ESS, we
proceed as follows. Let us assume that Eq. (2) is valid for
r ~g. Then for the second-order structure function we
have

Using ESS in Eq. (1) we obtain
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where S(r)=~&A, V(r) &~. We have integrated Eq. (3)
with the parameter corresponding to Fig. 1 for
Re=22500. In this case we have estimated 32=2.818
(m/sec) and a=0.700. By using Fig. 1 we have es-
timated, in the inertial range, e= ,' [ ~ & b, V(r) &

~

l—r—]

=1.7 m sec, corresponding to a value of the Kolmo-
gorov scale g=0.2 mm. In Fig. 4 we compare the nu-
merical solution against the experimental values of S(r).
The agreement is excellent, taking into account that no
adjustable parameter has been used. Similar results hold
for different Reynolds number and for the case of jet flow.
This result clearly confirms what has been already shown
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FIG. 3. Log-log plot of ( ~EV(r) ) vs & ~b V(r)~') for the case
of flow past a cylinder at Re =6000 (squares) and 47 000
(crosses). The line represents the best fit done using the data for
Re =6000 and Eq. (2). The best fit is given by
& ~AV(r)~ ) =Bz( ~b, V(r)~ ) . (b) Log-log plot of &b, V(r) )
vs &b, V(r) ) for the ease of jet flow.
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FICx. 4. Numerical solution of Eq. (3) (solid line) compared
against experimental data (circles) for Re=22 500 in the case of
flow past a cylinder. The dashed line indicates the size of the
cylinder (6 cm diameter). Note that the agreement between Eq.
(3) and experimental data is lost only at very large scales.



R32 R. BENZI et al. 48

in Fig. 3, i.e., that the inertial range, defined by the scal-
ing of the second-order structure function against S(r),
extends much further than the "naive" inertial range,
defined as the scaling of S(r) against r. This is equivalent
to saying that the bending of the structure functions for
small r does not imply a lack of self-similarity in the dissi-
pation range, contrary to common belief.

At a scale r =g (never achieved in our experiments) the
scaling (2) should be violated. At that scale new phenom-
ena could occur, as recently pointed out [7—9]. Perhaps a

reinterpretation in terms of Eq. (2) of available numerical
data could clarify the dynamics in the far dissipation
range. This is a matter for future research.
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