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Internal Huctuations in a model of chemical chaos
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The effect of internal Quctuations in chaotic systems is studied for the case of the Willamowski-
Rossler model. In this system the strange attractor coexists with a stable fixed point, and it is
shown that internal fluctuations may induce a transition between these two situations. Simulations
are performed with the stochastic method due to Gillespie [J. Comput. Phys. 22, 403 (1976);
J. Phys. Chem. 81, 2340 (1977)], and the conclusions are verified by representing the intrinsic
fluctuations in the form of a multiplicative external noise.

PACS number(s): 05.45.+b, 05.40.+j, 82.20.Fd, 82.40.Bj

The study of systems described by nonlinear evolution
laws has afforded the concept of deterministic chaos, al-
lowing one to look at many phenomena &om a new per-
spective in such disparate fields as fluid mechanics, ecol-
ogy, economics, etc. Nonlinear dynamical systems (with
at least three variables) showing chaos exhibit sensitive
dependence on the initial conditions and present univer-
sal routes leading to chaos. Usually one describes these
systems in terms of a small number of macroscopic vari-
ables, supposed to be the most relevant for the problem.
In this approach one neglects the microscopic structure
of the system, which may induce the presence of fluctu-
ations and correlations that are referred to as internal,
intrinsic, or thermodynamic fluctuations (or noise).

Very little is known about the relevance of these intrin-
sic fluctuations in the description of deterministic chaotic
systems. However, one can mention the studies by Fox
and Keizer [1,2] showing how in some cases the pres-
ence of fluctuations may induce a breakdown in the usual
deterministic description in terms of macroscopic vari-
ables. Some other recent studies are those due to Nicolis
and co-workers [3,4], who have found, by solving directly
the master equation, that a deterministic description in
terms of macroscopic variables may still be useful in the
study of the behavior of the most probable value (instead
of the mean value). These conclusions find support in the
lattice-gas cellular-automaton simulations performed by
Wu and Kapral [5].

The purpose of this work is to show that the inclu-
sion of intrinsic fluctuations may change the observable
behavior in some chaotic systems, and more precisely
in those systems in which the strange attractor coex-
ists with a locally stable fixed point, such as in the
Willarnowski-Rossler [6] model of chemical chaos. Some
chemical reactions involving autocatalysis are good ex-
amples of deterministic chaos [7], with the advantage that
the evolution differential equations can be written in a
simple way if one knows the chemical mechanism of the
reaction. On the other hand, the effect of fluctuations
in a chemical reaction can be analyzed if one writes the
chemical master equation, where the chemical reactions
are considered in terms of birth and death processes. In

the present work we have used the stochastic method
suggested by Gillespie [8], which consists in a simulation
of the chemical master equation.

The Willamowski-Rossler [6) mass-action model can be
represented by the following chemical equations:

Ag+X=2X)
k

kg
A5+ Y=A2,

k

X+ Y=2Y
k

X+ Z=A3
k 4

A4+ Z=2Z,
k

x = k, x —k &x' —k2xy + k 2y' —k4xz + k 4,

y = k2xy —k 2y —k3y+ k

z = —k4xz+ k 4+ k5z —k 5z

where x, y, and z represent the populations for the chem-
ical species X, Y, and Z. Typical values for x, y, and
z can be seen in Fig. 1, where a phase portrait of the
strange attractor has been plotted for the values of the
constants kg; given in [6(b)]. This plot has been obtained
by solving parametrically Eqs. (2) as a function of time.

The method suggested by Gillespie allows one to study
well-stirred systems for which diffusion terms can be ne-
glected, while the chemical master equation is simulated
stochastically by assuming that it can be written as a
Markov chain. This assumption is valid in the case that
nonreactive encounters are more probable than reactive
collisions [9]. This assumption is quite reasonable in the
case of this system, because X, Y, and Z are intermediate
species in the reaction for which the populations (or con-
centrations) take a small value compared to reagents and
products A;. In the stochastic simulation [8] one needs

where the species A; are assumed to remain constant
(reagents are continuously introduced and products are
retired as they are produced) and the k~; are a set of
constants that include the constant terms A, . The mass-
action law allows one to write the evolution equations in
the form
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FIG. 1. Three-d imensional phase space representation for
he Willamowski-Rossler model (2) Th 1e va ues of the pa-

) i ——0.25) k2 ——1.0)rameters used here are [6(b)]: k = 30 k
00001)k310)k3 0 001)k410k)

.5. The initial conditions are xp ——10,
yp = 10, and zp ——5.

6 10

num ers in the intervalto generate two uniform random numb

p ace at every moment and the time interval 7. that the
reaction needs to take place. These numbers have been
generated by using the algorithms described in Chap. 7

In the original formulation of Gillespie's method 't
not possible to change the intensity of the Buctuations,

s me o i is

as one always works with the number of molecules pro-

can be re u
uce y t e rate coeKcients. However this int

can e regulated by conveniently scaling the populations

some constant a, it is very easy to check that the rate
coefficients that correspond to bimolecul tecu ar s eps must be
sca e y 1/a, i.e. , k i, k2, k 2, k4, and k s, while the
coeKcients k 3 and k 4 need to be scaled by a, and the
other coefFici

Th
e cients unimolecular) remain unch d.c ange

he result of the stochastic simulation for the con-
stants and initial conditions of Fig. 1 and for different val-
ues of a ranging &om 1 to 1000 is always that the popu-
lations of every species become st d Thea y. is corresponds
to a stable fixed point [11]that for the original constants
(a = 1) has been characterized as having x, = 0.00033,
y, = 0.00010 z, = 32.999, these numbers being scaled

ity analysis at these conditions shows that the fixed point
is stable, having the eigenvalues (—3.00 —10 00—

n ig. 2 the time evolution for the variables x and
z for thehe case a = 10 is shown. In Fig. 2(a) the so-

ia esx, y, an

lution obtained by numerically integrating (2) by using
the Runge-Kutta method (Ref. [10] Cha . 1 )

'

e . n ig. 2(b) the result of the stochastic simulation
using the method of Gillespie is presented for the same

FIG. 2. Time evolution for the species x, y, and z for the

(see text): (a) deterministic [solution of E s. 2 b
simu a ion with the stochastic method due to Gilles ie.

The initial conditions are x = 100xp =, yp
——100) and zp = 50.

e e ec o intrinsic Huc-conditions. It can be seen that the ff t f '

behavior shown in part (a) to a regular evolution in (b),

z oes not match exactly the solution of the fixed point,
i.e. , z, = 329.99, because the discrete nature of the sim-
ulation makes x = y = 0.

ese resu ts, we haveTo reinforce the plausibility of these l
so ve t e deted erministic evolution equations (2) in the
presence of a multiplicative ext l
alters the o

erna noise. is noise
a ters the populations in the following way:

x' = x+go-[0, 1] vx (3)

and analo ousl fg y or y and z, where p regulates the in-
tensity of the noise and o'[0 1' t h
of me

is a s oc astic variable
o mean zero and with a Gaussi d t b tan is ri u ion of ampli-
tude one, different for x, y and. z. The form of this noise
comes from the remark that thermodynamic fluctuations

epen on the square root of the populations [12].

ulations or
igure 3 shows the time evolution of th to e sys em pop-

u a ions for the same constants used in Fi . 2, in the
presence of an external noise of the form (3). The ad-
dition of this noise yields a b h

' the avior at is completely
analogous to the one obtained with the stochastic simula-
ion met od asd, as can be seen by comparing Figs. 2(b) and
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FIG. 3. Time evolution for the species x, y, and z after
adding an external noise in the form (3) with p = 0.065 and
for the same constants and initial conditions of Fig. 2.

FIG. 4. Time evolution for the species x, y, and z by adding
noise in the form (3) with p = 0.20, for a = 10 and initial
conditions xp ——1, yp ——1, and zp = 330, i.e., in the basin of
attraction of the fixed point.

3. These results are not dependent on the precise form of
(3), and the use of a standard multiplicative noise, scal-
ing as x, yields the same results for diferent values of
p, although (3) should be more physically sound. It is
interesting to point out that the use of higher noise in-
tensities p can invert this transition, making the system
switch back and forth between the fixed point and the
strange attractor, as shown in Fig. 4.

By performing an analogy with well known concepts
used in the study of phase transitions, we could say that
we have found an example of a probability distribution
presenting two maxima: one associated with the strange
attractor and the other with the stable fixed point (the
latter being higher). In the absence of fluctuations, if the
system shows deterministic chaos, the probability distri-
bution will always remain centered around the strange
attractor. However, if Huctuations are present, there is a
mechanism to switch to the most probable situation, as
happens in a phase transition.

It is quite diKcult to establish whether this kind of
coexistence appears in other chaotic systems or rather
is quite unique. We have not found this behavior in
other three-variable systems [13], but it could be more
common in systems with a higher dimensionality. The
Willamowski-Rossler model is characterized by having

two variables (x and y) that adopt values close to zero
in some cycles [see Figs. 1 and 2(a)]. The small value of
these species makes intrinsic (or size) fluctuations very
important, and as these variables fall below some critical
value the system becomes attracted by a fixed point that
exists nearby.

In conclusion, in this work we have shown for the
Willamowski-Rossler model of chemical chaos that inter-
nal fluctuations may induce a transition from a chaotic
dynamical behavior driven by a strange attractor to a
steady state behavior, driven by a stable fixed point.
Internal fiuctuations have been introduced through the
stochastic simulation method due to Gillespie. These
conclusions have been reinforced by introducing an ex-
ternal noise in the deterministic equations with the same
form as thermodynamic Huctuations.
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