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Renormalization-group approach to simple reaction-difFusion phenomena
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A field-theoretical model describing simple one-species reaction-diffusion systems [A + A
0 (inert) or A+ A —+ A] with an external source is analyzed from a renormalization-group point of
view. It is shown that when the dimension of the system is larger than the upper critical dimension
d„= 2, the behavior of the system is governed by a trivial fixed point dominated by difFusion. Be-
low the upper critical dimension, a line of fixed points governs the behavior. Reaction and diffusion
processes play an equally important role resulting in a so-called anomalous kinetic behavior. This
approach confirms previous scaling arguments. Possible generalizations to more complicated models
are discussed.
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I. INTROI3UCTION

Simple reaction-diffusion models in which chemical
species diffuse in a solvent and react have been the sub-
ject of a vast body of work. Although very simple,
these nonequilibriuln systems have nontrivial dynamics.
Among many possible reaction-diffusion processes [1],we
shall mainly consider here two particular cases, namely,
the annihilation reaction [2]: A + A ~ 0 (inert) and
the coagulation reaction [3]: A + A ~ A. We shall also
make several comments on the closely related two-species
annihilation reaction [4]: A + B —+ 0 (inert).

Different situations occur depending on the initial con-
ditions. The simplest case is the one-species problem in
which the A particles are initially randomly distributed.
The number of particles decreases algebraically in time.
Moreover, if the dimensionality of the system is smaller
than an upper critical dimension d„, the fluctuations play
an important role and the predictions given by the usual
rate equations (law of mass action) are not correct [2].
The situation is similar for the two-species problem, pro-
viding that the initial numbers of particles of both species
are the same [4]. This non-mean-Beld behavior is called
anomalous kinetics [5].

For the two-species problem, a more complicated sit-
uation arises in the case where the two constituents are
initially spatially separated. A reaction front appears
[6], the properties of which are strongly afFected by the
fluctuations below an upper critical dimension d I [7, 8].

Let us now return to the case A+A + O. The simplest
question concerns the time dependence of the number of
particles. The conventional approach consists in writing
a rate equation for the density n(t) of particles at time t:

cl,n(t) = —A:n'(t),

where k is the reaction rate. In the long time limit one
Bnds n(t) 1/kt. However, the conventional approach
does not take the fluctuations into account, and simple
heuristic arguments [2] show that

n(t) t, n = min(1, d/2).

A systematic study of the role played by fluctuations in
this model has been undertaken along several lines. Rig-
orous studies of the asymptotic decay have been reviewed
by Bramson and Lebowitz [9]. For one-dimensional sys-
tems, the problem has been exactly solved by several
means [1, 10—12]. In all these approaches one assumes
that the particles are moving on a discrete lattice. The
master equation associated with this reaction-diffusion
process is similar to the one describing the kinetics of an
Ising chain with Glauber dynamics at zero temperature
[1, 10, 12]. Both problems can also be mapped onto a
quantum chain Hamiltonian which can be transformed
into a free fermion problem [1]. In more than one di-
mension, the mapping onto a quantum system is always
possible; however, this quantum problem can no longer
be exactly solved.

An interesting generalization of the model is obtained
by adding source terms [10]. Single particles are created
at a rate 6 per lattice site. In the large-time limit a
steady state is reached in which particle production is
balanced by diffusive annihilation. The h ~ 0 limit can
be considered as a critical limit in the sense that the
steady-state particle density n and the relaxation time 7

governing the homogeneous density fluctuations behave
as

n(h) - h'~',

Scaling arguments show that a = 1/hA and 4+ 1/8 = 1,
ofFering an alternative way of computing n exactly [10,
13, 14].

However, one would like to have a unifying approach,
allowing one to predict the scaling behavior and the role
of the fluctuations for all the models in arbitrary dimen-
sion.

A good strategy is to develop a field-theoretical de-
scription of these reactions by means of a path-integral
representation of birth-death processes introduced by Doi
[15,16]. This approach has been used by Peliti [17,18] to
study the annihilation reaction A+ A ~ 0 as well as the
coagulation reaction A + A ~ A without sources. The
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corresponding Lagrangians, in the continuous limit, can
be renormalized to all orders in perturbation theory by
resummation of the "parquet" diagrams. The two reac-
tions belong to the same universality class: the exponent
n is the same for both models and agrees with previous
predictions.

Recently, Friedman, Levine, and O'Shaughnessy [19]
made an attempt to calculate the explicit time depen-
dence of the particle density in the case of the annihila-
tion reaction A+ A —+ 0, using renormalized perturba-
tion theory. They have found that besides the reaction
rate, which can be exactly renormalized, a second param-
eter, proportional to the product of the initial particle
density and time, should be treated to all orders in per-
turbation theory. This complicated problem has not been
solved in a totally satisfactory way. Indeed, at d = 2, the
expression proposed by Friedman et al. on the basis of a
low-order perturbative calculation and renormalization-
group arguments reproduces known results at long times,
but the description of short-time behavior remains incon-
sistent.

In this paper we propose a different approach. Instead
of investigating time-dependent quantities for the model
without sources, we study the stationary state reached
in the presence of external sources. A simple and consis-
tent renormalization-group approach is obtained. Scaling
arguments relate these two problems.

Some of the results with sources, in particular the ex-
ponent b, have been previously also derived by Mikhailov
[14], using the quantum field-theory method.

The paper is organized as follows. In Sec. II we define
the model and discuss the associated field theory. Sec-
tion III is devoted to the renormalization-group analysis.
Section IV is reserved for conclusions.

II. FIELD THEORY FORMALISM

The way to describe a reaction-diffusion process in
terms of a field theory is by now well established [15—18].
Thus we shall only summarize the key steps without go-
ing into too many details.

One starts with a master equation describing the
reaction-diffusion process on a lattice. As the number
of particles is not conserved, it is convenient to introduce
a Fock-space representation. To each site of the lattice
one associates annihilation and creation operators which
obey the usual commutation relations. A basis of the
Fock space is formed by the vectors [ni, n2, . . .) = ~n),
where n~ is the occupation number of the lattice site j.
The macroscopic state ~4) corresponding to the proba-
bilities P(n) of finding the system in the state ~n} is given
by ~4} = P„P(n)~n). The equation of evolution for ~4}
can be formally written as ~4(t)} = Mq q, ~4(t0)}. It turns
out to be useful to consider a representation of this Fock
space in terms of a Hilbert space of the generating func-
tions. The time evolution operator can then be cast in
a path integral form [17], which, in the (coarse-grained)
continuous limit, takes the following form:

(4)

where D is the diffusion constant, and h, is the homoge-
neous constant source. u and v are linear combinations
of the reaction rates, namely,

Dv g+ 2k, Du ~g+k.
The explicit forms of the proportionality factors arising
from the passage, from the discrete lattice level to the
coarse-grained continuous limit, are unimportant. The
presence of a term proportional to g in the Lagrangian
is very important. Indeed, if this term were absent, only
the paths il(r, t) being solutions of the diffusive rate equa-
tion would contribute to the path integral, and important
correlations would be lost.

Explicit calculations can be carried out using standard
perturbation expansion [17] for Uq q, in powers of the re-
action rates u and v. The starting point is a Gaussian
approximation, which retains only the diffusive motion
of the particles. Thus the unperturbed Lagrangian reads

. &ag
d r ig —DAq)

)
Diagrams are built up with the vertices Du and Dv and
the bare propagator GD, the Fourier-Laplace transform of
which is given by G0 (k, s) = a+Dk . One can use sim-
ple dimensional analysis to determine the upper critical
dimension d„below which the reaction rates become rel-
evant. Fixing the scales of length and time, respectively,
by 1/A and 1/(DA2), where A is the cutoff imposed by
the lattice, one finds [il] = A", [il] = 1, [u] = [v] = A
hence d = 2.

III. RENORMALIZATION-GROUP ANALYSIS

The renormalization-group analysis follows the usual
Wilson-like procedure [20]. First, we eliminate the
Fourier components of the fields belonging to the shell
A/6 & k & A. Then, we rescale the lengths and time
according to k' = bk, t' = 6 t. Fields and vertices are
rescaled as required by their dimensions. Since no two-
leg diagram is generated, fields do not have an anomalous

where l: is the Lagrangian. The field g(r, t) corresponds
(only approximately) to the local particle density, while
the auxiliary field il(r, t) has no particular physical mean-
ing.

We shall consider a model in which the following two
processes can occur:

(a) The annihilation process: %+A -+ 0, with reaction
rate k.

(b) The coagulation process: A+A ~ A, with reaction
rate g.

Particles diffuse and react locally. Moreover, a homo-
geneous steady state with a finite density of A particles
will be reached when a source is introduced, producing
particles with a homogeneous time-independent rate h.
The corresponding Lagrangian is

. &agd"r ill —DAq+ Dvg —6 + Du(ii)) ilBt
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dimension and thus g' = 6"g, g' = g. Moreover, the new
couplings of the form g g with n & m, which are ab-
sent in the initial Lagrangian and generated during the
renormalization procedure, are irrelevant.

The diagrams contributing to the renormalization of
u and v are given by the bubble series shown in Figs.
1(a) and 1(b). In the limit b = e' + 1, diagrams with
n loops are proportional to l . Thus only one-loop di-
agrams contribute to the differential recursion relations,
which read

dD = (z —2)D,

Let us now consider the problem with sources. Our
main goal is to characterize the steady state, which de-
velops in the presence of a homogeneous source. The
source h, has the same dimension as vj, and its fixed-point
value is 6* = 0. It is a relevant term in the vicinity of
both fixed points. Thus the source term plays a role sim-
ilar to the magnetic field for an Ising model. Apart &om
a simple rescaling, no renormalization occurs to linear
order in h. Thus in the vicinity of the fixed points, the
recursion relation for h is

—= (d+ 2)h+ O(h').
dh,

du (—= u (2 —d) ——KgA"
dl

~
2

u—= v (2 —d) ——KgA"
dl ( 2

(10)

(i) Scali. ng theory for d(2.
Knowing the recursion relations and their linearized

forms near the fixed points, we can write the scaling
forms of the physical quantities of interest. The density
of particles n rescales as follows:

where Kg = [(2 vr"/ I'(d/2))]
The diffusion coefIicient D, which was used to fix the

time scale, can be kept finite by choosing z = 2. The
above recursion relations have a unique stable fixed point
for u:

0, if d & 2;
u* = ( 2(2 —d)

~d~{d—2)

v(l) = u(l).
v (0)
u(0)

(12)

In d & 2, the trivial fixed point u* = v* = 0 is sta-
ble. This corresponds to the limiting case in which the
reaction is very slow in comparison with the diffusion.
Thus the diffusion mixes the particles efIiciently enough
so that a homogeneous reaction takes place for which the
law of mass action is valid.

In d ( 2, the behavior of the system is governed by the
nontrivial fixed points. We have, in fact, a line of fixed
points parametrized by the initial values v(0), u(0). On
this fixed line, diffusion and reaction proceed at a compa-
rable rate, resulting in an interplay of the two processes,
hence the breakdown of the law of mass action.

(a)
+ + +

(b)
+ + + ~ ~ ~

FIG. l. (a) and (b) Bubble diagrams contributing to the
renormalization of u and v. The black (white) dots correspond
respectively to the four-point vertex (Du) and the three-point
vertex (Dv), the internal line to the bare propagator Gs.

For l —+ oo, v approaches a nonuniversal asymptotic
value, depending on the initial value of the parameters.
Indeed, combining the recursion relations of u and v we
And that the ratio u/v is invariant under renormalization,
i.e.)

n(t, h, u, v) = e 'n(e ' t, h(l), u(l), v(l)), (14)

With the assumption that the scaling function X(y) ap-
proaches a finite value when y ~ oo, we obtain in the
limit t —+ oo,

b' = 1+ 2/d.

The characteristic time to approach the steady state, w,
is determined by the condition ~h /{"+ ~ 1, i.e. ,

A = 2/(d + 2).

Finally, in the limit h —+ 0, n should be independent
of h. This requires that W(y) y"/2 for y (( 1; hence
n(t) t, cr = d/2.

One recovers the scaling laws postulated phenomeno-
logically by Racz [10],

In order to check the assumptions made on the scaling
function we calculated the exponents b and L to lowest
order in e = 2 —d, using standard expansion techniques,
and found agreement with the above results.

(ii). Scaling theory for d )2.
In these cases the asymptotic behavior is controlled by

the trivial fixed point u* = v* = 0. Nevertheless, it is
clear that the reactions play a vital role in developing a
steady state with finite density in the presence of sources;
therefore u and v must be kept finite. In other words,
in contrast to the the case d ( 2, it is not allowed to
approximate them by their fixed-point values for l )& 1.
Using the terminology of critical phenomena, u and v are

where z = 2 and h(l), u(l), v(l) are solutions of the re-
cursion relations with the initial conditions h(0) = h,
u(0) = u, v(0) = v.

We choose l = l* such that h(l*) = e("+ )' h = 1. For
sufficiently small values of h u(l') u*, v(l*) v', and
one finds that

n(t, h, u, v) h /(~+ )n(h /(~+ )t, 1 u* v

gd/{d+2) y- h 2/{d+2) t
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dangerous irrelevant variables [21].
Let us consider in detail the marginal case d = 2. The

steady-state value of the density obeys the scaling rela-
tion

n(h, u, v) = e n(h(l), u(l), v(l)),

where h(L) = e h and, for large l, u(l) 4vr/l, v(l)
4vrv/ul. For small h, we choose l = l' such that h(l*) =
e h = 1. Moreover, for a source of amplitude of order
unity, the steady-state density takes its mean-field value,
determined by the law of mass action:

h(l') —Dv(l*)n (h(l*), u(l*), v(l*)) = 0. (2O)

This yields

h(l*)
Dv(l*)

e ' l*i hi ]lnh[

n(h, u, v) = e

(21)

i.e., the mean-field result with logarithmic corrections.
Note that the same logarithmic correction is implicitly
given in Ref. [14].

For d ) 2 similar arguments lead to the simple mean-
fiejd result, n(h, u, v) hi~2.

IV. CONCLUSIONS

The above calculation has shown that it is possible to
construct a consistent renormalization-group approach
for simple reaction-diffusion problems. This approach
has the advantage of giving a unified description of the
problem, allowing one not only to predict scaling and de-
termine exponents, but also to compute the correspond-
ing scaling functions.

Note that this type of renormalization-group approach
is tailored to completely treat the Quctuations, which are
a key ingredient below the upper critical dimension, and
is not related to the renormalization-group method pro-

posed by Chen, Goldenfeld, and Oono [22] to extract
the asymptotic scaling behavior of the solutions of deter-
ministic partial differential equations. Nevertheless, the
latter method may prove to be fruitful when, within the
conventional (mean-field) approach ignoring Buctuations,
scaling properties of solutions of the diffusive rate equa-
tions are investigated under various initial and boundary
conditions [23].

In the present work the renormalization-group ap-
proach was applied to the time-evolution operator Mq q, .
This gives reliable results only in situations where the be-
havior is independent of the initial state and fluctuations
are completely controlled by internal dynamics, as is the
case for steady state reached in the presence of particle
sources. Scaling theory, supported by the existence of
the stable fixed point, was then used to determine the
asymptotic decay of particle density in the absence of
sources.

It is then natural to try to extend this approach to
more complicated problems as, for example, the two-
species annihilation model defined in the Introduction.
However, the generalization is not obvious. Indeed, in
this case the initial conditions play a crucial role [4, 9]
and any approach which is not keeping track of the fluc-
tuations in the initial state will not describe correctly the
long time dynamics.

Another challenging problem is the applicability of the
renormalization-group approach to inhomogeneous sys-
tems; for example, to the case where the two constituents
are initially spatially separated and a reaction front is
formed. Both problems are presently under investiga-
tion.
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