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It is shown that, in an initially homogeneous traffic flow, a region of high density and low average ve-

locity of cars can spontaneously appear, if the density of cars in the flow exceeds some critical value.
This region —a cluster of cars —can move with constant velocity in the opposite direction or in the
direction of the flow, depending on the selected parameters and the initial conditions of the traffic flow.
Based on numerical simulations, the kinetics of cluster formation and the shape of stationary moving
clusters are found. The results presented can explain the appearance of a "phantom traffic jam, "which
is observed in real traffic flow.

PACS number(s): 05.40.+j, 47.54.+r, 89.40.+k

I. INTRODUCTION X=p( V(p) —u)/r, (3)

Since the works by Prigogine (e.g. , [l]) on kinetic
theory of traffic flow, cars have often been considered as
interacting "particles. " The more the number of cars
moving on a road is increased, the more driving accord-
ing to one s individual intention becomes impossible, but
every driver's aim is to keep moving. If the number of
cars is sufficiently large and only the average characteris-
tics of the motion are of interest, traffic flow can be con-
sidered as a one-dimensional compressible flow of these
"particles. " Therefore, if, as usual, it is assumed that the
hypothesis of continuity holds, a hydrodynamic descrip-
tion for the distribution of the density p(x, t) of cars in a
lane and their average velocity u(x, t) is possible [l—3]. In
this kinetic approach, traffic flow is described by both the
continuity equation and the equation of motion [2—5].
The equation of continuity for a one-dimensional
compressible flow reads [2—5]

ap a(pv)

The values of p should be positive and should not exceed
the maximum density p (for an n-lane road p = n /a,
where a is an average length of cars).

The equation of motion, which states that the product
of particle density (car density) and acceleration equals

the sum of all acting forces, is given by the Navier-Stokes
equations (e.g., [6]). Again for a one-dimensional
compressible flow these equations reduce to

p[au/at+ u(au/ax )]=a/ax(~au/ax ) —ap/ax+X,
(2)

where p is the local pressure, p is the viscosity, and X
represents the sum of all inner forces which appear due to
interactions between individual particles (cars).

The force X in (2) takes into account the relaxation
process of the velocity u to a safe ("maximal and out of
danger") velocity V= V(p), which is achieved in a both
time-independent and homogeneous traffic flow, i.e.,
[2,3],

where ~ is the average relaxation time of this process.
The effect of X in (2) can best be understood, if its isolated
action on the acceleration of an average driver in homo-
geneous traffic flow is studied. Under these artificial con-
ditions, (2) reduces to dv/dt = [ V(p) —v ]/r, and it is ap-
parent from this equation that, for a given p, the average
driver is decreasing his velocity (du/dt &0) if his instant
velocity u is higher than V(p) and vice versa. The func-
tion V(p) is determined by the average balance between
safety requirements and the risk readiness of the drivers
as well as legal traffic regulations and road conditions,
i.e., V(p) is a phenomenological function. Despite the
variety of quantities that determines the function V(p), it
strongly depends on p, and some important statements
with respect to the general shape of the function V(p)
can be made:

(i) At not too small values p the value V should de-
crease as p increases, because drivers decrease their aver-
age velocity if the headway to the car in front of them is
reduced. At the limit where p —+p, cars cannot move at
all, and for this reason V(p) I

~0.
(ii) On the other hand, at small enough values of p

there is almost no interaction between cars and they can
move with some average velocity vf, which depends on
road conditions and average car technology. Therefore,
V(p) is a monotonous decreasing function of p, i.e., their
derivative g(p) =dV/dp &0 [2—5].

The pressure p in (2) is the product of the density of
particles p and their "temperature, "or more precisely, an
average square of the difference between velocities of cars
and their average velocity (the variance of the velocity
distribution), which will be denoted as co, i.e., p =pco. If
co is constant [2—5] and (3) is used, Eq. (2) can be written
in the form

au /at +u(au /ax ) = —(c /p)(ap/ax )+ [ V(p) —u ]/r

+p 'a/ax(@au /ax ) .

It is well known from theory and experiment that
homogeneous traffic flow can be unstable [3—5] and one
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can expect a lot of nonlinear intricate phenomena to ap-
pear in traSc flow. In this Rapid Communication the
nonlinear cluster effect, which can explain the spontane-
ous appearance of a traftic congestion without obvious
reasons [7], a "phantom traffic jam, "will be presented.

II. CLUSTERS IN TRAFFIC FLOW

A. Integral condition of problem

where

N = f p(x, t)dx
0

(6)

is the total number of cars on the road (it is naturally sup-
posed that N))1); q(x, t)=p(x, t)u(x, t)—the fiux of
cars. The integral condition (5) physically expresses the
fact that if one seeks some new distribution for p(x, t) and
u(x, t), the initial quantity of the total number of cars N
and its possible change in time have to be taken into ac-
count.

For the sake of clarity a homogeneous traf5c flow on a
circular road of circumference I. will be considered in
this article, i.e., the case when

q(O, t) =q(L, t),
u(o, t)=u(L, t), av/ax~, =au/ax!, .

In this case (5) takes the form
LN= p(x, t)dx =pi, L,

0
(9)

where p& is the car density in the homogeneous flow.
The corresponding value of vz follows from the evident
relationship

(10)

If N and L are given, there is only one homogeneous state
p=p&, v =v& for this flow.

B. Critical fluctuation

By linearizing Eqs. (1), (4), and (9) with boundary con-
ditions (8) in the neighborhood of this homogeneous state
p=ph, v =v& with respect to the fluctuations

5p(x, t) =5p(x)exp( yt ), 5p(x) =5paexp(ik—x),
5v(x, t) =5v(x)exp( y t ), 5v(x) =5va—exp(ikx),

one can find the conditions and the dispersion equation,
which determine the behavior of the perturbations (11):

f 5p(x, t)dx =0, (12)
0

exp(ikL) =1,
y y(2ikvh+k ph

'+—1)
(13)

+ik(k vhpg +v~+g(pz )pz )+k (c0 —
vh ) —0 .

(14)

Integrating Eq. (1) over x from x =0 to x =L, where L
is the length of the road, one can find the equation of the
integral balance of the quantity of cars on the road:

dN/dt =q(O, t) q(L—, t),

co~ k(vh c0) (16a)

cop=k(vs +ca)
Substituting co in the second of these equations (the imag-
inary part) for cv, (16a) [the solution for co2 (16b) does not
meet the values k (15)] and taking into account (15), one
can find that the stability of the homogeneous traffic flow
is lost (Rey = iL & 0) if

(16b)

[ —1 —
(p~ /c0)g(p„) ]p„)(2~1 /L )' (17)

with respect to the growth of the critical fluctuation
where

k =k, =2vr/L, Imy =co, =k, (v„—ca) .

The condition (17) can be fulfilled due to g(pi, ) &0. To
understand the physical mechanism of this instability, it
is important to notice that the change in V caused by a
perturbation 5p(x) is 5V(x) =g(ph )5p(x). In the local re-
gion, where p is increased, i.e., the perturbation 5p(x) )0,
the value V decreases. To maintain safe driving condi-
tions, the drivers must reduce their velocities in this re-
gion, i.e., 5u(x) &0. On the other hand, the other condi-
tion 5p(x) = —5v(x)ph /ca, which follows from the
linearized equation (1) at the point ph

=p, i, where
Rey =X=0 and Imy =co&, indicates that a decrease of the
local velocity produces an increase in the local density.
An increase in the local perturbation of p leads to a local
decrease in the values 6V and therefore to a decrease in
the local perturbation of v, which again amplifies the per-
turbation of p. This avalanchelike process is started
when the value ~g(ph)~ is large enough to exceed the
influence of the "diffusion (viscosity)" and "relaxation"
processes which correspond to the right of, and to the
first term on the left of, inequality (17), respectively.

The boundary (17) determines the critical values of the
density of cars p&

=p„., i = 1,2, . . . , at which the homo-
geneous trafFic flow becomes unstable. The critical values
p„. are functions of the length of the road L. The homo-
geneous traffic fiow can lose its stability in one (ph =p„
and pz =p, z, p, z )p„, Fig. 1) or more intervals on the pz

Here, and as of now, g(p ) =d V/d p, r =const, and p
=const; v, V, and c0 are measured in units of l/~, the
length in units of l, the time in units of ~, the density of
cars in units of p, where I =+pp

Condition (12) has a simple physical sense: A pertur-
bation with k =0 would change the number of cars N on
the road. Because this number is given and cannot be
changed, the homogeneous perturbation cannot be real-
ized in the traffic fiow under consideration. From (12)
and (13) we have the condition for the values k that are
suitable for (14):

k =2vrm/L, m =+1,+2, . . . .

Substituting y in (14) for y =A+ice , (i.e., A. =Rey,
co =lmy) and separating real and imaginary parts, we ob-
tain two equations. From the first of these two equations,
near the point where the homogeneous state loses its sta-
bility, more precisely for A,

~

&& 1, k c0, we find two solu-
tions for co:
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axis. For a given L and a fixed function V(p), the width
of the intervals of instability increases with decreasing co.

From the shape of the critical fiuctuation 5p(x },which,
corresponding to (ll) and (18), is a wave with only one
maximum moving with the phase velocity

FIG. 1. Dependence of the critical values pz =p, (i.e.,
pI, =p, 1,p, 2) on L. Results of numerical computations for
V(p) =5.0461( [1+exp[(p —0.25)/0. 06]] ' —3.72 X 10 s), co
= 1.8634.

proximately equal to v (19), which, depending on the
values vI, and co, can be more or less than zero. As a re-
sult of the growth of the perturbations a cluster of cars
forms in the How, i.e., a local, as a rule, moving region on
the road, where the density of cars is considerab1y higher
and the average velocity of cars is considerably lower
than in the initial Aow and outside the cluster. In time,
this local region transforms into a stationary cluster of
cars, which moves with a constant velocity U and with
an invariable form [Fig. 2(a), t) 100', and Fig. 3(a),
t &95'].

(ii) The velocity of cluster v~ can be positive or nega-
tive. It is determined by the shape of the function V(p)
and the other parameters of the fiow (especially by the
value cv). The velocities of the cluster v and of the
small-amplitude perturbation v~ (19} are often different
from each other, not only in their values but also in their
sign [see Fig. 2(a), where v )0 but v &0].

(iii) One can distinguish two scenarios of kinetics of
cluster formation: (a) The first scenario is usually real-
ized at values p&, which are close to the critical values

p„.. In this case, the monotonous growth in time of the
small-amplitude perturbation (11) and (18) leads, as a
rule, directly to the appearance of one cluster on the road
(Fig. 2). In the example of this scenario, shown on Fig. 2,
the value v (19) is positive. As the amplitude of the per-

P

(19)

one can expect that, owing to the growth of this Auctua-
tion, the cluster of cars spontaneously appears in the ini-
tially homogeneous traffic How.

C. Formation of stationary clusters and their form
0.4

0.2

x/t

For the investigations of the cluster effect, the problem
(1), (4), (8), and (9) has been solved numerically (Figs. 2
and 3). For this purpose, the additional unknown func-
tions w(x, t)=Bv/Bx and ep(x, t), where Bp/Bx =p(x, t),
were introduced and the problem (1), (4), (8), and (9) was
written as a system of four first-order differential equa-
tions for the functions ep(x, t}, p(x, t), v(x, t) and w(x, t)
with the corresponding boundary conditions: y(O, t)=0,
ep(L, t)=p&L, v(O, t)=v(L, t), w(O, t)=w(L, t). This sys-
tem has been approximated on a grid x;=(i —l)dx,
i =1:1:I,xi=I., t; =jdt, j=0, 1,2, . . . by the centered
Euler or box scheme [8]. Assuming a known solution at
time t =t

&, a system of 4(I —1) nonlinear equations for
the 4(I —1) unknown ep(x;, t ), i =2:1:(I—1); v (x;, t ) and
w (x;, tj), i =2:1:I;p(x;, t/), i =1:1:Iat the new time level
is obtained. The nonlinear equations are linearized with
the help of Newton's method, which converges quadrati-
cally, and are solved iteratively by starting the iteration
with a estimated solution, i.e., ep(x;, t ) =p(x;,t, ),
i =2;1:(I—1); v(x, , t )=v(x;, t &) and w(x;, t).
=w(x;, t, ), i =2:1:I;p(x;, t )=p(x;, tj, ), i =1:1:.

From the numerical simulations made one can con-
clude the following:

(i) At ph )p„ the amplitude of the initial small-
amplitude perturbations 5p, 5v [(11) and (18)] grows in
time and the perturbations move with the velocity ap-

180
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(b)
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FIG. 2. The kinetics of the cluster formation: (a) the depen-
dence p(x, t) for ph =0.168; (b) the distributions p(x) and U(x)
in the stationary cluster at t = 150. L = 100, the initial distribu-
tion p(x, 0)=ps+5p(x, 0) with 5p [(11) and (18)], 5po=0. 02.
The other parameters are the same as in Fig. 1.
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III. CONCLUSIONS
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FIG. 3. Kinetics of the cluster formation:, , p:,a, the de endence
(x, t) for pz= . ', e=0.22; (b) the distributions p(x) and v(x) in the
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with a constant velocity and has an invariable form. e
direction o t e c us ef h 1 t r motion cannot be correlate with
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