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Determination of the noise level of chaotic time series
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We propose a method to determine the amount of measurement noise present in a chaotic time series.
If the data are embedded in a space of higher dimension than that strictly required to reconstruct the dy-
namics, the extra dimensions are dominated by the noise, which results in a certain shape of the correla-
tion integral. For the case in which only Gaussian noise is present, this shape can be calculated analyti-
cally as a function of the noise level. Thus the noise level can be obtained from a simple function fit.
The analytical result also shows that a noise level of more than 2% will obscure any possible scaling of
the correlation integral and thus makes it impossible to estimate the correlation dimension.

PACS number{s): 05.45. +b, 06.50.—x

C(e)-e (2)

It is commonplace that every experiment is subject to
measurement error. Equally obvious is that this uncer-
tainty is desired to be as small as possible. But at first we
have to know how severe the uncertainty actually is.

The measurement we consider here is a chaotic time
series obtained from some nonlinear phenomenon (see [1]
for a review on nonlinear time series analysis). Nonlinear
noise-reduction methods [2] are available to suppress
measurement noise to a considerable degree. But even
the remaining noise will have an infIuence on any applica-
tion, be it predictions, control, or the estimation of
characteristic quantities. In some cases we know the
difhculties that have to be expected depending on the na-
ture and amplitude of the noise. For many experiments
one can assume Gaussian noise with short correlations
plus discretization error. Even when this is an adequate
description of the nature of the noise, the amplitude of
the Gaussian contribution can only be vaguely guessed
from the experimental setup.

In this Rapid Communication we wish to present a
method for obtaining a reliable estimate of the amplitude
of the noise. The considered data sets have to meet some
relatively weak requirements of length and complexity.
We assume the noise to follow a Gaussian distribution,
but we will be able to detect deviations from this assump-
tion. As an application, we will use the method as a con-
sistency check for nonlinear noise reduction [4] on exper-
imental Taylor-Couette How data. The data were provid-
ed by Buzug, Reimers, and Pfister [5].

The method presented in this Rapid Communication
makes use of the correlation integral C(F.) introduced by
Grassberger and Procaccia [6] in order to compute the
correlation dimension of a strange set. I.et
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denote the fraction of pairs of points on the attractor
whose distance apart is less than e. In the limit as e—+0
and N ~~, and in the absence of noise, we have

where d is the correlation dimension of the attractor.
Equation (2) can also be written as

d =lim lim d(e), d(e)= InC(e),d
e~O N~ oo d lne

which is a more useful definition in practice.
Typically, one reconstructs the attractor in a suitable

space and computes C(e) and its slope d (e) as functions
of e. When interested in the correlation dimension d, one
would look for a range of e values where d (e) is relatively
constant. Here we rather wish to study d (e) as a func-
tion of e and the embedding dimension m to extract in-
formation about the noise in the system.

One can distinguish four different types of behavior of
d (e) for different regions of length scales e. For small e
(region I) the lack of data points is the dominant feature.
Therefore, the values of d (e) are subject to large statisti-
cal fluctuations. On the other hand, if e is of the order of
the size of the entire attractor (region IV), no scale invari-
ance can be expected.

In between, we can distinguish two regions. Region II
is dominated by the noise in the data: the reconstructed
points are not restricted to the fractal structure of the at-
tractor but fill the whole phase space available; thus we
expect d (e) =m. Between regions II and IV we have re-
gion III, where the proper scaling behavior of the attrac-
tor may be observed: d (e)-d. Assume we have a sca-
lar time series that originates in a low-dimensiona1
dynamical system with a box-counting dimension [7]
db, „. Then, according to Sauer, Yorke, and Casdagli [8],
the correlation dimension d is preserved for a reconstruc-
tion using r delay coordinates [9], as long as r is at least
equal to db, „. In this region we therefore expect d (e) to
increase with m until it saturates to d (e ) =d for

&dOZ dbpg o

The algorithm we propose makes use of the fact that,
for higher values of m, regions II and III will be very dis-
tinct: we will see a crossover between d (e)=m below
and d (e)=d above the noise level. Later, we will
analytically derive a formula describing this crossover.
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But let us first establish the algorithm.
Say we use a reconstruction in m ) r dimensions of a

signal which could be faithfully reconstructed using only
the first r coordinates. Below we will show then that in
regions II and III all the curves [d (e)—d„(e)]/(m r—)
have the same functional form [Eq. (16)],parametrized by
the noise level 0'.
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This formula can be used directly to determine 0.:
d (e) and d„(e) can be obtained numerically from C (e)
and C„(e), respectively. An estimate for the noise level is
given by the value of o. for which the function on the
right-hand side fits best to d „(e).

To illustrate the use of Eq. (4), we generate a scalar
time series x„=Re(z„) by measuring the real part of
100 000 iterates of the Ikeda map [10] z„+,= 1

+0.9z„exp[0.4i —6i/(1+ Iz„! )]. We add Gaussian un-
correlated measurement error of amplitude 0.005, corre-
sponding to l%%uo of the total variance. We use singular
value decomposition (SVD) [11,12] to consecutively
embed the data in m =2, . . . , 10 dimensions using the
first 2 to 10 singular vectors as basis vectors. Technical-
ly, we compute the co variance matrix
I;.=(x„+;x„+ ) —(x„+;)(x„+), where ( ) denotes
the average over all iterates n. Then we use the orthonor-
mal eigenvectors of I corresponding to the m largest ei-
genvalues as a new basis in m dimensions.

In these coordinates we compute the correlation in-
tegral C (e) for m =2, . . . , 10 and values of [e;] in the
range 0 to 0.025. We choose r =2 [13] and compute
d „(e), m =3, . . . , 10. Further, we use Brent minimiza-
tion [14] to find the value of o for which

2
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FIG. 1. Normalized effective dimensions d „{e)for 100000
iterates of the Ikeda map with Gaussian noise of amplitude
0.005 added. Apart from the expected statistical fluctuations
for small e all the curves show the shape given in Eq. (16). This
function is shown {solid line) with the parameter ca =0.00516,
which gave the best fit.

v(x)=v„(x)5(x—xo) . (6)

xo is uniquely determined by x through the deterministic
time evolution. In the presence of Gaussian uncorrelated
noise of amplitude o., the observed signal will follow a
distorted distribution in m dimensions:

1 1
p (x)= dx'exp — (x—x') v(x') .

(o 2m) 20

rM (x)= exp —,(x —xo) p„(X) .1 1

(cr 2m-) 2CT
(8)

All the information about the signal is contained in

Using Eq. (6) the integration over the 5 functions can be
carried out to yield

is minimal.
Figure 1 shows the curves d „(e) together with the

best function fit, cr„,=0.00516, which agrees very well
with the actual noise level, o.=0.005. Observe also that
the fluctuations for small e are purely statistical [15] and
thus in principle do not harm the least-squares fit. To
suppress the largest Auctuations we exclude values of
d „(e) obtained from % C (e)(50. An application of
the method to an experimental data set will be discussed
below.

To derive the formula (4) we compute the shape of
d (e) at the crossover between regions II and III. Recall
that we reconstruct a signal in m ) r dimensions, al-
though the first r coordinates would suffice. We denote
the projection of a vector x in the m-dimensional phase
space to the subspace spanned by the first r coordinates
as x and the projection to its orthogonal complement by
x. The clean signal can be thought of as drawn from a
distribution

rtL„(x) = f dX'exp — (x —x') v„(x '),
(o. 2~)" 20

(9)

which we have to leave as it stands. If we had enough
data to bin rM (x) reasonably fine in m dimensions we
could "predict" xo and determine the noise amplitude o.

from the Gaussian functions in Eq. (8). For practical
reasons this will not be our strategy.

We will rather study the correlation integral C (e) of a
distribution p (x) of the form (8). A continuum
definition of C(e) is

C(e)= f dxp(x) f dx'p(x') . (10)
%(e,x)

The second integration is over a "ball" %(e,x) of phase
space centered at x and with radius e. We will use the
sup norm, in which case these "balls" are m-dimensional
hypercubes of size 2e.
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Let us evaluate d (e) for p (x) given by (8). The corre-
lation integral in m dimensions reads

C (e)=
~ ~

dxexp — x p„(x)
1 1

2~)"--"' 20

X f dx'exp — X' p„(x'),1

%(e,x) 20

where we shifted x and x' to eliminate xo and center the
Gaussian functions. When we use the sup norm, we can
carry out both integrals separately over the two sub-
spaces:

C (e)=C„(e) —, , f dx exp — x
1 1 -2

(o 20

X f dxexp — x'1

%(e,X) 20
(12)

denoting the part containing the signal contribution by

C„(e)=f dxLtt, „(x)f dx'p„(x') . (13)

The integrals in Eq. (12) can be evaluated through its
components:

C (e)=C„(e) f dx exp
1

(o. 2m. )

1
z

x f dx'exp
20

1 (x'+x)
20

(m —r)

=C„(e) &2 erf
20

(14)

Substituting this into the definition of d (e) [Eq. (3)]
yields

d (e)= lnC (e)
d lne

=d„(e)+

1
(m r)e exp — —e

4~2

Eo&~ er.f
20

(15)

Our main result is that all the curves
[d (e)—d„(e)]l(m r) have the same—functional form,
stretched by the noise level 0'.

d (e)—d„(e)
m —r

ously by Kantz et aI [4]. T.he sequence consists of 32 768
integers between 0 and 4095. The noise reduction scheme
applied in [4] (which is the one proposed in [3]) gave a
correction with an amplitude of 45 units, corresponding
to 5% of the total variance.

We followed the same procedure as with the Ikeda
data, except that we used delay 10 for the embedding to
suppress effects of possible autocorrelation of the noise.
The results for d „(e) with r =5 and the best fit are
shown in Fig. 2. The main reason why the picture is less
clear than for the Ikeda data is that we have to use fairly
high embedding dimensions (m )5). The estimated
noise level is 41 units, in good agreement with the result
of the explicit noise reduction procedure.

The remaining noise level after noise reduction (see [4]
for details of the data processing) is more difficult to ob-
tain (see Fig. 3). On the one hand, we cannot be sure that
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where we introduced
z2

g(z)= 2 ze
v'~ erf(z)

(17)
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An estimate for the noise level is given by a least-squares
fit of g (e/2o ) to the values d „(e) available numerically.

We already discussed results with simulated data with
known noise level. Moreover, we applied the method to
experimental data, provided by Buzug and Pfister [5].
The data stem from the Taylor-Couette How experiment.
The noise in this particular set has been analyzed previ-

40 80 120 160 200

FIG. 2. Normalized effective dimensions d „(e) for experi-
mental Taylor-Couette data, m =6, . . . , 10. The best fit to Eq.
(16) is obtained with o.=41 (solid line).
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the remaining error is still Gaussian. On the other hand,
we expect the noise level to be smaller, which also means
that we have to work further down in the fluctuation re-
gime. Nevertheless, the values we obtain for d „(e) still
yield a stable fit. We estimate the remaining noise to
have an amplitude of about 11 (ca. 1.2%%uo of the total vari-
ance). Thus the noise reduction procedure suppressed

FIG. 3. Same as Fig. 2 but for the data after noise reduction
(see [4] for details of the noise reduction). Although the charac-
teristic shape [Eq. (16)] is not very pronounced, a fit is still pos-
sible, giving o.= 11 (solid line).

the noise by about a factor of 3—4.
In conclusion, we presented a method to estimate the

noise level, which we believe can be a useful tool in the
analysis of chaotic data. Since usually the correlation in-
tegral is computed anyhow in the search for scaling
behavior, the additional cost for implementation and
computation is very small. We found the SVD embed-
ding most useful to separate signal and noise contribu-
tions: we could use smaller values of r than strictly re-
quired. Thus better statistics could be obtained.

An important consequence of our analytical result for
the shape of the correlation integral [Eq. (15)] is that al-
ready a small amount of noise conceals possible scaling
behavior: even if one uses an embedding in only one di-
mension more than strictly required for a faithful value of
d [to make sure d (e) converges with m], the effective di-
mension is raised by 0.2 even at e=3o.. That means,
since even in the best case scaling can be expected up to
ca. one-fourth of the attractor extent and down to three
times the noise level, a data set with 2% noise can give at
most a tiny scaling region of two powers of 2.
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