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Controlling chaos in a network of oscillators
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We have extended the technique of stabilization of unstable periodic orbits to the case of spatially
distributed networks of oscillators in a chaotic regime. The control is achieved via minute kicks to
the variables of oscillators. These systems of many degrees of freedom exhibit high-dimensional
chaos. We discuss the relevance of such control for cognitive processes.

PACS number(s): 05.45.+b, 47.52.+j, 82.20.Wt

I. INTRODUCTION

Spatiotemporal coherent systems with many degrees of
freedom appear in such diverse fields as, for example, hy-
drodynamics, chemistry, and model neural networks de-
scribing biological or artificial neurons. The role of such
networks in information processing by a human brain has
been recently stressed by Destexhe and Babloyantz [1,2].
They showed that a network of excitatory and inhibitory
neurons under the inHuence of thalamic inputs exhibits
behaviors akin to human sleep and wake cycles [3].

Thus it seems natural to relate the mechanisms leading
to cognition and information processing to the dynami-
cal properties of chaotic networks. The latter may be
considered as an infinite reservoir of unstable periodic
orbits. If some of these orbits could be stabilized as a
result of the action of external or internal small pertur-
bations, they could be thought of as coding devices for
information processing. Thus a theory of cognition based
on chaotic dynamics could be proposed.

A method for stabilization of unstable periodic orbits
within a chaotic attractor was proposed by Ott, Grebogi,
and Yorke (OGY) [4]. In this method the stabilization
is achieved by submitting parameters of the system to
small external perturbations.

The method of OGY has been applied to many theoret-
ical as well as experimental systems [5,6]. However, these
model systems always have few degrees of freedom. For
example, Romeiras et al. [7] applied the OGY method to
control chaos in a mechanical rotor with four degrees of
freedom. Peng, Petrov, and Showalter [8] used the OGY
method for stabilizing periodic oscillations in a chemical
model exhibiting chaos. Other studies deal with the con-
trol of transient chaos [9] or chaos in a nonlinear oscillator
model [10].

To our best knowledge the OGY method has only been
used for stabilization of periodic orbits in systems with
few degrees of freedom. Chaotic networks of biological
or computational interest are usually extremely large. In
this paper we have used the OGY for the stabilization of
unstable periodic orbits in a network of moderate size.

Section II describes the spatially extended network.
Section III summarizes the salient features of the OGY
method. In Sec. IV, four unstable periodic orbits of the

network are identified. Section V is devoted to the stabi-
lization of these orbits by the OGY method. In Sec. VI,
the information processing ability of the network is out-
lined.

II. THE MODEL

Let us consider a square network of N x N oscillat-
ing units. The equations describing the dynamics of the
system are

„,' = W. —(1+iP)IWiI Wj +(1+.in)DQ„C.pe

The constant parameters a, P, and D are real. Each
oscillator of the network is described by a complex vari-
able TV~ and is labeled by a number j. In order to sim-

plify the notations, the index j does not represent the
Cartesian coordinates in the network, but designates a
single oscillator. The matrix C~k is defined as the con-
nectivity matrix of the network. If only first-neighbors
diffusive interaction is considered, the connectivity in a
two-dimensional square network is expressed as

) C'yWg=W~, +W', +W~, +W~., —4W~,
k

where the indices j~, j2, j3, and j4 denote the four nearest
neighbors of the unit j. The boundary conditions of the
network are of the zero-flux type.

Equations (1) are generic as they constitute the nor-
mal form of an oscillatory network near a supercritical
Hopf bifurcation [ll]. These equations are analogous to
the complex Ginzburg Landau equation derived for os-
cillating reaction-difFusion systems [11].

The parameters and the connectivity of the network
are chosen such that, in the absence of control, the sys-
tem exhibits chaotic activity. A way to achieve chaotic
dynamics is to consider parameters for which the uniform
oscillations of the network are unstable. The uniform os-
cillations of the network may be expressed analytically
by
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W~(t) = exp( —iPt+ Pp) V j, (2) 1.2

where 0 & Pp & 2vr is an arbitrary phase. One can show
that the solution (2) of Eqs. (1) loses its stability if the
following condition is fulfilled:

I+~P (
& D cos1+n2 ( N —1 )

Im W
(3,3)

0

Note that condition (3) is analogous to the Benjamin-Feir
instability condition, derived for continuous media [12].

Chaotic activity is generated in a network of 9 x 9 os-
cillators by the following procedure. For the values of
the parameters n = —10 and P = 2 in Eqs. (1), D is
decreased such that Eq. (3) is satisfied. By decreasing
D from the critical value D = 2.5, the uniform oscilla-
tions lose their stability and various nonuniform dynam-
ical regimes appear. We first observe various periodic
regimes, then quasiperiodic dynamics arise. Finally the
onset of chaos is seen for D = 1.9. In the following, we fix
the value of D = 1.3. As shown in Fig. 1, the broadband
power spectrum of the variable ReW(3 3) (t) indicates the
presence of chaotic activity. The latter may also be ob-
served with the help of a Poincare section. As such a
Poincare section is essential in the following, let us de-
fine it more precisely.

In order to simplify the notations, let us rewrite
Eqs. (1) in a general form,

x = f„(x),
where x = (Wi, W2, . . . , W~~) is the state vector and p
denotes a control parameter, e.g. , one of the parameters
n, P, or D of Eqs. (1).

We denote by 4'(xo, t) the dynamical flow, i.e. , the
general solution of Eq. (4) with initial condition x(0) =
x0. A Poincare section is obtained by the intersection
of the flow 4 with a hyperplane satisfying the equation
II = a . ( = b, where a is a vector and b a real number.
On the hyperplane II the Poincare map is then defined
as

'P: II; II: $:;4((, tii), (5)

where tri is the shortest time interval such that 4 (g, tri) 6
II and 4 ($, 0) 4(g, tn) ) 0.

An example of such a Poincare section is illustrated in
Fig. 2. Due to the absence of a well-defined structure
in this Poincare section, we can guess that the chaotic
attractor is not of low dimension.

-1.2
-1.2 0

Re TV
(3d)

1.2

FIG. 2. Projection of the Poincare section of the How on
the subspace (ReWl3 s), ImW~3 s) ). Parameters of Eq. (5) are
b = 0 and a = (1,1, . . . , 1). Other parameter values are as in
Fig. 1.

III. THE OGY METHOD

Let us consider the Poincare map $ (g( )) defined in

Eq. (5), g( ) representing the nth intersection in the
phase space of the flow with a surface of section.

In a Poincare map, a periodic orbit C(t) = C(t + T),
the solution of Eq. (4), is represented by a fixed point
7 "((&) = (&, for a given k ) 1. Here we consider the
simplest case, k = 1.

The Poincare map may be linearized in the neighbor-
hood of the fixed point, and we may write

&(() = 4+ M(( —&z) (6)

This guess is further confirmed when the fractal di-
mension of the chaotic attractor is estimated. We used
the well-known algorithm of Grassberger-Procaccia [13]
in order to estimate the correlation dimension D2. How-
ever, the procedure did not converge for embedding di-
mensions up to 14. We conclude that the underlying
chaotic attractor is not of low dimension.

In the next section we introduce a summary of the
procedure developed by Ott, Grebogi, and Yorke [4] for
the stabilization of unstable periodic orbits of a chaotic
system.

1.5(MO

Power
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FIG. 1. Power spectrum of the variable ReWl3 3)(t) of the
oscillator at coordinate (3, 3) in the 9 x 9 network. Parameters
of Eqs. (1) are a. = —10,P = 2, and D = 1.3.

with the matrix M = &&~ . The eigenvalues (Ag) of
M determine the stability of the periodic orbit C(t). If
there exists one eigenvalue with a modulus ~A„~ ) 1, the
periodic solution C(t) of Eq. (4) is unstable.

The OGY method considers a local control feedback
as, in phase space, the Eq. (6) holds only locally. As-
sume there is only one unstable direction around the
fixed point g&, corresponding to the eigenvector u and
the eigenvalue A„of the transposed matrix M . Then,
the prescription of the OGY method [4] is to perform
small perturbations bp around p according to the control
feed.back law,
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(„) A„u (g~"l —g~)
1 —A„

(7)

In this expression I = &~ and the dot designates the
scalar product. The feedback law (7) is applied only when

—g~~ ( bg', where bg* is a function of the maximum
allowed variation bp „ofp (see Ref. [4]). The effect of
the OGY procedure is to pull the state g l towards the
stable manifold of the fixed point g+.

In summary, the basic ingredients of the OGY method
are (i) the localization of unstable fixed points of a
Poincare map associated with the system's dynamics and
(ii) the computation of the unstable eigenvectors of the
matrix M associated with the linearized Poincare map
around the fixed points.

As seen in this section, the stabilization of unstable
periodic orbits by the OGY method necessitates their
previous identification. In the next section we give two
methods for identifying unstable periodic orbits of our
network.

@(&z T) =&~

after linearization gives

[1 —A(v-))bg —fp((', )br = g —(„
a bed=0,

(9)

where we denote (i ——4'((, r). The matrix A(r) is ob-
tained by the simultaneous integration, in the time inter-
val 7, of the following equations:

x = f„(x),

method which yields the precise position of fixed
points [15]. This method is based on the algorithm of
Newton for finding roots of nonlinear equations. Given
an approximate value $ of the fixed point g+ and an ap-
proximate value w of the period T, the method consists in
linearizing the fIow 4 associated with the dynamics of the
network described by Eqs. (1). Therefore the following
fixed-point equation:

IV. UNSTABLE PERIODIC ORBITS OF THE
NETWORK

In the present section we look for unstable fixed points
of the Poincare map 'P, corresponding to unstable peri-
odic orbits of the fIow. First, we could wonder whether
there exist analytical solutions of Eqs. (1) which corre-
spond to unstable periodic orbits. Indeed, as we saw,
the only simple analytical solution of Eqs. (1) consists in
uniform oscillations of the entire network, where each os-
cillator follows the periodic dynamics which would exist
in the absence of coupling. The analytical expression of
such an unstable periodic orbit Co(t) is given by Eq. (2).

Other unstable periodic orbits could be found by nu-
merical methods. We can proceed in two difFerent ways.
In both cases, the first step of the procedure is the same,
and consists in analyzing the recurrence of the fIow on the
Poincare section II. Starting from a random initial con-
dition g, the distances d~ l = ~g

—7 (g ) ~

between
two successive iterates of the Poincare map are scanned.
When d~ l is lower than a fixed value e, the vector g is
recorded as an approximate value of a fixed point of the
Poincare map. After the scanning of a large number of
iterates, a great number of approximate fixed points may
be found. Then statistical methods may be invoked to
elicit the precise position of several fixed points, as well
as estimates of the corresponding matrix M defined in
Eq. (6). Such an algorithm has been proposed by Auber-
bach et al. [14].

In our network, the statistical methods did not seem
to furnish satisfactory results for the determination of
fixed points and linearization of the Poincare section, for
a reasonable integration time. However, as in our case
the difFerential equations describing the system are avail-
able, a method developed by Sparrow [15] seems more
appropriate for the determination of the unstable peri-
odic orbits.

The Sparrow method. Sparrow has proposed a

Bf~(x(t)) A83'

with the initial condition x(0) = g and A(0) = l.
Once Eq. (9) has been solved, the variations 8( and br

are added to the initial values $ and w, and a new itera-
tion is performed. After a few iterations, the variables (
and 7 converge rapidly towards good approximations of
g& and T, even if the periodic orbit is unstable [15],.

The eigenvalues (Ai, ) of the matrix A(T) are the Flo-
quet multipliers of the periodic orbit C(t). The Floquet
exponents (py) of the orbit are related to the Floquet
multipliers by the equation

(10)

Finally, one can show that the I.yapunov exponents of
the orbit C(t) coincide with the real part of the Floquet
exponents

EI, ——Re pk.

In the sequel A(T) will be denoted simply by A and

&~(&z) by f.
Unstable periodic orbits. With the help of the Spar-

row method, we identify four unstable periodic orbits in
the following manner. Starting with random initial con-
ditions for the network, and applying the procedures de-
scribed above, a first unstable periodic orbit Ci can be
identified. We did not find other unstable periodic orbits
with random initial conditions.

However, other orbits could be found by choosing par-
ticular initial conditions which could be constructed in
the following manner. We consider the eigenvectors of
the connectivity matrix C~I„ i.e., the states e of the net-
work such that the condition P& C~i, ey = ere~ is satisfied.
Here o is an eigenvalue of the connectivity matrix. In
the case considered here, namely the difFusive connectiv-
ity with zero-fIux boundary conditions, the expressions
of the eigenvalues o~ ~

and the associated eigenvectors

e ' are given by
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m~ i t' nor
0( „)=2~ cos —1 i+2' cos

m, n=0, . . . , w —i

where ki and k2 represent the Cartesian coordinates of
the oscillator j in the network. By taking initial con-
ditions corresponding to specific values of (m, n), the
Sparrow method furnishes an unstable periodic orbit.
For example, the orbit C2 is obtained with ReW~. (0)
e ', ImW~(0) = 0, and another orbit Cs with (m, n) =
(1, 1). For all values of (m, n) with m or n greater than
2, we could not 6.nd orbits topologically diBerent from
CO, Cg, C2, and C3.

Thus it seems that there are no other periodic or-
bits satisfying 7 ((+) = (&. This does not preclude the
presence of other orbits satisfying other conditions, e.g. ,P"(g~) = $~, with k ) 1 .

We checked the validity of our computer program by
retrieving the orbit Co mentioned above [see Eq. (2)]. In
this case, we could compare the values of the Lyapunov
exponents computed numerically with their analytical ex-
pressions. A very satisfactory agreement was found.

The orbits Ci, C2, and C3 exhibit spatial structures,
represented in Fig. 3 at a given instant t. The orbit
Ci corresponds in fact to a rotating nave of oscillatory
activity around the central unit of the network. This dy-
namical feature is not represented here. Such a wave is
characterized by the fact that the amplitude of the oscil-
lator in the center of the network vanishes. This property
is completely analogous to the presence of a "phase de-
fect" generating a spiral wave in continuous oscillatory
medium [16].

The orbits C2 and C3 correspond to standing waves of
the network, possessing various symmetries. The orbit C2
is antisymmetric with respect to the reflection around a

Re

median one segment joining the middle of two opposite
sides of the square and constant in the other perpendic-
ular direction. The orbit C3 is invariant under reflections
around the two diagonal axis of the square.

We note also that all the three orbits Ci, C2, and C3
are associated with two unstable directions in the phase
space. For C2, these directions correspond to two distinct
real eigenvalues, whereas for Ci and C3 the instability is
associated with complex conjugate eigenvalues.

In Table I we summarize the salient features of all un-
stable periodic orbits found in our network. These are
characterized by the oscillatory period and the Floquet
exponents with positive real parts. From Table I we note
that the orbit Cz is characterized by the lowest Lyapunov
exponents. Therefore it is not surprising that Ci is also
the more recurrent unstable periodic orbit. This fact is
visible in the power spectrum of Fig. 1, where the fre-
quency of one peak coincides with the frequency of Ci.
Such an association does not seem to be present for the
other unstable periodic orbits. In the next section we ap-
ply the OGY procedure to stabilize the unstable periodic
orbits of Table I.

V. CONTROLLING CHAOS IN A NETWORK

After identifying a number of unstable periodic orbits
of the network of oscillators described by Eqs. (1), we
use the OGY method to stabilize these orbits. In partic-
ular, we will discuss the case of large Floquet multipliers
associated with some of the periodic orbits.

In order to apply the OGY method we need the eigen-
vectors and eigenvalues of the matrix M, introduced in
Eq. (6). By linearizing Eq. (5) we can easily show the
relation between the matrix A [Eq. (9)] computed with
the Sparrow method and the matrix M,

M= il — A.
a f)

Moreover, we can verify that if u is an eigenvector of A,
the vector u = (1 ——

&) u is an eigenvector of M with the
same eigenvalue. Note that a convenient choice for a is to
take a = f. As the matrix A, and hence the eigenvectors
u, are determined by the Sparrow method, we are ready
to apply the OGY procedure.

Im

TABLE I. Characteristics of four unstable periodic orbits
of Eqs. (1). T is the period of each orbit. The third column
shows the positive Lyapunov exponents of these unstable pe-
riodic orbits. The fourth column gives the imaginary part of
the corresponding Floquet exponents.

FIG. 3. Snapshots of network activity for the unstable pe-
riodic orbits C&, C2, C3. The vertical axes are scaled by the
same constant interval [

—1.2, 1.2]. Parameter values are as in
Fig. 1.

Orbits
Co

Ci 13.66

15.4

2.25

Eg ——Re pg
1.038
0.123
0.123
0.754
0.720
0.651
0.651

0.348
— 0.348

— 1.0



48 CONTROLLING CHAOS IN A NETWORK OF OSCILLATORS 949

Equation (7) assumes that there exists only one un-
stable direction. If this is not the case, it can be easily
shown that m unstable directions will require m indepen-
dent variations of difFerent parameters and a straightfor-
ward generalization of Eq. (7) is possible [17]. In this
way the unique Eq. (7) is replaced by a linear system of
m equations.

We implemented the OGY method by perturbing the
variables rather than the parameters of the system. This
idea was suggested in [6] and, as it is shown below, this
choice does not afI'ect the basic principles of the method.
Indeed, let us assume that there exist m independent
vectors v~ along which we may perturb the state of the
dynamical system. Then we construct a new Poincare
map 7, by introducing m new parameters ~~, such as

$ ~(() = 7 (( + eivi + e2V2 + + e~v~).

In the case where the new parameters ~~ = 0, we re-
cover the original Poincare section. Therefore, in the
same spirit as in the OGY method, we can write the
conditions which determine small variations of ~~ around
zero, such that the system state is pulled onto the sta-
ble manifold of the fixed point ('&. These conditions are
expressed by the linear system

phfied over a period of time T. This diKculty can be
avoided following difFerent strategies.

A first method for reducing the efI'ect of large Floquet
multipliers is to consider several hyperplanes of section in
the phase space, such that the Poincare map 'P is decom-
posed in several factors. For example, we may consider
two hyperplanes, let IIi ——II and Ilz g II, and two maps
7 i and 7 2 defined by

+1 ~ III

such that V (g) = 7 2(V i(g)). In these equations the
time intervals tD,, and t~, are defined in a similar way
as for Eq. (5). The generalization to more than two hy-
perplanes is obvious. Hence, the matrix M defined in
Eq. (6) decomposes into M = M3Mi. We can define also
(~i ——(~, 7 i((~i) = (pz, and 'P2((~2) = (~i, and as-
sume that there is only one unstable direction ui around
/+i and u2 around $&z, such that Mi ui ——Aiu2, and
M2 ll2 A2 ui y

with A A] A2 With these notations,
it is not difIicult to derive a feedback law, analogous to
Eq. (7), which proceeds in two steps

m

uk ' V~ E~ = uk
i=1

where the vectors (uk) represent the unstable directions
of the matrix M . The solvability condition of Eq. (11)
may be stated as follows. The system (ll) possesses a
solution only if the orthogonal of the subspace generated
by the vectors (vq) contains no vectors (uk). A simple
choice corresponds to vk ——uk.

We applied this procedure to the network of oscilla-
tors as described above and the periodic orbits Ci and C3
of Table I were stabilized, with the choice vi, = uk (k =
1, 2). Figure 4 shows the transition in time of the variable
ReW(3 3)(t) during the stablilization of Ci. The control
is performed under the form of microkicks applied pe-
riodically to the network, whenever the dynamical fIow
intersects the Poincare section.

Due to the large amplitude of the greatest Floquet mul-
tiplier, ~A

~

= e ' 10, associated with the largest
Lyapunov exponent Ei of C2, the stabilization of this or-
bit is not easy to achieve. Indeed, a minute deviation
from the unstable periodic orbit C2 is dramatically am-

1.5

0.5
Re ~ (t)

(3,3)
-0.5

-1.5 I I I I I I

100 120 140 160 180 200 220 240 260
time

FIG. 4. ReW(3 3)(t) before and after stabilization of pe-
riodic orbit CI. The arrow indicates the time at which the
feedback control is applied for the first time.

( ) uz (( (F2)
p2 2 Lu$ ' g] —A2u2 g2

where gk ——
&

" as previously. The advantage of con—
dp

sidering the feedback in several steps, as in Eqs. (12), is
that the value of the partial Floquet multiplier Ak, as-
sociated to step k may be arbitrarily reduced when the
number of steps increase. Indeed, if the total number of
intermediate steps is I, we can evaluate ~Ay~ ~A„~i~',
which decreases with l.

Thus the OGY method may be applied in a situation
where ~A„~ )) 1, provided that the Poincare section is
decomposed in several factors.

In this paper we used another method for reducing the
greatest Floquet multiplier associated with C2. The gen-
eral idea of the method is as follows. Let us note Ti,
the period of an unstable periodic orbit C(t). Suppose
that there exists a matrix H(t) such that H(t)C(t) is
still a periodic function of period T2. Then we may ap-
ply the OGY method, not directly on the variable x(t),
but on the transformed variable y(t) = H(t)x(t), in or-
der to stabilize the unstable periodic orbit H(t)C(t). As
the greatest Lyapunov exponents related to the variables
x(t) and y(t) are identical, Eq. (10) shows that the great-
est Floquet multiplier of the periodic orbit, expressed in
terms of the new variables, is proportional to ~A„~

Therefore, if T2 & Ti, the greatest Floquet multiplier as-
sociated with the periodic orbit H(t)C(t) can be reduced.

This method is most appropriate for the study of
Eqs. (1). Indeed, in this case it can be shown that all
periodic orbits of period T may be expressed under the
form W~(t) = e'( ~ ) Z~, where Z~ is independent of
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t [18]. Therefore, if we choose the function H(t) = e'
the periodic orbit C(t) of period Tq is transformed into a
periodic orbit of period

Ti
T2 =

4P T1
27r

For example, in the case of the unstable periodic orbit
C2, Tq ——15.4. By choosing w = P = 2, we get T2 ——2.61
and the greatest Floquet multiplier of the orbit e'~ C2 is
of order 1. Thus, with this method, we could stabilize
the unstable periodic orbit C2.

VI. CONCLUSION

In this paper we have shown that the technique de-
veloped by Ott, Grebogi, and Yorke could be applied
to spatially distributed networks of moderate size, ex-
hibiting chaos which is not of low dimension. In systems
with few degrees of freedom the OGY method necessi-
tates the perturbation of a single parameter if the unsta-
ble periodic orbit possesses only one positive Lyapunov
exponent. In our system, the existence of two positive
Lyapunov exponents implies that two independent pa-
rameters must be perturbed. We implemented the OGY
control procedure by submitting the network to two in-
dependent periodic kicks of very small amplitude. The
kicks were applied to the variables instead of the usual
procedure where the parameters are subject to Huctua-
tions. We discussed also how to stabilize a periodic orbit
with large Floquet multipliers.

The possibility of identification and stabilization of pe-
riodic orbits out of a spatiotemporal chaotic reservoir
opens the way for a possible explanation of cognitive
processes. Indeed, if the cortical activity generates spa-
tiotemporal chaos, it is a reservoir of unstable periodic

orbits. One could think of this infinite number of periodic
orbits as infinite ways of coding information. The interest
of the technique is that the stabilization is achieved via
very small internal or external perturbations. The infor-
mation transfer does not necessitate appreciable change
in the network. This point is of importance in the case
of cortical networks, as one needs not to invoke costly
metabolic changes of long duration.

The learning and retrieval of information from cortical
networks could be understood in the following manner.
Let us assume that a perturbation of a given nature and
magnitude is able to stabilize an orbit of well-defined or-
der and frequency. Moreover, such an orbit is absent
in the reservoir of a nonlearned network. The learn-
ing process changes the network connectivity according
to a given learning rule, for example Hebbian learning
rules. Only in this "learned" network, orbits appear
which could be stabilized by a small perturbation which
triggers the process of recognition and memory.

The stabilization of unstable orbits in a chaotic neural
network could also be of computational value. Moreover,
as in principle the number of periodic orbits even in a
small network is infinite, a coding device which uses such
orbits will have a very large capacity. In a separate pa-
per [19] we have shown how a chaotic categorizer may be
constructed with the help of the results achieved in this
paper.
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