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Solution to the telegrapher's equation in the presence of reflecting
and partly reflecting boundaries
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We show that the re8ecting boundary condition for a one-dimensional telegrapher s equation is
the same as that for the di8'usion equation, in contrast to what is found for the absorbing boundary
condition. The radiation boundary condition is found to have a quite complicated form. We also
obtain exact solutions of the telegrapher's equation in the presence of these boundaries.
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The telegrapher's equation is the simplest example of
a diKusionlike process which deals not only with the po-
sition of a particle but also with a crude form of momen-
tum [1,2]. It has been applied to a number of problems
in solid-state physics and thermodynamics [3,4] and has
been suggested as a model for the difFusion of light in
turbid media because it can describe effects of forward
scattering [5,6]. The equation can be derived, at least in
the case of one dimension, as a continuum limit of the
persistent random walk [7]. It is also known that teleg-
rapher's processes are equivalent to free processes driven
by dichotomous Markov noise [8].

The telegrapher's equation has most often been solved
for particles that disuse in an unbounded space. More
recently there has been some interest in the efFects of
boundaries on difFusion in which the probability density
for the position of particles is found by solving a telegra-
pher's equation. This interest has at least two motivating
considerations, the first being the purely mathematical
one of characterizing the maximum value of such ran-
dom variables as the maximum displacement of a parti-
cle at time t [9,10]. A second motivation for the study of
the telegrapher's equation in the presence of boundaries
is because of potential applications of such equations in
the area of the medical use of laser light for diagnostic
purposes [6].

We have recently derived the appropriate boundary
conditions as well as the solution of the one-dimensional
telegrapher's equation in the presence of one or two trap-
ping points [ll]. The boundary conditions differ in cer-
tain important aspects from those found for diffusion
equation in the presence of trapping boundaries, and in
fact the problem of finding the correct boundary con-
ditions in dimensions greater than one has not, to our
knowledge, been solved in generality.

In this paper we discuss the problem of a one-
dimensional telegrapher s equation in the presence of ei-
ther reflecting or partly reflecting boundary conditions.
The reflecting boundary condition (which has been pre-
viously found in the context of dichotomous noise [12])
is shown to coincide with that for the standard diffu-

ga Ba 1—= —c + (h —a),
Bt Ox 2T (la)

Bb Ob 1—= c + (a —b).
Bt Bx 2T (1b)

The probability density for the position of the particle
independent of the direction in which it is moving at that
time will be denoted by p(x, tIxo) and is given in terms
of a and b by

p( tlxo) = (* tI*&) + h(x Ix&).

A simple consequence of Eqs. (la) and (1b) is that the
functions a, b, and p all satisfy the telegrapher's equation

Op 18@ 2
Ot T Ot 0 (2)

We now derive a radiation boundary condition for this
equation, which must be used for problems involving
partly reflecting boundaries. For this purpose it is ex-
pedient to consider first a persistent random walk on a

sion process in the presence of a reflecting point. On
the other hand, the radiation boundary condition, suit-
able for a partly reflecting boundary, is shown to have a
similar structure to that of the absorbing boundary for
telegrapher's processes. We obtain in both cases the so-
lution of the telegrapher's equation.

In order to formulate the initial and boundary condi-
tions to be imposed on the telegrapher's equation it is
convenient to decompose the probability density for the
position of the particle at time t into a sum of two terms.
Let X(t) be the position of the diffusing particle and let
a(x, tIxo) be the probability density for the position of
the particle at time t subject to A (0) = xo together with
the condition that the particle is moving in the positive
x direction at time t, and let b(x, tIxo) be the analogous
function for decreasing 4"(t). Let c be a velocity and T a
time. A standard argument can be evoked to show that
the functions a and b satisfy
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lattice, whose continuum limit is the telegrapher's equa-
tion. Let a (j) be the probability that a lattice random
walk is at site j at step n, its position at the immedi-
ately preceding step having been j —1, and let b (j) be
the analogous probability with the immediately preced-
ing position having been at j + 1. Let p be the probabil-
ity that the direction of a step is the same as that of the
preceding step. Then, in the absence of a boundary the
discrete evolution equation is

a„+i(j) = pa„(j —1) + (1 —p,)b„(j —1),

b +i(j) = (1 —p)a (j + 1) + pb (j + 1).

The telegrapher's equation is obtained from this set by
scaling the time by t = nest, space by x = jLx, and
probability y, by p = 1 —At/(2T). Finally, let both At
and Ax tend towards 0 subject to Ax/At = c.

Consider, in the discrete formulation, the eKect of a
point at j = 0 that traps a particle reaching it with
probability equal to P, or reflects it with probability 1—
P where this reflection is immediate. Other situations
where the "immediate reinjection" does not take place
have been considered elsewhere [12]. The equation for
a (1) contains the effect of the partial reflection and can
be written

(4)

which, in the continuum limit, implies the boundary con-
dition

We note that this condition is equivalent to [cf. Eq. (5)]

a(0, tlxp) = 0.

This is the condition for pure trapping, which was ob-
tained in our previous work [11].

For the case of reflection P = 0 and we get

Bp
Bx 0

(10)

a(x, olxo) = n~(x —xo),

b(x, Olxp) = (1 —n)b(x —xp),

which is the same as that found in the case of ordinary
diffusion. At this point we observe that in the case of a
single reflecting point the boundary condition (10) can be
derived by integrating the telegrapher's equation (2) and
noting that with perfect reflection probability must be
conserved. This global derivation does not apply to the
case of two reflecting boundaries where, in addition to
conservation of probability, another condition is needed.

A derivation of the initial conditions requires a return
to the form of the equation given in Eqs. (la) and (1b)
in terms of separate components to take into account any
asymmetry inherent in the formulation of the problem.
If we suppose that the diffusing particle is initially at xo,
but that the probabilities of initial directions of motion
are not necessarily equal, then we may write for the initial
conditions

a(O, tl») = (1 —&)b(0, tlxo) (5)

A trivial observation is that the known boundary condi-
tion for pure trapping or reflection corresponds, respec-
tively, to setting P equal 1 or 0 in this relation.

Let us now And the radiation boundary condition for
the total probability density function p(x, tlxp). We pro-
ceed as follows. From Eqs. (la) and (1b) we get

Bp 1—(a —b) = —c ——(a —b),
Ot Bx T

but at the boundary

p(0, tlxo) = a(0 Ixp) + b(0, tlxo) = ( 0) ( I p)

and

in which 0 & o. & 1. Thus the probability density
p(x, tlxp) must satisfy the obvious initial condition

p(x, olxp) = 8(x —xp). (12)

which implies that the form of the second initial condition
1s

= —(2n —1)c8 (x —xo).Bp /

Bt,

A second initial condition is found by adding Eqs. (la)
and (1b). This yields the relation

t9p = —c (a —b),
Ot Bx

a(0
I .) — (0 tl») = — p(o tl*p).2— (7)

Op
C

Ox
P (Bp 1

2 —PBt T)
In the case of an absorbing boundary P = 1 and from

(8) we obtain the boundary condition for pure trapping:

Bp (Bp 1=
I

—+ —p IBx ~=o &Bt T ) ~=o

The substitution of Eq. (7) into Eq. (6) yields the radi-
ation boundary condition:

The case of a single reflecting point at x = 0 is easily
solved because the simple form of the boundary condi-
tion in Eq. (10) enables us to use the method of images
to express the solution. Let 4(x, tlxp, n) denote the solu-
tion to the telegrapher's equation in an unbounded space
subject to the two initial conditions given earlier. The
solution for p(x, tlxp) is then expressible as

p(x, tlxo) = e(x, tlxp, n) + e(x, tl —xp', 1 —n). (14)

The most expedient way to find O(x, tlxo, n) is to invert
the joint Fourier-Laplace transform of Eq. (2). Let u be
the Fourier parameter and s be the Laplace parameter.
The joint transform p(w, slxp) is then found as the sum
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of the transforms relevant for the free-space propagators

4((u, sixo, o.)—
1s+ —+ i(2o. —1)c~T

S
8 + —+ & C

T

It is possible to invert the two transformations in closed form, which then gives

C'(z, tlzo;a) = e ' * lat(z —xo —ct) + (1 —a)t(z —xo+ ct)

1 ct + (2a —1)(x —xo) I, (2)
4cT 2cT (16)

Qc2t2 —(x —x())2
2cT (17)

In Fig. 1 we show some curves of the function p(x, t~xo)
given by (14) as a function of x for two diff'erent times
along with data obtained by means of the "exact enumer-
ation method" [13). At the earlier time (t = 0.5T) the
di8'using particle has not reached the reflecting point and
the profile is what one would calculate as the solution to
the telegrapher's equation in free space. Since the tele-
grapher's equation has a wavelike term a discontinuous

I

where 8 is the Heaviside step function, Io(A) and Ii(A)
are modified Bessel functions, and A is the following func-
tion of t and x:

profile results from the reflection as is apparent from the
figure.

Because of the relatively simple form of the reflecting
boundary condition one can easily calculate an expres-
sion for p(x, t~xo) when there are two reflecting bound-
aries, one at x = 0 and the second at x = I. The solution
can be found by a separation of variables and expressed
in terms of Fourier cosine series. A straightforward cal-
culation based on this approach su%ces to show that the
solution for p(x, t~xo) can be written in terms of the pa-
rameters

(18)

as

p(z, t~zo) = —+ —e 'tt' 1) cosh(p„t) + sich(tt„t) cos )

(19)

As is well known, the Fourier series solution of a partial differential equation is better suited for obtaining its
long-time behavior. Thus, in Fig. 2 we show the solution (19) when t )) T Note from .the figure that at t = 9T the
density p(x, t~xo) is practically equal to the equlibrium value 1jl, except for the b-function terms, which still survive
but with an intensity decreased by the factor e

In the case that one is interested in the short-time behavior of p(x, t~xo) it is more convenient to use an alternative
solution which can be also found by the method of images. A straightforward calculation yields the expression

p(z, t~ )= )zo('P(z, t~ 2nL; azo) + O(x, t( —xo —2nL; 1 —a))
n=O

+ ) ( ( Ot~z+zo2nI, ;a) + O(z,
~

—co+t2nL; 1 —a)),
n=l

where Ct(x, t(xo, n) is given by Eq. (16) (see Fig. 3).
We will now solve the case of a single partly absorbing

point at x = 0 assuming, without loss of generality, that
x & 0, xo & 0. A convenient way of ending the solution
in this case is by means of the Laplace transformed ver-
sion of the telegrapher's equation (2) together with the p(x, t~x, ) = e

—' ' )P(x, t~x ), (21)

boundary condition (8), which reduces the problem to
solving an ordinary diAerential equation. If we assume
symmetric initial conditions (ch = 1j2), this solution can
be written in the form
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FIG. 1. Two graphs of solutions to telegrapher's equation
with a single re6ecting point at x = 0. The initial position
is at xo ——cT, and the solid line corresponds to the solution
for a time before the particle can reach 0 (ct ( xs) while
the dashed curve is a representative solution after that time.
Because of the wavelike character of the equation there is a
step discontinuity as a result of a reBection from the origin.
Circles represent data from the exact enumeration method.
Note that we have omitted the b-function contribution to the
curves and that this omission is responsible for the apparent
lack of conservation of probability shown in the 6gure.

where the Laplace transform of P(x, tIxo) reads

P(x, sIxo) = + /( ) —p(8)~~ —xo~ g( )
—p(s)(~+xo)

2p(s)

FIG. 3. Solution to telegrapher's equation with two reHect-

ing points at x = 0 and x = 2cT when t = 1.6T as calculated
from Eq. (20) without 6-function terms. The initial posi-
tion is at xo ——0.5cT. Circles represent data from the exact
enumeration method.

1.00
where

p(s) = V'" —1/(4T') (23)

0.75
Q(s) = 0 [s + 1/(»)] —(2 &)p(s)—

P [s + 1/(»)] + (2 /3) p(s)—(24)

C)

0.50
OC

CL

0.25

~hen p = ]. one obtains, after inverting the Laplace
transform, the solution for pure trapping [11]:

p. (~, t]*o) = e '~" '
[fo(t I& —» I) —f~ (t ~ +»)]

(25)

where

0.00
0.0 0.5

X/cT

1.5 2.0

=1 e(ct —z) t
f, (t, ~) = —b(ct —x) +

2 4cT r()+ r(
27LT

(26)

FIG. 2. The solid line is the solution to telegrapher's equa-
tion with two re8ecting points at x = 0 and x = 2cT when
t = 97 as calculated from the Fourier series (19) with n = 40.
The initial position is at xo ——0.5cT. The b-function terms
are represented by the two spikes appearing at x = 0.5cT and
x = 1.5cT. The dotted line corresponds to the stationary
density.

O(ct —x) (ct —x ) 1/2

f.(t, *) =
8cT ro(u) + 21(ct + x/

(27)
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where

c2
(2S)

In the case of pure reHection we have P = 0 and Eq.
(21) reduces to Eq. (14) with n = 1/2, that is,

p-(x, tlx ) =e '" 'If (t lx —*.I)+f.(t, x+xo)].
(29)

where I„(z) are modified Bessel functions.
In Fig. 4 we plot Eq. (30) for three values of P. Note

that when P g 1 the h-function peaks traveling with the
wave &ont are also partly re8ected, although they are
not shown in the figure.

As a Anal remark we mention that a derivation of
boundary conditions for the telegrapher's equation in a
greater number of dimensions gets us into diKculties gen-
erally associated with boundaries related to transport
equations (cf., for example, the discussion in [14]).

When P g 1 we show in the Appendix that the inverse
transform of Eq. (22) reads

I (x, tlxp) = &p-(x, tl») + (I —&)p. (x tl»)
——P(1 —P)e ' I I ) c„g„(t,x+xp),

n=o

where p (x, tlxp) and p„(x, tlxp) are given by Eqs. (25)
and (29), and
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APPENDIX: DERIVATION OF EQ. (30)

The starting point of our derivation will be Eq. (24).
If we set

co = 1)

ci ——(4 —P),
c2 = (2 —p)(3 —p)+1
- = (2-P)'(I -P)"-',

and observe that

ls+ 1/(»)] —p(s)
[ +1/(»)]+ p( )

(0 «q « I), (Al)

g„(t,y) = O(ct —y) I I
I„",. +

&
2.T )

(»)

0.4.

then Eq. (24) can be written as

O(s) = » [s —p(s)] —n
1 —2ilT [s —p(s)]

(A3)

0.3

C)
OC

0.2
OC

CL

One can easily see from Eq. (A2) that

2Tls —p(s)l «1,

which allows us to expand the denominator of Eq. (A3)
in powers of g, with the result

0. 1
Q

O
(7

O(s) = ) rl" (2T [s —p(s)] )"+'
n=o

0.0 I I I I I
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)"
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FIG. 4. Three graphs of solutions to telegrapher's equation
with a single partly reQecting point at x = 0 and when t = 2T.
The initial position is at xo ——cT. Dotted line corresponds
to P = 0.2, solid line to P = 0.5, and dashed line to P = 1.
Note that for x ) cT all graphs merge because of the finite
speed of propagation c. Circles represent data from the exact
enumeration method.

The substitution of this equation into Eq. (22) yields

p(x, tlxp) = fp(t, IX —xpl) + rjfp(t x + xp)

—) (1 —~')q" 'f„(t,x+ x,-),
n=1

(A5)

where the functions f (t, x) are defined as follows [11,15]:
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&-(t *) =—~ ' (»[s —p(s)l)"
s+ I 2T

2p(s)

«xr I
—s(N)*lI (A6)

and can be expressed in terms of functions g (t, x) as [cf.
Eq. (31)]

1f.(t, ) = -[~. .(t, )+2g. (t, *)+~-"(t, )l,8

n&1, (A7)

and fo(t, x) as in Eq. (26).
The substitution of Eq. (A7) into Eq. (A5) finally

yields Eq. (30).
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