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The problem of noise-induced escape from a metastable state arises in physics, chemistry, biology,
systems engineering, and other areas. The problem is well understood when the underlying dynamics
of the system obey detailed balance. When this assumption fails many of the results of classical
transition-rate theory no longer apply, and no general method exists for computing the weak-noise
asymptotic behavior of fundamental quantities such as the mean escape time. In this paper we
present a general technique for analyzing the weak-noise limit of a wide range of stochastically
perturbed continuous-time nonlinear dynamical systems. We simplify the original problem, which
involves solving a partial differential equation, into one in which only ordinary differential equations
need be solved. This allows us to resolve some old issues for the case when detailed balance holds.
When it does not hold, we show how the formula for the asymptotic behavior of the mean escape
time depends on the dynamics of the system along the most probable escape path. We also present
results on short-time behavior and discuss the possibility of focusing along the escape path.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

The phenomenon of escape from a locally stable equi-
librium state arises in a multitude of scientific contexts
[1—3]. If a nonlinear system is subjected to continual
random perturbations ("noise"), eventually a sufficiently
large fluctuation will drive it over an intervening barrier
to a new equilibrium state. The mean amount of time re-
quired for this to occur typically grows exponentially as
the strength of the random perturbations tends to zero.

Research on this phenomenon has focused on the case
when the nonlinear dynamics of the system in the absence
of random perturbations are specified by a potential func-
tion. In a recent paper [4] we have introduced an alterna-
tive technique for computing the weak-noise asymptotic
behavior of the mean first-passage time (MFPT) to the
barrier. Our technique, unlike the bulk of earlier work, is
not restricted to the case when the zero-noise dynamics
arise from a potential. Because of this we can readily
and quantitatively treat systems without "detailed bal-
ance, " whose dynamics are determined by nongradient
drift fields, or are otherwise time irreversible. We deal
here with overdamped systems, in which inertia plays no
role. Overdamped systems without detailed balance arise
in the theory of glasses and other disordered materials [5],
chemical reactions far from equilibrium [6], stochastically
modeled computer networks [7—9], evolutionary biology
[10], and theoretical ecology [11].

In the multidimensional escape problems most &e-
quently considered in the literature, the most probable
escape path (MPEP) in the limit of weak noise passes
over a saddle point of the unperturbed dynamics. In the
case of nongradient drift fields exit through an unstable

equilibrium point can also occur [4 . Other possibilities,
such as exit through a limit cycle 12, 13), arise as well.
However, if the unperturbed dynamics are determined
by a potential, exit in the limit of weak noise must occur
over a saddle point, and the asymptotic behavior of the
MFPT is given by a classic formula, originally derived in
the context of chemical reactions by Eyring [14].

Over the years the Eyring formula has been rederived
and generalized by a variety of alternative approaches
[15—17]. To illustrate its use, consider a two-dimensional
system whose dynamics are specified by a sufFiciently
smooth drift field u = u(x, y) symmetric about the z axis
as displayed in Fig. 1. S = (2:s, 0) and H = (0, 0) denote
the stable equilibrium point and saddle point, and the
barrier lies along the y axis. The position of a point par-
ticle representing the system state, moving in this drift
field and subjected to additive white noise w(t), satisfies
the Ito stochastic difFerential equation [18]

dx;(t) = u;(x(t)) dt+ e ~ 0, dui;(t), i = x, y.

Here 0. and 0„quantify the response of the parti-
cle to the perturbations in the x and y directions;
the corresponding difFusion tensor D is diag(D, D&) =
diag(cr 2, cr„2) and will in general be anisotropic. If
the drift field u is obtained from a potential function

P = P(x, y) by the formula u; = D,O, Q then u wil—l in
general not be a gradient Beld, but the relation between
u and D will ensure detailed balance [19].

If detailed balance holds, the Eyring formula for the
e -+ 0 asymptotic behavior of the MFPT v is
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FIG. 1. A drift field u symmetric about the x axis, with
stable equilibrium point S = (xs, 0) and saddle point H =
(0, 0). A (S) and A„(S), the eigenvalues of the linearization
of u at S, are taken to be real and negative. This sketch
assumes A (S) = A„(S), but that is not assumed in the text.

Bu Bu (Bu„/By) (S)
Bx Bx (Buy/By) (H)

2
x exp D ~

&S

dx u (x, 0), (2)

where (Bu„/By)(S) is Bu„/By evaluated at the stable
point S, and (Bu&/By)(H) is Bu„/By evaluated at the
saddle point H, etc. In this example the MPEP lies along
the x axis; this fact was used implicitly in the expres-
sion for the Arrhenius (i.e., exponential) factor in (2).
If the vector Geld were asymmetric and the MPEP were
curved, the Arrhenius factor would involve the integral
J (D ~u) dx taken along the MPEP [20].

Equation (2) displays a frequently encountered feature
of weak-noise escape problems: the dependence on u of
the preexponential factor in the asymptotic behavior of
the MFPT is limited to a dependence on the derivatives
of u near the stable equilibrium and saddle points. If
detailed balance is absent this will generally not be the
case [21, 22]. However, most quantitative work on the
case when detailed balance is absent has dealt with one-
dimensional state spaces, due to the difIiculty of higher-
dimensional computations. Talkner and Hanggi [23] com-
puted the asymptotic behavior of the MFPT for a multi-
dimensional model of an optically bistable system with-
out detailed balance, in which the drift Geld did not arise
from a potential. But due to the simplicity of their model,
the prefactor did not display a complicated dependence
on the drift. Multidimensional models without detailed
balance have not been treated in full generality.

In Secs. II and III we start from scratch and com-
pute the weak-noise asymptotic behavior of the MFPT
for multidimensional systems by singular perturbation
methods, using matched asymptotic expansions. Simi-
lar approaches have been used before [12, 24], but our
treatment yields a systematic method of computing the

preexponential factor, even in cases when detailed bal-
ance is absent. As noted, we have previously applied
our techniques to the nonclassical case of exit over an
unstable equilibrium point (i.e. , an equilibrium point at
which the linearization of u has only positive eigenval-
ues) [4]. The MFPT asymptotic behavior differed con-
siderably from the classical escape formulas such as Eq.
(2); the prefactor in the asymptotic behavior of w de-
pended on e. In this paper we Hesh out the ideas in our
previous paper by applying them to drift Gelds with the
standard structure of Fig. 1. We discover that even when
the MPEP passes over a saddle point, if detailed balance
is absent the asymptotic behavior of the MFPT likewise
differs &om that given by the Eyring formula. Although
the prefactor is independent of e, it depends on the be-
havior of u along the entire MPEP. We quantify this
dependence; it can be much more complicated than a
dependence on the derivatives of u at the endpoints.

Our treatment reveals, however, that when u is sym-
metric about the MPEP as displayed in Fig. 1 the prefac-
tor can readily be computed by integrating two coupled
ordinary differential equations along the MPEP. Previous
work has left the impression that partial differential equa-
tions must be solved. In the absence of detailed balance,
the asymptotic behavior of the MFPT is determined by
a quasipotentiat [25], the solution of a nonlinear partial
differential equation. However, the derivatives of this
function along the MPEP, which turn out to determine
the prefactor, satisfy ordinary differential equations.

The prefactor is very sensitive to the behavior of the
drift Geld in a neighborhood of the MPEP. Integrating
the ordinary differential equations along the MPEP re-
quires knowledge of the extent of "differential shearing"
along the MPEP, i.e. , knowledge of the second derivatives
of u there. In many cases differential shearing can give
rise to a focusing singularity along the MPEP, in which
case more sophisticated techniques must be used.

When detailed balance is absent, both the short-term
dynamics of the system and the asymptotic behavior of
the MFPT display novel behavior in the limit of weak
noise. As noted, the system fluctuates around the locally
stable equilibrium state many times before it finally es-
capes along the MPEP. If the drift Geld u arises from a
potential, each of the unsuccessful escape attempts fol-
lows an outward "instanton" trajectory antiparallel to
some integral curve of u and then falls back along the
same integral curve (an "anti-instanton" trajectory). In
the absence of detailed balance, the time irreversibility
will generally cause the instanton trajectories not to be
antiparallel to the anti-instanton trajectories, which re-
main integral curves of the drift Geld. Hence unsuccessful
escape attempts will proceed with high probability along
closed loops containing nonzero area, in contrast to the
more familiar situation for systems with detailed balance.
We discuss this in Sec. IV; conclusions appear in Sec. V.

II. THE ANALYSIS

We now derive the weak-noise asymptotic behavior of
the MFPT for any u with the general structure of Fig.
1, but not necessarily derived from a potential. We allow
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anisotropic diffusion, so long as the principal axes of the
difFusion tensor are aligned with the MPEP. After ap-
proximating the probability density of the system along
the MPEP, we will compute w by the Kramers method
of computing the probability flux through the separatrix,
i.e., the boundary of the basin of attraction of the stable
point.

The Fokker-Planck equation for the probability density
p is p = Z*p, with

(e/2)(D B +DyB ) u (x y)B uy(x y)Bv
Bu —(x, y) —Byuy(x, y). (3)

If absorbing boundary conditions are imposed on the sep-
aratrix (in this case, the y axis), the MFPT in the weak-
noise limit may be approximated by (—Ai), where Ai
is the eigenvalue of the slowest decaying density mode
pi (i.e. , the eigenfunction of 8* whose eigenvalue has the
greatest real part). Ai is negative and converges to zero
as e m 0, so in the weak-noise limit (—Ai) displays
Arrhenius growth. We have

f (D e/2)B pi(0, y) dy

j, I p, (x, y) dydx

p, (x, y) - K(x, y) exp[ —W(x, y)/e]. (6)

Here W is the quasipotential, the "nonequilibrium poten-
tial" investigated by Graham and others [26, 27]. K sat-
isfies a transport equation, and W an eikonal (Hamilton-
Jacobi) equation: H(x, V'W) = 0, with H the Wentzell-
Freidlin Hamiltonian [25]

H(x, p) = p + "p„+u(x) p.
2 2

(7)

since the right-hand side is the normalized flux of prob-
ability through the separatrix. The leading asymptotic
behavior of Ai, as computed by this formula, will be un-
affected [12] if pi is taken to satisfy 2*pi ——0.

According to (4), to approximate Ai we must approx-
imate the normal derivative of pi along the separatrix.
But since the MPEP passes through a saddle point, the
probability density will be concentrated in a small region
[of size O(ei~2)] about this point as e -+ 0. It therefore
sufFices to approximate pq near the saddle point. To eval-
uate the denominator of (4), we must also approximate
pi near the stable point. The latter approximation is
straightforward: near (xs, 0) we take

pi(x y) exp' [D IA (S)I(x xs)
+D. 'I A. (S)Iy']Ie) (5)

where we now write A (S), A„(S), A (H), and A„(H)
for the (real) eigenvalues of the drift field linearized at
the stable and saddle points, respectively. This Gaussian
approximation permits the evaluation of the denomina-
tor of (4). It is ~ei/D D„/gA (S)A„(S) + o(e), since
contributions &om other regions are negligible.

It remains to approximate pi in the vicinity of the
saddle point. As a necessary first step, we approximate
pi along the MPEP, i.e. , the x axis. In the vicinity of the
MPEP we use a standard WKB approximation

H(xp ) = p +vp(x)p
2

is a Hamiltonian governing motion along the MPEP. For
this Hamiltonian,

x = D p +vp(x) (12)

is the expression relating velocity and momentum.
By the eikonal equation, fp(x) can be viewed as the

momentum p of an on-axis classical trajectory with
zero energy. It follows from the Hamiltonian (ll) that
there are only two solutions to the eikonal equation:
fp(x) = —2vp(x)/D [arising from an instanton trajec-
tory moving against the drift, with x = —vp(x)], and
fp = 0 [arising &om an anti-instanton trajectory follow-
ing the drift, with x = +vp(x)]. That these trajectories
are directly antiparallel to each other is a consequence
of our assumption that the drift field is symmetric about
the x-axis MPEP. Since physical exit trajectories begin
at the stable point and terminate near the saddle point,
when constructing the WKB approximation (6) we use
the instanton solution fp(x) = 2vp(x)/D rather —than
the anti-instanton solution fp = 0.

The equation for f2 is a nonlinear Riccati equation,
and may be written as

So W(x, y) can be viewed as the classical action of the
zero-energy trajectory from (xs, 0) to (x, y). If detailed
balance holds, i.e., u; = D;—B,P for some potential func-
tion P, it is easily checked that W(x, y) = 2$(x, y) + C,
where C is an arbitrary constant. If detailed balance is
absent then R will in general be more dificult to com-
pute. The zero-energy classical trajectories determined
by the Hamiltonian of (7) include the instanton trajecto-
ries; we will return to this point in Sec. IV.

Given the drift-Geld structure shown in Fig. 1, and
assuming suKcient smoothness, we can expand u near
the x axis in powers of y,

u = vp(x) + v2(x)y + O(y ),
uv —ui(x)y+ O(y ).

Using this notation, we have, e.g. , A„(S) = ui(xs) and
A (H) = Bvp/Bx(0). The function v2 measures the ex-
tent of di8'erential shearing along the MPEP.

Again assuming sufBcient smoothness, we can expand
W itself near the x axis in powers of y,

W(x, y) = fp(x) + f2(x)y'+ O(y'), (10)

where f2(x) is a measure of the transverse behavior of the
"WKB tube" of probability current along the MPEP;
clearly, f2(x) =

2 B2W/By (x, 0). Physically, f2 mea-
sures the transverse length scale on which the probability
density is non-negligible. The tube profile will be approx-
imately Gaussian, with variance proportional to e/f2(x)
at position x.

Substituting the Ansatz (6) into l:*pi ——0 and equat-
ing the coeKcients of powers of e yields a system of equa-
tions for the functions fp, f2, K in terms of vp, v2, ui.
(The system closes: no higher derivatives of u or W en-
ter. ) The first of these is the one-dimensional eikonal
equation H (x, fp (x)) = 0, where
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f2 —— 2—D& fz —2uq f2 + 2vpv2/D»

where the dot signifies derivative with respect to instan-
ton transit time. [Since the instanton trajectory satis-
fies z = —vp(z), the left-hand side equals —vpf2. ] This
equation has an immediate physical interpretation: it de-
scribes how the WKB tube spreads out or contracts un-
der the influence of its environment, as one progresses
along the MPEP. The Anal inhomogeneous term on the
right-hand side of (13) is particularly important. If the
difFerential shearing v2 is sufficiently negative in some
portion of the MPEP, this term can drive f2 to zero be-
fore the hyperbolic point is reached [4, 9]. If this occurs,
to leading order the WKB tube splays out to infinite
width. The tube width actually remains finite, but be-
cornes larger than O(e ~2); this becomes clear if higher-
order terms are taken into account.

If f2 goes negative, further integration of (13) will nor-
mally drive f2 to —oo in finite time; for a pictorial ex-
ample of this "focusing" phenomenon, which is really the
appearance of a singularity in the nonequilibrium poten-
tial, see Fig. 1 of Day [28]. Equation (13) accordingly
gives a quantitative measure of the validity of our WKB
approximation: for it to be valid, f2 must remain positive
along the entire MPEP.

It has not been recognized that the validity of the
WKB approximation along a straight MPEP can be so
easily checked. Nonlinear equations resembling (13) have
been derived by Schuss [18] and Talkner and Ryter [13,
29], but in the context of motion along the separatrix
rather than along the MPEP. Their equations are homo-
geneous rather than inhomogeneous, so they give rise to
no singularities. Ludwig and Mangel [24, 30] derived a
homogeneous equation in the context of motion along an
anti-instanton trajectory, i.e., motion following the drift.

The third and final equation is for the function K. The
transport equation for K(z, y) is a well-known partial
differential equation [12, 13], but for the computation of
the MFPT asymptotic behavior an ordinary differential
equation along the MPEP will suffice. We may approxi-
mate K within the WKB tube as a function of x alone,
in which case we find

which is separable: pq(z, y) = pz(z)pz(y). By the sym-
metry of u, p& must be even; the absorbing boundary
condition on the separatrix implies that pi must be odd.
The separation constant, and the overall normalization,
are found by requiring that this solution match the WKB
approximation (6).

For the matching to occur, the separation constant
must equal zero. The symmetry requirements mandate
that

p, (z, y) - Ce y2(-,', X) exp[ —iA„(H)iy'/D„e]. (16)

We have introduced the rescaled variable X
z/2A (H)/D e, and y2(z, ) is the odd parabolic cylin-

der function [31] of index 2. y2(z, .) can be expressed in
terms of elementary functions, but we write pi in terms
of it to facilitate comparison with our earlier work on
exit over an unstable equilibrium point [4]. There a sim-
ilar expression occurred, but the index of the parabolic
cylinder function was not fixed. Compare the treatment
of Caroli et al. [15], in whose treatment Weber func-
tions (i.e. , parabolic cylinder functions) of variable index
were used. Note that yz(2, 0) = 1 by definition, and that

y2(2, X) - Qvr/2 ex'~' as X -+ +oo.
The normalization constant C is obtained by matching

the X —+ +oo asymptotic behavior of pq(z, y) to the
WKB solution near the hyperbolic point. This gives

C = K(0) g2/~ exp —,up(z) dz
D e

(17)

where K(0) must be computed by integrating (14) along
the MPEP from S to H. Since f2 appears on the right-
hand side of (14), this in turn requires an integration of
(13) along the MPEP.

The essential point here is that the behavior of pi near
the hyperbolic point —in particular, its overall normal-
ization —can in general only be obtained by integrating
along the MPEP, and will depend on the entire history
of u and its first and second partial derivatives along it.
Substituting our approximations (5) and (16) for pq into
Eq. (4) now yields

K/K = —ug —D„f2. (14)

In the vicinity of the MPEP, the WKB approximation
(6) arising from perturbations of the on-axis instanton
trajectory z = —vp(z) is completely determined by the
ordinary differential equations (13) and (14), together
with the initial conditions f2( g) z= ]A„(S)~/D„and
K(zs) = 1. These follow &om the requirement that the
WKB approximation match the Gaussian approximation
(5) near the stable point (zs, 0).

Finally we can approximate pi near the saddle point
H = (0, 0). In the diffusion-dominated region within an
O(e ~ ) distance of the origin, pq satisfies the equation

x exp — up(z) dz
D ~ 0

(18)

which resembles the Eyring formula (2) but contains an
additional frequency factor" K(0) .

It can be shown that this formula for the small-e
asymptotic behavior of the MFPT is essentially equiv-
alent to

A+ pp(H)
7r pp(S)

Equation (19) is a formula of Talkner [13], in which A+
is the (imaginary) frequency of the unstable mode of vi-
bration at the saddle, and pp(S), pp(H) are proportional
to the stationary probability densities at the stable point
and the saddle which one would have if reflecting rather
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than absorbing boundary conditions were imposed on the
separatrix. A similar formula appears in Schuss [18].
However, Eq. (19) does not indicate how po(H) is to be
found. Our treatment makes it clear that for drift fields
with the structure of Fig. 1, the frequency factor K(0)
and the extent to which the MFPT asymptotic behav-
ior dier &om the Eyring formula are most easily com-
puted by integrating the ordinary differential equations
(13) and (14) along the MPEP.

III. EXPLICIT EXAMPLES

If the drift Geld is derived from a potential, we recover
the Eyring formula as follows. As noted, if u, = D,B;I—tI
for some potential function P then W(x, y) = 2&((z, y) up
to an additive constant. This simpliGes the calculation
of f2 the n. onlinear Riccati equation for f2 need not be
integrated explicitly, though it could be. Necessarily

18 W(x, y)
2 X

2 (9y
( ol

&'4(*,y)
y2 (,o)

Dy
' —" —— ui(x)/D—y.

y ( ,o)
(20)

Equation (20) settles a recurring issue. It is sometimes
assumed [15], in studying multidimensional escapes, that
if u varies too rapidly along the MPEP the WKB ap-
proximation may break down due to f2 going negative at
some point along the MPEP. We have just shown that
if detailed balance holds, this mill never happen, so long
as u~ satisfies the obvious transverse stability condition
of being strictly negative. In the language of chemical
physics, that f2(x) = —ui(x)/D& for every x says that
in this case, transverse fluctuations are in local thermal
equilibrium at all points x along the MPEP. If detailed
balance is lacking, f2(x) will not depend on ui{x) alone;
Eq. (13) makes this observation quantitative.

It follows immediately from (14) and (20) that K =
const; since K(zs) = 1, K(0) = 1 also. So the formula
{18) reduces to the Eyring formula when u is derived
from a potential.

To illustrate the power of our technique, we now ex-
amine an overdamped system without detailed balance
where the frequency factor K(0) cannot be computed
analytically. Suppose for simplicity that D = D& ——1,
and consider the drift Geld

ular, the asymptotic behavior of the MFPT is given by
the one-dimensional Kramers formula [3]

1 1 2—- —g~~. (S)~~.(H) .xp
~

--~y ~.
7 7r ) (24)

As o. varies between zero and one, we expect the asymp-
totic behavior of w to interpolate smoothly between the
Kramers formula (24) and the Eyring formula (2).

Our technique can be used to solve for K(0) and the
prefactor in the MFPT asymptotic behavior for any value
of o.. In general, a numerical integration of the equations
(13) and (14) for f2 and K is required. Though this
is straightforward, it is more illustrative of the value of
our technique to perturb about the values of o. at which
analytic solutions can be obtained.

We therefore consider the drift field (21) and (22) with
n = 1 + b, ~b~ && 1, and solve for the first-order (in b)
correction to K(0) in (18). We have ui ———(1 + z ),
no ——x —x, and e2 ———(1 + b)x. Assuming sufficient
smoothness, we expand f2 in powers of b,

f2 = f2 + bf2 + o(b)

= (1+x ) + b f + o(b),

since f2
—— ui/D& w—hen n = 1. Substituting this(o)

expansion into (13), we find a linear equation for the
first-order correction f2

(x)

I(') 2() +~ )I(') p2~ (26)

This inhomogeneous first-order equation is easily solved,

2X2
f~'l = ln x + (1 —x') + -'(x4 —1) .

{1 x2)2 4

Notice that when b g 0 and detailed balance is lack-
ing, to first order f2(z) will diff'er from —ui(z)/Dz at
all x along the MPEP. So if n P 1, we expect that the
transverse fluctuations are in local thermal equilibrium
nowhere along the MPEP.

Using Eq. (11), and converting the derivative with re-
spect to instanton transit time to a space derivative gives
the equation for K,

~ = x —x —0'xy )
3 2 (21)

(28)

'Lcy = —y —x2 (22)

4(z, y) = ——,'*'+ —,'*'+ —,'y'+ ,'x'y'—

It is easily checked that this has the structure shown in
Fig. 1 for any n, with xs = 1, and that for n = 1 (and
only n = 1) this u is derivable from a potential P. In this

Its solution is

f' —b[1 —x' —(2x4 —4x') ln x] j

K(x)/K(1) = exp
~l 41 —x22

(29)

From this we find, to order b, K(0) = K(1)(1 + sb) =
1+ ~b. So

Note that for all n, the eigenvalues A (S) = —2, A„(S) =
—2, A (H) = 1, and A„(H) = —1.

If o. = 0, u is independent of y and the escape time
problem becomes essentially one dimensional. In partic-

Ay S I' 2

(30)
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~A~(S)
~

' ln(1/e'~ ) + O(1). (32)

The transit time of the return path, i.e. , the correspond-
ing anti-instanton trajectory, will be the same. Similarly,
the amount of time needed for the final, successful escape
trajectory to approach H will be

A (II) ' ln(1/e'~') + O(1). (33)

In all

[~& (S)~ '+& (H) ']»(1/e' ')+O(1) (34)

librium potential cannot be computed explicitly except
along the x axis, the instanton and anti-instanton trajec-
tories are easily computed numerically. Typical trajec-
tories are shown. That the x-axis instanton trajectory
(i.e. , the MPEP) is atypical, being directly antiparallel
to the drift, is in part a consequence of the symmetry of
our model. It is also a consequence of the fact that by
(8) and (9), we are assuming Bu„/Bx = Bu /By to hold
along the MPEP. Within the WKB tube of width O(e ~2)

about the MPEP, to high accuracy u is irrotational and
detailed balance holds. However, the small deviations
from detailed balance due to differential shearing can, as
we have seen, prevent transverse fIuctuations from being
in local thermal equilibrium.

Figure 2 also illustrates the phenomenon of focusing:
several of the instanton trajectories displayed intersect
each other, though not along the MPEP. Due to such
intersections (which typically form caustics [33, 34], or
singular surfaces of codimension unity) the computation
of the nonequilibrium potential TV will in general require
a minimization over trajectories which are piecewise cla8-
sical (with zero energy) rather than classical. Some pre-
liminary investigations of this effect have been made by
Graham and Tel [35], but it is not yet clear how to handle
foci appearing along the MPEP. In our model it is easily
checked that f2 being driven through zero to —oo is the
sign of a focus along the MPEP, in fact of a cusp catas-
trophe [33].. The appropriate extensions to the WKB
approximation are now under study.

Note that though our instanton and anti-instanton tra-
jectories are incident on the stable point S and/or the
saddle point H, the portion of any trajectory within an
O(e ~2) distance of either equilibrium point is without
physical significance. On this length scale diffusion dom-
inates in the sense that the particle can diffuse from any
point to any other within O(1) time.

This sheds light on the seeming paradox of the tra-
jectories having infinite transit time. Since x = u(x)
for anti-instanton trajectories an infinite amount of time
is needed to reach S; similarly an in'. nite amount of
time is needed for the instanton trajectories to emerge
from S. The physical escape trajectories, both successful
and unsuccessful, should be viewed as emerging from the
diffusion-dominated zone rather than from S itself. So,
for example, . any unsuccessful escape trajectory directed
along the x axis will have transit time

time units will be required for the MPEP to be traversed
in full during the successful escape.

We see that there are two time scales: the exponen-
tially large MFPT and the logarithmic time scale on
which escape attempts occur. In the weak-noise limit the
latter is very brief compared to the former; the number
of unsuccessful escape attempts grows nearly exponen-
tially. The successful escape, when it finally occurs, will
on the MFPT time scale occur almost instantaneously;
this justice. es the term "instanton. "

V. SUMMARY AND CONCLUSIONS

We have seen that even in the absence of detailed bal-
ance, the weak-noise MFPT asymptotic behavior of a
nonlinear system with a point attractor can readily be
computed. There is no simple expression for the preex-
ponential factor in the asymptotic behavior, such as that
given by the Eyring formula. Rather, it follows by inte-
grating the differential equations (13) and (14) along the
MPEP. This technique clarifies the new phenomena that
can occur, such as the formation of focusing singularities
due to differential shearing along the MPEP. The effects
of these singularities on the MFPT asymptotic behavior
will be treated in the future.

Our treatment makes it clear that the time irreversibil-
ity present in systems without detailed balance manifests
itself even on the shortest time scales. It is well known
that in such systems stationary states, and the quasista-
tionary state we employ to compute the MFPT asymp-
totic behavior, are characterized by a global circulation
of probability. However, the circulation discussed in Sec.
IV differs from the conventional sort [36] in that it occurs
locally, at the level of individual unsuccessful escape at-
tempts. Recognition of this point is essential for a proper
computation of the MFPT asymptotic behavior.

In this paper we have treated the two-dimensional case
on account of its simplicity, but our treatment generalizes
to higher dimensions. Curved MPEP's, diffusion tensors
whose principal axes are not aligned with the MPEP,
and nonconstant difFusion tensors can all be treated by
appropriate extensions of the techniques presented here.
In higher-dimensional models, or models with curved
MPEP's, the Riccati equation (13) must be replaced by
a matrix Riccati equation. This extension is related to a
standard result of stochastic control theory [37]: the ef-
fects of perturbing about optimal trajectories, obtained
by solving a Hamilton-Jacobi equation, can be computed
by solving a matrix Riccati equation.

Most studies of the overdamped escape problem have
dealt with time-reversible stochastic models, with de-
tailed balance. This is a refIection of the origins of the
escape problem in statistical mechanics, where nonlinear
dynamics are usually derived from a potential. In broader
applications of stochastic modeling, which include engi-
neering as well as the biological and social sciences, there
is little reason to expect time reversibility. Our approach
should prove useful in the wider context.
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