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We report an analytic derivation of the Langevin equations of motion for the surface of a solid that
evolves under typical epitaxial-growth conditions. Our treatmen& begins with a master-equation descrip-
tion of the microscopic dynamics of a solid-on-solid model and presumes that all surface processes obey
Arrhenius-type rate laws. Our basic model takes account of atorpic deposition from a low-density vapor,
thermal desorption, and surface diffusion. Refinements to the model include the effects of hot-atom
knockout processes and asymmetric energy barriers near step edges. A regularization scheme is de-
scribed that permits a (nonrigorous) passage to the continuum jimit when the surface is rough. The re-
sulting stochastic differential equation for the surface-height profile generically leads to the behavior at
long length and time scales first described by Kardar, Parisi, and Zhang [Phys. Rev. Lett. 56, 889 (1986)]
(due to desorption). If evaporation is negligible, the asymptotic behavior is characteristic of a linear
model introduced by Edwards and Wilkinson [Proc. R. Soc. London, Ser. A 381, 17 (1982)] (due to asym-
metric step barriers and/or knockout events). If the latter are absent as well, the surface roughness is
determined by an equation independently analyzed by Villain [J. Phys. I 1, 19 (1991)]and Lai and Das
Sarma [Phys. Rev. Lett. 66, 2348 (1991)] (which includes only deposition and site-to-site hopping). The
consequences of reAection-symmetry breaking in the basic microscopic processes are discussed in con-
nection with step-barrier asymmetry and Metropolis kinetic algorithms.

PACS number(s): 05.40.+j, 61.50.Cj

I. INTRODUCTION AND BACKGROUND

Epitaxial growth is a nonequilibrium process whereby
a solid interface advances through the addition of new
material that crystallizes in a manner dictated by the lat-
tice structure of the underlying solid. In the laboratory,
this phenomenon can be made to occur in many different
ways and a complete understanding of its varied manifes-
tations is not close at hand [1]. The most comprehensive
discussions of the subject tend to be organized around the
two principal experimental growth techniques in use to-
day: molecular-beam epitaxy (MBE) [2] and
organometallic-vapor-phase epitaxy [3]. Nonetheless, the
basic features common to both are easy to identify and
early theoretical studies established cluster nucleation [4]
and surface diffusion to preexisting defects [5] as the pri-
mary processes which limit growth. The importance of
these surface kinetic processes is well established by now
[6] and their effect on, e.g., surface morphology and
growth shapes has received considerable attention using
analytic methods [7].

Computational methodologies have contributed
significantly to our understanding of epitaxial growth as
well. Monte Carlo simulations using simple lattice models
were initiated over 20 years ago [8] and continue unabat-
ed today [9]. For the case of molecular-beam epitaxy of
CxaAs(100), quantitative agreement can be obtained be-

tween calculated surface-step densities and the signal
from reflection high-energy electron diffraction studies in
the transient regime [10]. For future reference, we note
that this entire body of research presumes microscopic
surface kinetic processes that obey an Arrhenius-type
rate law —a supposition that is well established both by
extensive experimental studies [11]and by full molecular
dynamics simulations [12] for the surfaces considered.

The theoretical studies noted above were designed and
executed largely for the purposes of direct comparison to
experimental epitaxial growth. But, a totally distinct
series of Monte Carlo computer simulations of vapor
deposition have appeared over the past few years [13]
with a very different purpose in mind. Here, interest
focuses on testing a notion arising from the study of frac-
tal deposits [14] to the effect that shot noise associated
with deposition induces a so-called kinetic roughening
[15] of the growing surface. More precisely, if h(x, t)
denotes the surface height, it is postulated that the vari-
ance W(L, t) satisfies a dynamic scaling [16] hypothesis:

W(L, t)=[(h ) —(h ) ]' -L f(tiL ~),

where L is the lateral viewing scale and the scaling func-
tion f (x)-x~ for x ((1 and f (x)~const for x ))1.
The exponents a and P are supposed to be universal in
the sense that their values are expected to depend only on
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symmetry and dimensionality rather than on microscopic
details. This hypothesis, if true, is very appealing because
vapor deposition would then take its place among other
driven, nonequilibrium problems as an example of a sys-
tem that evolves to a nontrivial scale-invariant structure
under the infiuence of input noise [17].

A great stimulus to the analysis of Monte Carlo simu-
lation data from this point of view is the hope that the ex-
ponents so obtained might provide a clue to the form of
an effective equation of motion for the surface profile val-
id at long length and time scales. For example, a lattice
simulation where every deposited particle is permitted to
investigate nearest-neighbor sites and irreversibly settle
onto the site with lowest height is observed to obey (1)
with particular exponents [18]. The model is presumed
to be described by a linear, stochastic, partial differential
equation derived by Edwards and Wilkinson (EW) [19]
that satisfies (1) with the same exponents [20]. Much sub-
sequent research involving simulations of various "toy"
kinetic schemes has precisely this fiavor [21]. One class
of such schemes generates surfaces that exhibit dynamic
scaling with exponents identical to those predicted for a
nonlinear Langevin equation proposed by Kardar, Parisi,
and Zhang (KPZ) [22]. The exponents differ from those
of the EW model and thus the models do not belong to
the same universality class.

The question naturally arises: does "real" epitaxial
growth exhibit kinetic roughening? If so, to what univer-
sality class does it belong? To date, this question has
been addressed theoretically from two points of view.
The first has been described above: exponents are ex-
tracted from simulations that purport to have explicit
relevance to epitaxial growth (typically molecular-beam
epitaxy) and related to various stochastic equations of
motion [23,24]. The present authors have engaged in this
exercise as well [25]. Alternatively, the question can be
investigated from a purely phenomenological perspective.
By far the most valuable discussion of this sort can be
found in a trenchant article by Villain [26], who suggests
that the long-time and long-wavelength morphological
evolution of a growing epitaxial film is best described by
the following nonlinear stochastic partial differential
equation:

ai
at

=vV h k+(Vh) +IVIV (V' h)+oV' (Vh) +I'+rI .

(2)

Here, I' is the net deposition fiux (average deposition fiux
minus average desorption fiux) and rl(x, t) is a Gaussian
random variable with zero mean and shot-noise-type co-
variance. This formula contains the EW equation
(A, =X=o.=0) and the KPZ equation (K =cr =0) as spe-
cial cases. Independent proposals for a "conserved"
KPZ equation v=A, =O [27] and the special case o =0
[28] can be found in the literature as well. One expects
that the presence or absence of the various terms in (2)
depends on the presence or absence of various physical
processes. For example, there is broad agreement that,
during growth„ the terms proportional to v and A, are
present whenever thermal desorption is operative and

that the terms proportional to E and o can arise from
surface diffusion.

On the other hand, in the absence of desorption, it is
fair to say that the status of the coefficient v remains an
unsettled issue. Villain argues [26] that v&0 if asym-
metric energy barriers are present in the vicinity of step
edges [29]. In that case, one generates the Laplacian
term in (2) with a coefficient proportional to the fiux I'.
On the basis of simulation studies that employ
Metropolis-type kinetics, it has been claimed [24) that
similar behavior is found for v even for pure surface
diffusion without special step-edge barriers. Kang and
Evans [30] suggest that this term arises whenever there is
"lateral coupling due to realistic adsorption site
geometries and deposition dynamics. " As an example of
the latter, they cite so-called knockout processes [31] that
involve the replacement of an existing step-edge atom by
a freshly deposited atom and thus have the effect of local
downward relaxation. The resolution of this point is of
some theoretical interest because the asymptotic scaling
behavior of the surface roughness will be dominated by
this term (and A, ) if present. On the other hand, experi-
ments likely will be dominated by crossover effects [32] so
that there is a need to at least estimate the sign and rela-
tive magnitude of the various coefficients that enter (2).

The purpose of the present paper is to present an ana-
lytic derivation of equations of motion for the surface of a
single crystal that grows under typical epitaxial condi-
tions. Our treatment begins with a master-equation
description of Arrhenius-type microscopic surface kinetic
processes assigned to a square lattice solid-on-solid mod-
el. Our basic model takes account of atomic deposition,
thermal desorption, and surface (height) diffusion. We
consider as well the effects of hot-atom downward mobili-

ty (knockout) for some freshly deposited atoms and asym-
metric barriers to adatom motion in the vicinity of step
edges. Some care is taken to assess the extent to which
the forms we adopt for these processes represent an ade-
quate model of "real" epitaxial surface dynamics.

Given the transition rates between configurations of a
solid-on-solid lattice associated with the foregoing, we
make us of contemporary developments in the theory of
nonequilibrium processes to pass directly to a set of non-
linear lattice Langevin equations and their associated
noise covariances. With a few caveats, direct numerical
integration of the latter may be expected to provide an
exact alternative to Monte Carlo simulations of the
growth model as defined. We next introduce a regulari-
zation procedure that permits a (nonrigorous) passage to
the continuum limit when the surface is rough. The low-
order terms in the resulting stochastic partial differential
equation of motion have the form of Eq. (2) with explicit
expressions for the coefficients that identify their origin in
the basic microscopic processes.

Although the methodology sketched above is similar to
one employed previously by Plischke and co-workers
[33,34], our conclusions differ. This leads us to analyze
the consequences of reAection-symmetry breaking in sur-
face kinetic processes and to conclude that Metropolis-
type kinetic schemes can exhibit features not rejective of
true surface dynamics. The discussion of our basic model
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simplifies and slightly modifies brief accounts of this
work presented elsewhere [35]. It is included here for the
sake of completeness and clarity. The hot-atom and
asymmetric step-edge barrier computations are entirely
new. Taken together, our results largely confirm Villain's
phenomenological analysis and are in accord with all ex-
isting Monte Carlo simulations of which we are aware.

II. THE BASIC MODEL: DEPOSITION,
DESORPTION, AND SURFACE DIFFUSION

In this paper we adopt a simple solid-on-solid (SOS)
model [36] where a column of height h is associated with
the jth site of a one-dimensional substrate with lattice
constant a. We have shown elsewhere [35] that the gen-
eralization to the isotropic two-dimensional case is
straightforward and introduces no new physics. On the
other hand, the model embodies the assumptions that (i)
the growing film has simple cubic symmetry and (ii) va-
cancies and overhangs are forbidden. These premises are
nontrivial and subject to criticism [24,30]. While in prin-
ciple our methods can be applied to the more general
case, the algebraic complications that arise are daunting.
We proceed with these caveats duly noted.

Every configuration of the SOS surface H is specified
completely by the collection of column height variables:
H= [h „hz, . . . ]. The joint probability that the surface
has configuration H at time t is denoted P(H;t). The
evolution of this quantity from a particular initial
configuration is governed by a birth-death-type master
equation

=g W(H', H)P (H', t) —g W(H, H' )P (H; t),
H' H'

(3)

W, (H, H')= —g 5(h/, h&+a)+5(h', h, )
~ =l

k jWk
(4)

where the sum over configurations H' is to be interpreted
as the joint summation over the heights on every site of
the lattice. The quantity W(H, H') denotes the transition
rate from a configuration H to a configuration H'. The
rules that determine these rates reAect the choices one
makes for elementary microscopic processes.

For the case of deposition, we suppose that particles
("atoms") are delivered randomly to the surface from a
ballistic beam parallel to the SOS columns. Effects associ-
ated with diffusive transport in the gas phase [37] and
surface self-shadowing [38] are ignored. Moreover,
atoms that arrive at the surface are imagined to accom-
modate immediately and to stick to the top of the column
they impinge upon. A refinement that models some
effects associated with the heat of condensation will be
considered in Sec. III. For the simple case considered
here, deposition changes the configuration of the lattice
by adding atoms randomly at an average rate of ~
where ~ is the layer completion time. Thus the transition
rate is nonvanishing only between configurations H and
H' for which h ' = h. +a for any site j, with the height of
all other lattice sites remaining the same:

Arrhenius-type rate expressions are chosen to model
the elementary atomistic processes of thermal desorption
and surface diffusion. We pause to justify this choice be-
cause it appears to be atypical in the statistical physics
literature of growth phenomena. First, as noted earlier,
there is overwhelming experimental [11] and theoretical
[12] evidence in the surface science literature that these
processes obey barrier-crossing dynamics of this sort. Al-
though typically merely a mean-field approximation to
the true microscopics, various corrections to the basic
formulation are well understood [39] and do not alter the
essential point that the rates are determined by a so-
called transition state energy barrier that is not necessari-
ly associated with either the initial state or the final state.
Second, it is known [40] that asymptotic surface proper-
ties can be affected if, e.g. , a Metropolis-type rule [41] is
substituted. We demonstrate this explicitly for the
present problem in Sec. VI.

Consistent with the foregoing, we model the rate for an
atom to desorb from site j by

10 =k0 exp[ —P(Us+n, EN)]= —,exp( Pn, EN)—,7' (5)

where P= 1/k&T and the prefactor ka is an attempt fre-
quency that may be taken to be the vibrational frequency
of an adatom. The desorption barrier is a configuration-
dependent quantity parametrized by a contribution U&

from the substrate and a contribution E& from each of
the n lateral nearest neighbors. Note that the choice (5)
manifestly satisfies detailed balance if (as is appropriate)
we identify U&+nE& as the negative of the binding ener-

gy of a surface atom with n lateral nearest neighbors.
Since a desorption event reduces the height of a column
by one lattice unit, the transition rate for this process be-
tween configurations H and H' can be written

W „(H,H') =y &„&(h',h„—~)/ &(h,', h, )
k jWk

(6)

To complete our basic model, we treat surface diffusion
as a process whereby an atom hops away from site j at a
rate

(7)

The substrate contribution to the barrier E& is
guaranteed to be smaller in magnitude than Uz and the
prefactors kp and kp are not in general equal. One
checks that detailed balance is satisfied as before. To
maintain the SOS constraint, we further stipulate that an
atom hopping at the rate (7) lands (with equal probabili-
ty) onto the top of a nearest-neighbor column. Our model
thus exhibits height diffusion rather than true surface
diffusion [24]. On the other hand, extensive Monte Carlo
simulations performed by us reveal that the fraction of
particles that make multiple-height jumps is extremely
small for the physically relevant case of a two-
dimensional substrate at typical experimental growth
rates and temperatures. We therefore accept the possible
error introduced in the interest of making analytic pro-
gress.

=1+j k 0 xp [ @Es + n JEN ) ] —

exp�(

Pn J.E- .
Tp
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The above makes clear that a surface diffusion event reduces the height of a given column by one lattice unit and in-
creases the height of a nearest-neighbor column by one lattice unit. The transition rate between such configurations
thus takes the form

Wdis(H, H')= —,'g [Ak5(hk, hk —a)5(hk+, , hk+, +a)+A k+5(h„', h k+ a)5(h/ +, , h k+,
—a)] Q 5(h', h )

k jWk, k+1
(8)

The factor of —,
' in (8) arises from the assumption of equal

likelihood of hopping to the left or to the right (isotropic
hopping). At this point, one could substitute the transi-
tion rates in (4), (6), and (8) into (3) to arrive at a com-
plete master-equation description of the assumed dynami-
cal model. We have done this elsewhere [35] and it is a
useful step if one wishes to compute deterministic equa-
tions of motion for quantities such as the average height
(h&(t)) and the correlation function (hk(t)h, (t) )
[33,34]. Here, however, we choose to proceed directly to
a Langevin equation for each stochastic column height
variable and the associated noise correlations. The tradi-
tional route to this goal involves the passage from a trun-
cation of the Kramers-Moyal form of the master equation
to a Fokker-Planck equation in appropriately scaled vari-
ables and finally to a linear Langevin equation [42]. In-
stead, we make use of a limit theorem [43] (not discussed
in Ref. [42]) that is valid for nonlinear problems such as
ours.

Our application follows the clear exposition of the
matter by Fox and Keizer [44] who show that one re-
quires only the first and second moments of the transition
rates:

E,' '=a, +—5~1+Ds[5, 6 A, ,
—(A., +k )6 5, ] .7' 7.

In these formulas, 5, is the Kronecker delta, Ds is the
diffusion constant

and

aDs=
270

(16)

iL, =exp( Pn;E~) .—

The discrete second derivative operator defined by

(18)

acts on the first index of 5;~ in (15). Note that the covari-
ances include contributions from desorption and surface
diffusion in addition to the deposition-induced shot noise.
The stochastic equations defined by (14) and (15) consti-
tute one of the central results of this paper. Their physi-
cal meaning and consequences for the problem of kinetic
roughening will be discussed in Sec. V.

H'

K,~j~ =g(h h )(h~ hj)8 (H H )
H'

Then, provided the system size is large and the intrinsic
fluctuations are not too large (as might occur if the deter-
ministic dynamics were chaotic), the equations we seek
are

where the Gaussian random variables g; have zero mean

(12)

and covariances

(13)

K. =a D AA, ——,k+-(]) ] 2 a a
I S 7-' (14)

It is straightforward to calculate the required moments of
the transition rates for deposition (4), desorption (6), and
surface diffusion (8). The results can be written as

III. HOT-ATOM EFFECTS

We consider in this and the next sections two
refinements to our basic model. The first amounts to a
generalization of the simple deposition dynamics assumed
in the basic model. According to (4), every atom sticks to
the top of whatever column it impinges upon. As noted in
Sec. I, there is theoretical evidence [31] that the heat of
condensation can induce atom exchange mechanisms if a
freshly deposited atom lands upon a step-edge site. In
particular, one observes "knockout" processes [30] where
such a "hot" atom both laterally displaces and occupies
the original site of the atom it landed upon. One gains
confidence in the likelihood of such a scenario from the
experimental observation of very similar exchange pro-
cesses at step edges that involve only thermally diffusing
species [45].

For deposition onto SOS step-edge sites, the hot-atom
knockout process is indistinguishable from a downward
bias deposition process where the arriving atom "falls
over" the edge and attaches to the top of a nearest-
neighbor column. The local rules needed to incorporate
this effect are similar to those used in a Monte Carlo
simulation noted earlier [18] except that the final deposi-
tion site is chosen randomly as one of the nearest-
neighbor columns when both are lower than the original
deposition site. Thus, when knockout is present, the
transition rate for deposition (4) is replaced by



856 VVEDENSKY, ZANGWILL, LUSE, AND WILBY

W(H, H')=r 'g w„"'5(h', h„+a)+5(h', h )+w] ]5(h„', ,h„,+a) + 5(h', h )

where

+wk ]5(hk, ,hk, +a) + 5(h', h )
jWk+1

(19)

=6("/, "/, )6(h/, —
h/, ),

k '=6(hk, —hk)[ —6(hk, —hk)]+ —,[1 B(h—k, hk)]—[1 6(h—k, hk—)],
(20)

w/', "=6(hk ]
—

h/, )[ 6(hk—+] h/, ) ]—+ —,[1—6(h/, +]—h/, )][1—6(h/, ]
—hk )] . (22)

(23)

The factors (20)—(22) merely test for the relative heights
of nearest-neighbor sites so that the identity

w"'+ w' '+ w' '= 1Wk Wk Wk (24)

guarantees that the average deposition rate per site
remains equal to ~ . From these, one immediately writes
down the corresponding transition moments

~( ) — ( )+ ( ) + ( )
i L i i+1 Wi —1 J (25)

(26)

needed to construct the equation of motion including
knockout events. If desired, one can specify that such
events occur only with a probability p.

IV. ASYMMETRIC STEP-EDGE BARRIERS

The second generalization of our basic model to be
considered pertains to the well-known experimental fact
[29] that the energy barrier for a difFusing adatom to ap-
proach a step edge from above generally differs from the
energy barrier to approach the step edge from below.
The barrier asymmetry can be unobservably small [46],

I

In these formulas, the unit step function 6(x) is defined by but when appreciable it engenders a surprising variety of
theoretical consequences [47]. In the context of surface
roughening, the effect has been examined both phenome-
nologically [26] and with Monte Carlo computer simula-
tions [48].

To fix ideas, consider a recent field-ion microscope
study of iridium atom diffusion on the Ir(111) surface by
Wang and Ehrlich [29]. The adiabatic potential energy
surface in the vicinity of a step evidently is quite complex
for this surface of this material. Here we focus only on
the fact that, relative to the diffusion barrier on a Aat ter-
race, an adatom experiences an enhanced (reduced) bar-
rier to join the step edge from a nearest-neighbor site
above (below) the step (Fig. 1). We denote the magnitude
of the change in the transition state barrier to step attach-
ment from the upper (lower) terrace as Ez (Ez ) so that
EU )0 and E~ (0 on Ir(111).

Care must be taken when these effects are incorporated
into a transition rate to replace (8) in order to guarantee
that detailed balance is respected. For example, we re-
quire the change EU to be present both for an adatom
about to jump down and join a step edge from the upper
terrace and for a detaching step-edge atom about to jump
up onto the upper terrace. Similarly, we require the
change EI to be present both for an atom about to join
the step edge from the lower terrace and for a step-edge
atom about to detach onto the lower terrace. The final re-
sult is a modification of (8) to

WQ'ff(H, H')= —,'g. [Akexp( W'k+)5(hk, hk ——a)5(h„'+, , hk+, +a)
k

+Ak+, exp( —pA'k+, )5(hk, hk+a)5(hk+], hk+, —a)] g 5(h,', h, )
jXk, k +1

(27)

where and

A'k =EU [6(hk+, —hk ) +6(hk —hk+, —2a) ]

+EL [6(hk+2 —hk+] —a)«hk —hk - —a)

+6(hk, —hk)6(hk ]
—hk+P)]

X5(hk, hk+, +a)

6k =Et/[6(hk ]
—hk)+6(hk hk ]

—2a)]—
+EL [6(hk 2

—hk, a)6(hk hk+,——a)—
+6(hk+, —h„)6(h„,—hk ~)]

X5(hk, hk ]+a) . (29)
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EU

EL
Es

EN

FIG. 1. Model potential energy surface experienced by an
added "test" atom as it moves across the illustrated SOS step
geometry.

—(b, 5;.)b, [A; exp( —P8,+)]
—(b, +6J )b, +[A; exp( —P8, )], (31)

The Langevin equations that reAect the effects of asym-
metric step-edge barriers follow immediately from the
transition moments of (27):

a 'E';"'=
—,'b, +[A; exp( —PA', )] 26 [A; exp( —P—8,+)],

(30)

2a ~K '= —[A; exp( —PA,+)+A; exp( —Pb,. )]6 5;~
n =6(h +&

—
h&. )+6(hj ~

—hj) . (34)

Then, since the exponential of a step function is also a
step function but with a different step jump, viz. ,

the continuum limit is straightforward to obtain. It turns
out that the macroscopic variable A, (x) that emerges can
be identified with the chemical activity [50] of the surface.
We have explored some of the consequences of this fact
elsewhere [49,51].

In the present paper, we adopt a less exact procedure
that has the virtue of leading directly to continuum sto-
chastic equations of motion that can be analyzed by dy-
namic renormalization group methods [52]. The basic
idea [33,34] is to regularize the lattice Langevin equation
by replacing the various nonanalytic quantities that enter
with analytic quantities and then to retain only the
leading-order terms. Let us note immediately that by far
the most crucial step in this procedure is the presumption
that the discrete terrace and step morphology of the sur-
face can be replaced by an analytic function h (x). This
can only be done with confidence if the surface is either
thermally rough or kinetically rough. Since we confine
ourselves here to surfaces far from equilibrium, the regu-
larization we employ can be valid (if at all) only for an ep-
itaxial interface in motion. In that case, asymptotic
roughness is guaranteed [53]. Alternatively [26], one can
assume that the surface is rough under these conditions
and then check that the theory is self-consistent.

Our regularization procedure [35] proceeds in several
steps. Note first that the number of lateral nearest neigh-
bors of a SOS surface atom at site j can be written

where the discrete left and right derivatives of an indexed
quantity f; are defined by

exp [ PE&6(x ) ]—= 1 —y 6(x), (35)

(32)
with

y = 1 —exp( PE~ ),— (36)
The reader can verify that (30) and (31) reduce to the
diffusion contributions to (14) and (15) whenever 8;+ and

vanish, e.g., for an isolated adatom on a fiat terrace.
the lattice activity (17) that enters the transition moments
for our basic model can be written

V. CONTINUUM EQUATIONS OF MOTION
A, =[1—y6(b, +h, )][1—y6( —b, h;)] . (37)

2

A,;= g c;(n) exp( nPE&), —
n=0

(33)

where c;(n) denotes the probability that site i is surround-
ed by n lateral nearest neighbors. The transition mo-
ments of the basic model are linear in these variables so

Numerical integration of the lattice Langevin equa-
tions (11)—(13) with the various transition moments com-
puted above provides a formally exact alternative to
direct Monte Carlo simulations that employ the corre-
sponding kinetic rules. Unfortunately, the computational
labor is still considerable due to the complexity of the
noise covariances. For this reason, it is appropriate to in-
quire whether the results we have obtained lend them-
selves to a passage to the continuum limit from which
macroscopic physical consequences might be extracted.
We have discussed one way to proceed in a previous pub-
lication [49]. There it is shown that the quantity A, ;
defined in (7) can be rewritten

6(x)=1+ g A„x" .
Ic =1

(38)

Inserting (38) into (37) of course generates an infinite
series. Some of the terms can be rearranged exactly
since, e.g. ,

(39)

We then fit an interpolating function 6(x, t) through the
points h; so that

(+a)" 8"f(x,t)
Bx" x =ia

(40)

The final step is a coarse-grained spatial average that re-
places f(x, t) by a function h (x, t) that is smooth at the

Next, we approximate the step function by an analytic
function, e.g. , a shifted hyperbolic tangent, which is ex-
panded in a Taylor series:
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8 Bh Bh

Bx Bx

+F+g .

The coefTicients are given by

(41)

av=, y(l —y)A, ,7-'

macroscopic scale.
If the foregoing can be justified, the continuum sto-

chastic equation that corresponds to our basic Arrhenius
model is obtained by retaining the first few terms in the
expansion when (14) is inserted into (11):

Bh 8 h Bh=v
Qx 2

contributions to K and cr appear as we11. Our naive regu-
larization procedure applied to the case of asymmetric
step barriers generates a Laplacian in the equation of
motion as well. But in this case, the corresponding
coefficient v„, is easily seen to take the form of an
infinite series that explicitly involves every one of the
quantities Ak in (38). Accordingly, a more sophisticated
argument is required to extract the dependence of v„, on
the microscopic parameters EU and El .

For this purpose, we focus on the role of left righ-t

asymmetry in the microscopic transition rates and sup-
pose that surface diffusion alone is operative. It is evi-
dent from (8) that the transition rate for any description
of site-to-site hopping can be written generically as

a
A, =y, [2(1—y)A~+yAi], W(H, H') =g Wk,

k

(45)

a'
K = — a Ds+, y(1 —y)A, ,12 7'

cr = aDsy[2(1——y) A2+y A, ],

( g(x, t)rl(x ', t') ) =a
1 1—+ —, 5(x —x')

L

7- 7'

a a 2F=———,(1—y)
7- 7-'

and to lowest order, the noise covariance matrix is

(42)
where Wk is the transition rate associated with each site.
The latter of course depends on the heights in a neighbor-
hood of the site k. Now decompose each site rate into a
rate Wk+ for a jump to the right and a rate Wk for a
jump to the left so that Wk=Wk++ Wk . For reasons
that will become clear below, we note that Wk and Wk+

are related by Wk =A Wk+ where % is a reflection opera-
tor that transforms h.+„ into h +„. Thus, neglecting the
deposition and noise terms, the equation of motion takes
the form

—2DsV 5(x —x') 5(t t') . —
Bh + +=Wk-i —Wk + Wk+i —Wk
Bt

(46)

(43)

Our result (41) is seen to be identical to (2). Moreover,
(42) demonstrates that v and A, arise exclusively from
desorption while surface diffusion contributes only to K
and cr. Given the presence of shot noise in (43), we thus
confirm previous calculations [33] and phenomenological
arguments [26,27] to the effect that the generic scaling
behavior of the surface roughness during epitaxial growth
is determined by the KPZ equation (due to desorption)
but that a "conserved" KPZ equation is relevant if eva-
poration can be neglected. To be consistent with the phe-
nornenology, the regularization scheme must have
A, )0. Equally importantly, the discussion above (34)
makes clear that every Ak must depend implicitly on F
since it is the shot noise in (43) that guarantees roughness
away from equilibrium. Indeed, the fact that both non-
linear terms rigorously are absent in equilibrium [51] im-
plies a relationship between A, and 32 when F=0.

The contribution of hot-atom knockout processes to
the continuum equation of motion is obtained similarly
from (20)—(22) and (25). For present purposes, the im-
portant result is that these downward bias events gen-
erate a Laplacian in the equation of motion with the
coefficient

To pass to the continuum limit, the finite differences in
(46) are expanded in terms of analytic functions precisely
as was done in (40). The final spatial coarse-grained aver-
age quantities 8'—we require are expressed most simply
as

W~[h(x, t)]=—g Wk—,
Lk~

(47)

where the sum extends over the L/a sites collectively
denoted by the macroscopic variable x. The result is

=a V[ W [h (x, t)]—W+[h (x, t)]]+ . . . (48)
at

For any reasonable microscopic dynamics, the transition
rate W+ [h] can be expected to have the form

W+[h]= A Vh+8(Vh ) + . +CV h+
+DVhV' h+. . .

W [h]= —AVh+B(Vh) + +CV2h+

since there can be no dependence on the absolute height
of the surface. W [h] is obtained upon application of
the reAection operator:

a
vd, =

'r
(44) —DVh V h+ (50)

but do not contribute a KPZ nonlinearity. Inessential To demonstrate that a Laplacian is present in the equa-
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BW+[h]
Bh' %0,

A'=Q

tion of motion, it is sufficient to show that

(51)

BW [Ii]
Bh'

W [h'=a] —W [h'= —a]= lim
h'=Q a —( —a)

(52)

where h'= Th.
Let us now apply the foregoing to the case of asym-

metric barriers to adatom attachment to steps. For sim-
plicity, consider first the case where EU&0 and EL =0.
The derivative in (51) is computed as follows. First calcu-
late W+[h] for a segment of surface of length L with
N+1 up steps and n down steps, for which the slope
h'=a/E, =a. Then do the same for a segment of length
I. with X up steps and %+1 down steps, for which
h

' = —a /L = —a. By definition,

The two surfaces defined above differ only in that one has
an excess up step and the other has an excess down step.
Therefore, for purposes of calculating the difference in
(52), we may focus attention on a single step. Let Hi+
and H2 denote the configurations depicted in Figs. 2(a)
(an up step) and 2(b) (an up step plus an adatom), respec-
tively, and let H

&
and H2 be the left-right rejected ver-

sions of H&+ and H2+. Only these configurations need be
considered since they alone involve the extra step barrier
for a hop to the right (cf. Sec. IV). Then

W+[h'=a] —W+[h'= —a]= IP+(H,+ ) exp[ P(Ez+E—U)]+P+(H~+ )
7Q

P(H—, ) exp( PE&)—P—(Hz ) exp( PEU)}, — (53)

where P+ (P ) is the probability that the up (down) step
has the given configuration. The factor a comes from
taking the spatial coarse-grain average. Now use the fact
that

vanishes identically. But under more general conditions
these factors will not be zero. In particular, a deposition
fiux may be expected to enhance P(Hz) and P(H3) rela-
tive to P(H, ). In agreement with phenomenological ar-

P+(H,+ )=P (H, )=P(H, ),
P+(H+ )=P (H )=P(H ) .

Taking the limit a —+0, one obtains

(54)

BW+[h] 1
[P(Hi ) exp( I3E~)—P(H2)]—

I '=o 2~o

X [exp( PE&)—1] . — (55)

A similar argument for the case EI %0 and E~ =0 yields

BW [h] 1 [P(H, ) exp( PE&)—P(H3—)]Bh' P =Q 2~Q

X [1—exp( PEL )], —(56)

where H3 is the configuration depicted in Fig. 2(c).
Therefore, combining (48)—(51) with (55) and (56), the

coefficient of the Laplacian in the equation of motion for
the case of asymmetric step barriers can be written (b)

a
v„,~ = [P (H, ) exp( PE& ) P(H2 )]- —

To

X [1—exp( —PEU)]

a+ [P(H, ) exp( 13E~)—P(H3))—
'TQ

X [exp( PEI ) —1] . — (57) (c)
As it should, this formula reproduces the result v t p

0
obtained earlier for our basic model (EU =EL =0).
Moreover, even in the presence of asymmetric step bar-
riers, v„,„=0 at equili bri urn since detailed balance
guarantees that the first bracketed factor in each term

FICx. 2. Configurations used to demonstrate the effect of
reQection-symmetry breaking for asymmetric step barriers: (a)
H,+: single step; (b) H2+: step plus adatom that can join the
step from the upper terrace; (c) H3+.. step plus adatom that can
join the step from the lower terrace.
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guments [26,54], (57) then predicts that positive values of
EU (El ) roughen (smooth) the surface during growth
while negative values of E~ (EI ) smooth (roughen) the
surface during growth.

We conclude finally that knockout processes and asym-
metric barriers to step approach both induce roughness
characteristic of the linear EW model for a growing epi-
taxial interface if desorption is negligible. Hot-atom
effects always lead to smoothing (v) 0) while the sign of
the Laplacian term depends on the precise nature of the
barriers and Aux conditions for the case of asymmetric
difFusion in the vicinity of steps.

VI. DISCUSSION

The results of the preceding section illustrate that the
stochastic equation of motion (2) can be derived analyti-
cally when a simple regularization procedure is applied to
lattice Langevin equations derived from Arrhenius sur-
face kinetics. Already at the level of our basic model (Sec.
II), low-order nonlinearities are present during growth
that are rigorously absent in the corresponding stochastic
equation of motion that governs such evolution very near
and at equilibrium [51]. In particular, A,WO if desorption
is present and crXO if surface diffusion is present. This
result is consistent with two known results. First, mass
conservation guarantees that X=O if desorption is absent
because this term manifestly cannot be written as the gra-
dient of a surface current [21]. Second, Racz et al. [34]
have shown that the coefficient K =0 for surface diffusion
rates that are invariant under the combined transforma-
tion [h;]~[—h, [ and [h, + I~[h, +, J. This resultis
relevant to typical Metropolis-type kinetic schemes where
the transition rate depends on the difference in a potential
energy functional before and after a diffusion event. But
it does not contradict the present results because the stat-
ed symmetry is not respected by the Arrhenius kinetics
adopted here.

On the other hand, the discussion of Sec. V makes
clear that the behavior of surface diffusion rates under
reAection symmetry can have a profound effect on the
presence or absence of a Laplacian in the equation of
motion. If this symmetry is respected (as in our basic
model), the Laplacian is rigorously absent. But it turns
out that such symmetry breaking is only a necessary con-
dition for the presence of a term in (2) proportional to
V h. It is not sufhcient because the asymmetry may arise
from terms of higher order than Vh in (55) and (56). As it
happens, the Laplacian does occur for Arrhenius-type
asymmetric kinetics considered here. But the foregoing
immediately explains why Monte Carlo simulations of
"surface diffusion" that employ a Metropolis-type kinetic
rule often but nat always exhibit behavior consistent with
the EW model when the surface is out of equilibrium
[24,55]. In all such algorithms, the transition probability
depends on the total energy of the system before and after
the diffusion event. Inevitably, there will be
configurations that generate the asymmetric hopping
rates discussed here. But it does not appear straightfor-
ward to isolate the symmetry breaking term in the gen-
eral case as we have done here. Indeed, one easily checks

that Metropolis kinetic schemes [55] that make use of
SOS Hamiltonians of the form

(5g)

produce no asymmetry at all for the physically relevant
configurations that involve the Arrhenius barriers EU
and El discussed in Sec. III. For this reason, we do not
accept the notion that such algorithms "capture the
essential physics of surface diffusion during MBE" simply
because the symmetry breaking is associated with step
configurations. Quite apart from the lack of any experi-
mental evidence that Metropolis-type kinetics occurs in
nature, there is the undeniable fact that the asymmetry
and its sign arise entirely from a rather arbitrary choice
of a model Hamiltonian.

VII. SUMMARY AND CONCLUSION

In this paper, we have derived equations of motion for
the time evolution of a solid surface under typical epitaxi-
al growth conditions. Our basic model was defined to in-
clude atomic deposition and Arrhenius-type desorption
and surface (height) diffusion as the fundamental micro-
scopic processes operative for a solid-on-solid crystal.
Refinements to the model included hot-atom knockout
processes that induce downward bias for some freshly de-
posited atoms and asymmetric diffusion barriers for the
approach of an adatom to a step edge. Standard methods
from the theory of stochastic processes then were used to
convert a master-equation description of the dynamics
into a set of Langevin equations (one for each column
height variable) and their associated noise covariances.
Solution of these equations constitutes a formal alterna-
tive to Monte Carlo simulation of the dynamical process-
es.

A nonrigorous regularization procedure was employed
to transform the set of lattice Langevin equations to a
single nonlinear, stochastic, partial difFerential equation
of motion for the surface profile. In agreement with pre-
vious phenomenological treatments, the final equation
obtained for our basic model included terms of the KPZ
variety that arise from thermal desorption and additional
terms of the conserved KPZ variety that arise from sur-
face diffusion. The refinements to the basic model we ex-
amined for deposition and surface difFusion were found to
generate a Laplacian but no KPZ nonlinearity in the
equation of motion. The origin of this behavior was
traced to a breaking of reAection symmetry in the basic
transition rates for diffusion. These results provide a con-
sistent interpretation to all Monte Carlo simulation re-
sults of which we are aware.

What relevance do the results summarized above have
to experimental studies of surface roughness? In the
literature, one finds exponents quoted for different sys-
tems that are consistent with the predictions of the KPZ
model [56], the conserved KPZ model [57], the EW mod-
el [58], and unstable growth [59]. To rationalize this
state of affairs, we must recognize that all the processes
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discussed in Secs. II—IV are present in any real system to
some degree. Thus, strictly speaking, only unstable EW
(v(0) and KPZ behavior (v) 0) can be present asymp-
totically. But for some systems, e.g., Si(100) and
GaAs(100) grown by molecular-beam epitaxy, desorption
is almost negligible and the coefficient A, [cf. (42)] will be
very small [60]. In that case, experiments performed over
limited time scales are more likely to be dominated by
crossover effects [32] and thus to exhibit scaling behavior
consistent with the stable EW or conserved KPZ models.
In conjunction with surface science estimates of the ele-
mentary microscopic parameters, the estimates of the
coefficients of the various terms in (2) provided in this pa-
per may permit one to judge the expected behavior for
any particular material system and deposition conditions.
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