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Further aspects of an interpolative quantum statistics are presented. It is shown, by imposing a posi-
tivity condition on the distribution function, that this statistics subsumes Gentile's intermediate statistics
and is far richer than Gentile s statistics, apart from being a genuine quantum statistics.
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I. INTRODUCTION

In a recent paper [1] I have proposed a generalized in-
terpolative quantum statistics which interpolates non-
trivially between the conventional Bose and Fermi statis-
tical distributions through a family of distributions, one
of which approximates the infinite quantum Boltzmann
statistics discovered by Greenberg [2] as a consequence of
the "q-mutator" algebra aka, —qa, ak =5« for the case of
q =0, supplemented by the vacuum condition ak 0) =0.

In an early work Gentile [3] proposed an intermediate
statistics which interpolates between the Fermi and Bose
distributions. This intermediate statistics is obtained by
postulating a generalized Pauli principle which restricts
the occupation in a quantum state by only up to k parti-
cles. Fermi statistics is recovered in this scheme as k ~1
and Bose statistics is recovered as k —+ ~. However, the
imposition of the restriction of only up to k particles in a
quantum state is not invariant under a change of basis
and hence cannot result in a genuine quantum statistics.
A restriction which is genuinely quantum is that only up
to k particles can occupy a symmetric state. Though this
was known for a long time [4], no one knew how to im-
plement this restriction in a counting scheme. Further,
Gentile s intermediate statistics leads to very large viola-
tions of Fermi and Bose statistics and cannot account for
very small violations which physical processes may reveal
in on-going experiments [5], apart from the possible can-
didate process in neutral kaon decay which possibly is
due to a very small violation of Bose statistics [6].

In this paper I show that the interpolative statistics [1]
subsumes Gentile s statistics and is far richer in its con-
tent than its predecessor. It can thus not only accommo-
date very small violations of the conventional quantum
statistics, but is also a genuine quantum statistics in that
the counting is done in the Bose fashion without impos-
ing any restriction on the occupation in a quantum state
while the quantum state itself undergoes a deformation in
phase space in a particular manner. And all this is based
on very general principles of finiteness of distribution
functions and their positive definiteness.

II. GENERALIZED INTERPOLATIVE QUANTUM
STATISTICS

[Z +ri(N))] ) 1
NJ

(2)

Since t)ri(N )It)N =g(q) by definition, we may choose
the solution of this equation as ri(NJ. )=g(q)N~, setting
the constant of integration to zero. The positivity condi-
tion (2) reads

[Z /N +g(q)] ~ 1 .

Therefore, the maximum value of NJ for a given g(q) is
from (3),

(a) I assumed exotic particles other than bosons and
fermions.

(b) I endowed the exotic particles with certain phase-
space deformation properties as rejected in the number
of phase-space cells or energy levels in any given energy
interval.

(c) I adopted the Bose counting strategy to count the
probability weights leading to the distribution functions.

The simplest and most economical scheme to imple-
ment the above assumptions leads to the following distri-
bution as shown in Ref. [1]:

X~'"y(X —1)(~'"-')=e +"
J J

The distribution (1) is the master distribution which is the
simplest and the most general form for an interpolative
statistics, provided it is finite and positive definite.

Finiteness of the distribution functions constrains the
exponents in (1) to be such that g(q) is in the domain
[0,1], otherwise we will encounter the singularity at
x =1, which is not permissible for real and finite u and
P, as already mentioned in Ref. [1]. Positivity of the dis-
tribution demands that the distribution be real and posi-
tive definite for all the allowed values of the exponents in
(1) which constrains X ~ 1, otherwise the left-hand side
of (1) can assume negative and even imaginary values for
certain values of g(q) in the domain of its validity.

As was shown in [1],the boundary-value realizations of
the master distribution (1) are the Fermi and Bose distri-
butions, respectively, for the values g(q) =0 and g(1)= 1.

The condition that the master distribution (1) is finite
and positive definite for g(q)K[0, 1] and X~ 1 implies
that

I had proposed this statistics earlier [7] by assuming
the following.

J
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(4)
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For the Fermi case of g(q) =0, Eq. (4) implies that
(N ),„=Z, which means that only up to one particle
can occupy any quantum state or cell as (4) is true for any
arbitrary N and Z, , and is therefore true for Z, = 1, that
is, for a single cell or quantum state.

For the Bose case of g( q ) = 1, Eq. (4) leads to
(N ),„=~, that is, there is no restriction on the occupa-
tion of a quantum state or cell. For the intermediate case
of g(q) =

—,', Eq. (4) leads to (N, ),„=. 2Z, which implies
that only up to two particles can occupy any quantum
state or cell.

In general for the intermediate case of g(q)
=(k —1)/k, where k is an integer other than zero, Eq.
(4) leads to (Nj ),„=kZ. , which implies that only up to
k particles can occupy any quantum state or cell. This is
precisely the generalized Pauli restriction of Gentile [3]
and the present statistics subsumes Gentile's statistics in
a natural fashion. But it is far richer than the Gentile
statistics as we shall presently see. Moreover, this statis-
tics in a way implements Gentile s generalized Pauli re-
striction for only a symmetric state, in that the counting
is done as in the Bose case but with a modified number of
cells. When g(q)= —,', Eq. (4) reads (N ),„=—', Z. , which

implies that only up to —,
' particles can occupy a quantum

state or a cell. This can only have a probabilistic mean-
ing in the sense that a particle gets shared between two
adjacent states or cells. In general, when

g(q) = ( k m) lk—, where m ) 1, then (N ),„
=(k/m)Z. and mAk, we will encounter a non-Gentile
type of restriction on the occupancy of a quantum state.
It is this feature of the statistics which makes it richer
than Gentile's statistics and makes it capable of account-
ing for a very small violation of statistics, unlike the Gen-
tile statistics where the deviation from conventional
quantum statistics is very large.

In order to obtain the distribution function for the in-
termediate values of the exponent g(q), it should be noted
that in general the master distribution presents a tran-
scendental equation in X =Z. /N +g(q), which cannot
be solved analytically. However, it can be solved when

g(q) is a simple fraction and I present a few solvable cases
below.

A. Case 1

a+PE.
When g(q)= —,

' and setting Y =e ', Eq. (1) can be
written as X —X —Y =0, whose real and positive solu-
tion leads to the distribution function as already reported
in [1],

z
[e j+ 1 ]1/2

4

which is more Fermi-like than Bose-like but has many in-
termediary features.

B. Case 2

When g(q) =
—,', Eq. (1) can be rewritten as Xj

2Xj +Xj Yj 0 whose real and positive so1uti on
leads to the following distribution function:

N, =Z /I [1/2 Y —
—,', + ( Y —Y + —"x 81)'/2]'/3

+ [ ,' Y,
' -,', —(Y—,'„— Y,'/2—7+ —"x 81)'"]'"

+ [—,
' Yj+ —,', —

( Yj/27 Yj/4+ —", X81)' ]'

D. Case 4

When g(q) =
—,', Eq. (1) can be recast as

Xj 3Xj +3Xj Xj Yj 0, whose real and positive
solution leads to

N =Zj/[[ —,'+1./2(u, —
—,
')'/ ]+—,'[—,

' —u, +3(u, —
—,')'

+4( 2 + Y4)1/2]1/2
I

where

[ 1 +( 1 + Y8 )1/2]1/3
1 p 4 g/27

[ 1 +( 1 + Y8 )1/2]1/3+ 1
g /27

(8)

E. Case 5

Where g(q) =—' and Eq. (1) reads X —X —Y =0, the
real and positive solution leads to the distribution

Nj =Zj/I —[—,'+1/2( —,'+u, )'/ ]

+1/2[ —,
' —u1+( —,'+u, )'

where

+4( 2 + Y4)1/2]l/2] (9)

1/3
3/73

—,'+
1/3

3/73
6

Y4
J

There may be more analytically solvable cases with
larger fractional values of g(q) in the domain [0,1] but for
the present we confine ourselves only to the above five
cases.

III. CONCLUSiON

Since the whole family of interpolating statistics is a
genuinely quantum statistics by virtue of the indistin-
guishability incorporated in the counting, it is natural to
seek a relationship with the deformation parameter of the
Heisenberg operator algebra of Greenberg [2] in particu-
lar, and the quantum group algebra in general [9].
Though the multiparticle implications of these algebraic

C. Case 3

g(q)= —'„Eq. (1) can be recast as X3—X2

Yj 0 whose real and positive solution leads to the
following distribution function:
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approaches for inducing violations of statistics is yet to
be fully developed, their correspondence with the statisti-
cal distribution in the large number regime is inevitable.
It is with this hindsight that I have deliberately written
the deformation parameter in the present statistics as a
function of the quantum group parameter q with q real
and having values in the interval —1 ~ q + 1, where it has
been demonstrated that the Hilbert space of vectors gen-
erated in a Fock-like representation is positive definite
[2]. Though the exact relationship between the algebraic
approach to the violation of statistics with the present
scheme, which is based on very general assumptions, is
yet to be established, for the present we may expand the
parameter g(q) as a polynomial in q as

g(q) = g C„q",
n=0

(10)

which should satisfy the boundary conditions given by
g(+1)=1 and g( —1)=0. This leads to the following
conditions:

n=o
C„=1,

(
—1)"C„=O,

n=0

Co=o 56

For an approximate estimate of the q value from a
chosen g(q) value we may use a quadratic approximation

of (10) which is true for values q =+1 and 0 as was used
in Ref. [I]. A complete theory should give the exact
values of the coefficients C„ in (10).

One can readily see that the whole of statistical physics
can be redone for these distribution functions. The first
thing that occurs to one's mind is to check on the phase-
transition properties of the statistics as q varies from —1

to +1 or as g(q) varies from 0 to 1. This and many other
implications of the new statistics will be reported in a
subsequent paper.

It is interesting to note that in the concluding section
of their paper, Jaganathan et al. [8] show that one of the
implications of the quantum group algebra they consider
is that, in its multiparticle, multimode case there seems to
be an attractive collective interaction for —1 & q ~ 1 and
a repulsive collective interaction for q ) 1. Further, the
population in any level is dependent on the distribution of
the population in every other level. This is indeed similar
to the role of the function q(N ) in the present statistics
which can be interpreted as arising from some collective
interaction due to some internal degrees of freedom [2].
However, the condition that ri(N )be an in. teger can only
hold approximately and it would be a good approxima-
tion in the large number limit when the statistical distri-
bution holds almost exactly. So, any correspondence
with the present statistics with the underlying algebraic
approach should be seen in this large number limit only.
One hopes that this conjecture is indeed true and that
there is a relationship between the algebraic approach to
the new quantum statistics discovered by Greenberg and
the Bose counting approach developed in this paper.
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