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Using a renormalization method, we study the critical behavior of period doubling in two coupled
one-dimensional (1D) maps. We find three kinds of fixed maps of the period-doubling renormalization
operator. Each of the fixed maps has a common relevant eigenvalue associated with scaling of the non-

linearity parameter of the uncoupled 1D map. However, the relevant "coupling" eigenvalues associated
with scaling of the coupling parameter vary depending on the kind of fixed maps. The values of relevant
eigenvalues agree well with those of the parameter scaling factors obtained by a direct numerical
method. The renormalization results of two coupled maps are also extended to many coupled maps with

a global coupling, in which each map is coupled to all the other maps with equal strength.

PACS number(s): 05.45.+b, 03.20.+ i, 05.70.Jk

I. INTRODUCTION

Since the discovery of the universal period-doubling
route to chaos in low-dimensional maps [1,2], efForts have
been made in studies of coupled maps to attempt to gen-
eralize to higher-dimensional maps [3—10]. Here we
study the critical behavior of period doubling in two cou-
pled one-dimensional (1D) maps by a renormalization
method and show that the renormalization results are
also extended to the case of many coupled 1D maps with
a global coupling.

The renormalization method has played a central role
in the study of critical behavior of period doubling in
low-dimensional maps; the fixed maps of the period-
doubling renormalization operator for 1D maps [1] and
two-dimensional (2D) area-preserving maps [2] have been
found. In the case of four-dimensional volume-
preserving maps (two coupled 2D area-preserving maps),
three fixed maps of an approximate renormalization
operator have been found [7]. On the other hand, only
one fixed map associated with the critical behavior at the
zero coupling point has been found in the case of two
coupled [3] and many coupled 1D maps [5,6].

In a recent numerical study on two coupled maps [10],
we found an infinite number of critical points of period
doubling. In a linear coupling case in which the leading
term of the coupling function is linear, an infinite number
of critical line segments, together with the previously
known zero coupling point [3], constitute the critical set
(the set of critical points), whereas in the case of non-
linear coupling, in which its leading term is nonlinear, the
critical set consists of the only one critical line segment.
The critical behavior varies depending on the position on
the critical set. We found two kinds of new critical
behavior at each critical line segment in the linear cou-
pling case and one kind of new critical behavior at interi-
or points of the critical line in the nonlinear coupling
case, in addition to the critical behavior at the zero cou-
pling point.

These numerical results imply that there exist three
kinds of fixed maps of the renormalization operator in the
space of two coupled maps. The numerical results on the
critical behavior of two coupled maps are brieAy sur-
veyed in Sec. II. In Secs. III and IV, using a "reduced"
equation scheme, we find two kinds of new fixed maps as-
sociated with the new critical behavior as well as the fixed
map associated with the critical behavior at the zero cou-
pling point. All the three kinds of fixed maps have a
common (noncoordinate) relevant eigenvalue whose
modulus is larger than unity, associated with scaling of
the nonlinearity parameter of the uncoupled map. How-
ever, the relevant "coupling" eigenvalues associated with
scaling of the coupling parameter depend on the kind of
fixed maps. The values of relevant eigenvalues agree well
with those of the parameter scaling factors obtained us-

ing a numerical method. In Sec. V fixed maps of the
above three kinds are derived in several cases of coupling
functions. In Sec. VI we extend the renormalization re-
sults of two coupled maps to many coupled maps with a
global coupling, in which each map is coupled to all the
other maps with equal strength. Finally, a summary is
given in Sec. VII.

II. CRITICAL BEHAVIOR OF TWO COUPLED MAPS

We consider a map T consisting of two identical 1D
maps coupled symmetrically:

x;+, =F(x;,y, ) =f (x; )+g(x, ,y;),
T: '

y;+i=+(y;, x;)=f(y;)+g(y;, x; » (2.1)

f(0)=1,
and the coupling function g obeys a condition

(2.2)

where the subscript i denotes the discrete time, f (x) is an
uncoupled 1D map with a quadratic maximum, and
g(x,y) is a coupling function. Here the uncoupled 1D
map f satisfies a normalization condition
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g(x, x)=0 for any x . (2.3)

The map (2.1) is invariant under the exchange of coor-
dinates x~y. The set of points which are invariant under
the exchange of coordinates forms a symmetry line y =x.
If an orbit lies on the symmetry line, then it is called an
"in-phase" orbit; otherwise it is called an "out-of-phase"
orbit. Here we study only in-phase orbits (x;=y,. for all

i}, which can easily be found from the uncoupled 1D
map, x, +,=f (x; ), because of the condition (2.3).

Stability of an in-phase orbit of period p is determined
from the Jacobian matrix M of T~, which is the p product
of the Jacobian matrix DT of T along the orbit

behavior only when the reduced coupling function is not
identical to zero. In the latter case the structure of the
critical set depends on the leading term of the coupling
function and the critical behavior varies depending on
the position on the critical set [10].

A "bifurcation path" in the A-c parameter space is
formed by following the parameters ( A„,c„)at which the
in-phase orbit of level n has some given stability multi-
plier values (A, &, A,z). The scaling behavior of the sequence
[( A„,c„), n =0, 1,2, . . . ] can be determined by the scal-
ing matrix method. The 2X2 scaling matrix of level n,
I „,is defined as follows:

M= g DT(x, ,x;)
i
—A, 2„—A„

=r„
C„ C„

(2.6)

f'(x; ) —G(x;)
G(x;)

G(x;)
f'(x; )

—G(x;) (2.4)

where f'(x) =df (x)Idx and G (x)=Bg (x,y) IBy ~~ =„;
hereafter, G(x) will be referred to as the "reduced" cou-
pling function of g(x, y). The eigenvalues of M, called
the stability multipliers of the orbit, are

As n —+ ~ the eigenvalues of I „converge to the limits y,
and yz, which are just the parameter scaling factors of
the sequence. With these scaling factors the sequence
converges to a critical point (A*,c*). At this critical
point, the stability multipliers k, „and A.2 „of the in-

phase orbit of level n converge to the critical stability
multipliers A,

&
and k2:

A, , = + f'(; ), X = Q [f'(; )
—2G (;) ] . (2.5)

A, *, = lim k& „, A, z
= lim A, 2 „. (2.7)

Note that A, , is just that of the uncoupled 1D map and
the coupling affects only A,2. An in-phase orbit is stable
only when the moduli of both multipliers are less than
unity, i.e., —1&A,, &1 for i =1, 2.

An in-phase orbit can lose its stability only either by
period-doubling bifurcation or tangent bifurcation; Hopf
bifurcation does not occur since its stability multipliers
(2.5} are always real. Between them, the successive
period-doubling bifurcations complete an infinite se-
quence. We call the in-phase orbit of period 2" created
by the nth period-doubling bifurcation the in-phase orbit
of level n. When its first stability multiplier A,

&
„passes

through —1, the orbit loses its stability via in-phase
period-doubling bifurcation, giving rise to the creation of
a period-doubled in-phase orbit of level n +1. Stable re-
gions of orbits can be drawn in the parameter space of
the coupling strength parameter (c) and the nonlinearity
parameter ( A). A period-doubling bifurcation point on
the 3 axis for the 1D map is extended in the c axis direc-
tion for the coupled map to form a horizontal in-phase
period-doubling bifurcation line because A,

&
is indepen-

dent of the coupling strength parameter. Such bifurca-
tion lines converge to the accumulation line at which the
value of the nonlinearity parameter is just that of the ac-
cumulation point 2 * of the 1D map.

The critical set for the coupled map lies on the accu-
mulation line, but the structure of the critical set depends
on the nature of coupling functions. The simplest case
occurs when the reduced coupling function is identical to
zero. In this case there is no coupling effect on the criti-
cal behavior because A,2=A. &, the whole accumulation line
becomes the critical line and the critical behavior at any
point on the critical line is the same as that of the uncou-
pled 1D map. Therefore the coupling affects the critical

Since A, , depends only on the nonlinearity parameter 3,
y, and A.

&
are always the same as the 1D map values at

all critical points: y =6=4.6692. . . and
A,

&

= —1.6011. . . [1]. However, y2 and Az depend on the
position on the critical set.

We brieAy summarize the numerical results on the
scaling behavior associated with coupling. In a linear
coupling case, the critical set consists of an infinite num-
ber of critical line segments and the zero coupling point.
There are three kinds of scaling behavior dependent on
the position on the critical set. At the zero coupling
point, yz= —2. 5029. . . and A,z =k', , and at both ends of
each critical line segment, y2 = 1.9999. . . and
kz =1.0000. . . . However, there exists no scaling factor
y2 associated with coupling at interior points of each crit-
ical line segments since kz =0. Therefore the critical
behavior at the interior points is essentially the same as
that in the uncoupled 1D map. In a nonlinear coupling
case, the critical set consists of the only one critical line
segment, one end of which is the zero coupling point. At
both ends of the critical line segment, yz= 1.9999. . . and
A.z =k&, but yz is nonexistent at the interior points since
A, z =0. For more details, see Ref. [10].

III. RENORMALIZATION OPERATORS
AND REDUCED FIXED MAPS

The period-doubling renormalization operator JV for a
coupled map T is composed of squaring ( T, i.e., compos-
ing with itself) and rescaling (8) operators:

(3.1)

Since we consider only in-phase orbits, the rescaling
operator B is
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08= (3.2)
x

g. +i(x,y)= a—f. f.
CX

By applying the renormalization operator JV to the cou-
pled map (2.1), we obtain a renormalized map Ti ..

r

+af. f. —+g.a ' a' n

x, y, y, x,
x, +i=F, (x;,y;)=aF F,—,Fn'a ' n'a
y;+i=Fi(y, x;) . (3.3)

Like the initial function F, the renormalized function F,
can be separated into two parts, the uncoupled part f,
and the coupling part g&

..

F, (x,y)=f, (x)+g, (x,y) . (3.4)

The renormalized coupling function also obeys the condi-
tion (2.3), i.e., gi(x, x)=0 for any x. Therefore the renor-
malized uncoupled function f, satisfies

+ag. f. —+g. —,—,f.e'a

+g„ a a (3.1 1)

A map T, with the nonlinearity and coupling parame-
ters set to their critical values is called a critical map:

x;+, =F,(x;,y; ) =f, (x, )+g, (x;,y; ),
T. : '

y, +, =F,(y, ,x, ) . (3.12)

A critical map is attracted to a fixed map T* under itera-
tions of the renormalization transformation A':

f, (x)=F, (x,x)=af f (3.5) x;+,=F*(x;,y; ) =f*(x;)+g *(x;,y; ),
T )fc

y, +, =F*(y;,x; ) .
(3.13)

The rescaling factor o. is chosen to preserve the normali-
zation condition f, (0)= 1, i.e.,

(3.6)

Subtracting f i from F, , we obtain the renormalized cou-
pling function

g i(x,y) =af —+g —,—
CX e a

+ag f —+g —,—,f-
e cx' a '

o.

+g a' a (3.7)

Then Eqs. (3.5) and (3.7) define a renormalization opera-
tor A of transforming a pair of functions (f,g) [3]:

(3.&)

By successive iterations of A, we obtain the following re-
currence equation:

fn+I
gn +1

fn

gn
(3.9)

where f„(g„)is the uncoupled (coupling) part in the n

times renormalized function F„under the renormaliza-
tion transformation JV, and the rescaling factor a is
1/f„(1). That is,

Here (f*,g*) is a fixed point of the renormalization
transformation % with a= 1/f *(1):

(3.14)

G„+,(x)= f„' f„
CK

—26„ f„ x x6 e

+G f — f'x, x
n n n (3.15)

This fixed point-equation can be solved row by row can-
secutively. Note that the equation for f* is just the
fixed-point equation in the 1D map case, which has been
solved numerically Ii]. Therefore only the equation for
the coupling fixed function g* is left to be solved. One
trivial solution is g*(x,y)=0. For this zero coupling
fixed function the fixed map (3.13) consists of two uncou-
pled 1D fixed maps. This fixed map is therefore associat-
ed with the critical behavior at the zero coupling point
I3].

The numerical results, as summarized in the preceding
section, suggest that there exist additional fixed points of
A, associated with the new critical behavior at critical
points except the zero coupling point. However, it is not
easy to directly solve the fixed point equation for g*(x,y).
We therefore introduce a tractable recurrence equation
for a reduced coupling function G(x)=Bg(x,y)/By~~
Differentiating the recurrence equation (3.11) for g (x,y)
with respect to y and setting y =x, we obtain a recurrence
equation for G (x):

T

xf„+,(x) =F„+,(x,x)=af„ f„ a
(3.10)

Then Eqs. (3.10) and (3.15) define a reduced renormaliza-
tion operator A of transforming a pair of functions
(f, G):
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fn+1
Gn +1 G„

(3.16)

We look for fixed points (f*,G *
) of %, which satisfy

r

new critical behavior, as will be seen in the next section,
while the first solution corresponds to the reduced cou-
pling fixed function of the zero coupling fixed function
g*(x,y) =0.

G Q G Q
(3.17) IV. LINEARIZED OPERATORS

AND RELEVANT EIGENVALUES

Here f* is just the 10 fixed function and G* is the re-
duced coupling fixed function of g *, i.e.,
G "(x)=Bg*(x,y)/By ~~ „,which satisfies

G*(x)= f' f*
cz

—2G* f*

+G* f* — f*
CX CX

(3.18)

We find three solutions for G '.
G*(x)=0,
G*(x)= —,

' f* (x),
G'(x) = —,

' [f* (x)—1] .

(3.19)

(3.20)

(3.21)

The second and third solutions are associated with the

Once a fixed function F*(x,y), or equivalently a cou-
pling fixed function g (x,y), is determined, its eigenval-
ues are obtained by linearizing the renormalization trans-
formation around the fixed function and solving the
resultant eigenvalue problem. In general, it is required to
know the fixed function to linearize the transformation
around it. However, in this section, before g (x,y) is de-
rived, it is shown that the eigenvalues are possibly ob-
tained using the reduced coupling fixed function G'(x)
rather than g*(x,y).

Let us examine the evolution of a pair of functions
(f*(x)+h(x),g*(x,y)+y(x, y)) close to a fixed point
(f*,g*) under A; here the perturbation y to g* also
obeys the condition y(x, x)=0. Linearizing the renor-
malization transformation A at the fixed point (f*,g*),
we obtain the recurrence equation for the evolution of a
pair of infinitesimal perturbations (h, y):

hn+1

9'n +1

h„

0'n

o h„

2 0'n
(4.1)

where

h„+ &(x)= [X&h„](x)=af * f* — h„—+ah„ f*
CX CX a

(4.2)

y„+,(x,y) = [%2y„](x,y)+ [X3h„](x), (4.3)

[X2@„](x,y) =aF f F* —,—,F*a'a ' u'u
x y

0'n

+aF2 F —,—,F —,— y„—,—+czcp„F —,—,Fx y ~ y x y x x y, y x
n'o. '

o, 'a " e'a o. n ' a'cz (4.4)

[X3h„](x)=aF f F* —,—,F*
a a a a

X
h„ a

+(XFp F, ,F —, hn +Ahn
x y

o.
' a ' a '

o. " a a o!
—[X,h„](x) . (4.5)

Here F*(x,y) =f*(x)+g *(x,y) and the subscript
i (i =1,2) of F' denotes the partial derivative with
respect to the ith argument. Note that, although h„cou-
ples to both hn+, and y„+„y„couples only to y„+,.
The reducibility of X into a semiblock form implies that
to determine the eigenvalues of X it is sufficient to work
independently in each of h (x) subspace and y(x, y) sub-
space. That is, one can find eigenvalues of X, and X2
separately and they give the whole spectrum ofX.

A pair of perturbations (h, y) is called an eigenpertur-
bation with eigenvalue X if

h h
(4.6)

that is,

kh(x) = [X,h](x),

Ay(x, y) = [Xzy](x,y)+ [X3h](x) .

(4.7)

(4.8)

We first solve Eq. (4.7) to find eigenvalues of Xi. Note
that this is just the eigenvalue equation in the 1D map
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case. It has been shown in Ref. [1] that the equation has
only one (noncoordinate) relevant eigenvalue
5 ( =4.6692. . . ). The eigenfunction h (x) with the eigen-
value 6 has also been obtained numerically. However,
note that although the eigenvalue 5 of Xi is also an eigen-
value of X, (A, O) is not an eigenperturbation of X unless
X3 is a null operator.

Next, we consider a perturbation of the form (O, q&)

having only the coupling part. In this case (O, y) is an
eigenperturbation of X, only if y satisfies

(4.9)
The eigenvalues associated with the coupling perturba-
tions will be called the "coupling"eigenvalues.

It is not easy to directly solve the eigenvalue equation
for cp. %'e therefore introduce a tractable recurrence
equation for a reduced coupling perturbation
4&(x) =By(x,y)/By ~~ . In the case of general perturba-
tions (h, y), differentiating the recurrence equation (4.3)
with respect to y and setting y =x, we obtain a recurrence
equation for N:

@„+,(x)= [%~4&„](x)+[X,h„](x), (4.10)

[X~4„](x)= f ' f* —2G* f'
A

4„—+ f ——2G
x x x
D A A'

(4.1 1)

P

[X3h„](x)= f* f* Gg 2GA f4

a
Gg+G4 ft f4

a CX

x x
h a

+G* —h„'
a

Then the recurrence equations
perturbations (h, &):

f* — +G* f* — h„' (4.12)
Q,' A CX

J

(4.2) and (4.10) for h and 4& define a reduced linear operator 2 of transforming a pair of

0
(4.13)

This equation can also be obtained by linearizing the reduced renormalization operator % of Eq. (3.16) at its fixed point
(f4 Gg)

The reducibility of X into a semiblock form again lets us search for the reduced coupling eigenperturbations of the
form (0,%), where N(x) satisfies

AN(x ) = [X&4 ](x )

f Ilc f 4

a + f ——2G
x
CX CX CX

(4.14)

A@(x)=f* f*
e

+f 4 (P f gc

CX CX

(4.15)

Kuznetsov introduced Eq. (4.15) to obtain coupling ei-
genvalues in the case of the zero coupling Axed function
g*(x,y) =0 [3]; Eq. (4.14) holds for all the three cases of
G* in Eqs. (3.19)—(3.21) and hence it can be regarded as a
generalized version of Eq. (4.15). He obtained two
relevant coupling eigenvalues a and 2. At x =0, Eq.
(4.15) becomes

A@(0)=f'(1)@(0)=a@(0). (4.16)

There are two cases, linear and nonlinear coupling cases;
@(0)%0in linear coupling and @(0)=0 in nonlinear cou-

If A, is an eigenvalue of X~, then it is also an eigenvalue of
Xz unless &b(x) =0.

In the case G*(x)=0, Eq. (4.14) becomes

I

pling case. That is, in the case of a linear coupling per-
turbation, dividing both sides of Eq. (4.16) by @(0), we
obtain A, =a. In the other case, it can easily be seen that
@(x)=f* (x) is a solution of Eq. (4.15) with A, =2. These
values agree well with the numerical values of the param-
eter scaling factor yz at the zero coupling point [10]:in
the linear coupling case yz= —2.5029. . . and in the non-
linear coupling case yz = 1.9999. . . . The case of
G*(x)=0 is met not only at the zero coupling point but
also at the other end of the critical line segment in the
nonlinear coupling case, as will be seen in Sec. V.

In addition to the relevant coupling eigenvalues, we
also obtain the critical stability multipliers (2.7). The in-
variance of a fixed map T* under the renormalization
transformation JV implies that, if T* has a periodic point
(x,y) with period 2, then 8 (x,y) is a periodic point of
T* with period 2"+'. Since rescaling leaves the stability
multipliers (2.5) unaffected, all in-phase orbits of period
2" for n =0, 1, . . . have the same stability multipliers k&

and A,z, which are just the critical stability multipliers
(2.7). That is, the critical stability multipliers have the



790 SANG-YOON KIM AND HYUNGTAE KOOK 48

values of the stability multipliers of the fixed point of the
fixed map T*:

A, *, =f* (x ), A,z
=f* (x )

—26*(x), (4.17)

where x ( =0.5493. . . ) is the fixed point of the 1D fixed
map, i.e., x =f*(x ). Here A,

*
( = —1.6011. . . ) is just the

critical stability multiplier in the uncoupled 1D map case
and kz depends on the reduced coupling fixed function
6*. In the case G*(x)=0, Az becomes the same as A i .

As shown earlier, there exist two additional reduced
coupling fixed functions [see Eqs. (3.20) and (3.21)]. We
first consider the case G*(x)=—,'f* (x). Substituting G*
into Eq. (4.17), we obtain the second critical stability
multiplier A, z

=0. Note also that the reduced linear
operator X2 of Eq. (4.14) becomes a null operator because
the right-hand side of the equation is identical to zero for
6*(x)=—,'f * (x). Therefore there exists no relevant cou-

pling eigenvalue and, consequently, this reduced fixed
point (f*, G*) has only one (noncoordinate) relevant ei-
genvalue 6 associated with scaling of the nonlinearity pa-
rameter, like the uncoupled 1D map case. In Ref. [10],
we found that, at interior points of the critical line seg-
ments in the linear and nonlinear coupling cases, the
second critical stability multiplier is zero and there exists
no parameter scaling factor y2 associated with coupling,
i.e., the critical maps at interior points exhibit essentially
1D behavior, like the case of the 2D Henon map with
constant Jacobian [12]. The reduced fixed function
G*(x)=—,'f* (x) therefore governs the critical behavior
inside the critical line segments in both of the coupling
cases.

Second, we consider the case, 6*(x)=—,'[f* (x) —1].
In this case the reduced eigenvalue equation (4.14) be-
comes

tion with critical behavior is made in a natural way, as al-
ready explained in the preceding section.

In the following, we choose f (x)= 1 —Ax and
g(x,y)=c(y —x)(d+ex+fy) as the uncoupled 1D map
and the coupling function, respectively. Here A and c
are the nonlinearity and the coupling parameter, d, e, and

f are arbitrary constants. A critical point will be denoted
as (c*, A *); A * is always of the same value as that of the
1D map, i.e., A *=1.401 155. . . . The reduced coupling
function ofgis G(x)=c[d+(e+f)x].

We consider separately the cases of a nonlinear cou-
pling and a linear coupling. In terms of the reduced cou-
pling function G(x), each case corresponds to the case
G(0)=0 (nonlinear) and G(0)%0 (linear), respectively.
The nonlinear coupling case is further classified depend-
ing on whether G (x) is identical to zero or not.

A. Nonlinear coupling when G (x)=0

v'p+ I
2v'p

x;+y; x; —y;
2 " 2

+

v'p —1

2v'p
x;+y; —v'p

2

To consider this case we set d =0 and e +f=0, that is,
we have g(x,y)=c(y —x)(ex+fy) and G(x)=0. In this
case all critical maps are represented by a single point
(f„O) in the space of (f, G); f, is the 1D critical map,
i.e., f, (x)= 1 —2 *x . The pair of initial functions (f„O)
is attracted to the reduced fixed point (f*,0) under itera-
tions of the reduced renormalization transformation A of
Eq. (3.16). In the c-A plane, therefore, the A = A * line
itself becomes the critical line. Inserting f= —e in

g (x,y), the critical maps have the following form:

x, +, =F, (x, ,y, ) =f, (x)+g, (x,y)

A,4(x)=4& —+N f* (4.18)
y;+, =F,(y;, x; ),

(5.1)

There exists a relevant coupling eigenvalue X=2 when
@(x) is a nonzero constant function, i.e., 4(x) =e (e is a
nonzero constant). The value of the coupling eigenvalue
agrees well with the numerical value of the second pa-
rameter scaling factor (@2=1.9999. . . ) [10] at both ends
of each critical line segment in the linear coupling case.
Substituting G into Eq. (4.17), we obtain the second crit-
ical stability multiplier A, z =1, which also agrees well
with the numerical value (A,z =1.0000. . . ) [10]. There-
fore this reduced fixed function is associated with the
critical behavior at both ends of each critical line segment
in the linear coupling case.

V. FIXED MAPS FOR TWO COUPLED MAPS

In this section we obtain fixed maps T of the renor-
malization transformation JV by repeated actions of A on
critical maps T, . The critical maps converge under itera-
tions of JV to fixed maps of three kinds. In terms of the
reduced coupling function G (x), these fixed maps reduce
to the three cases (3.19)—(3.21), and thereby the associa-

where p = I+(4c/2 *)e. It can easily be shown that un-
der iterations of JV the critical map is attracted to the
fixed map:

y, +, =F*(y, ,x, ) .

Therefore, when 6(x) is identical to zero, all critical
maps are attracted to the fixed maps of the form (5.2),
which is a one-parameter (p) family of fixed maps. The
critical behavior is, of course, the same as the one ana-
lyzed for the case G *(x)=0 in the preceding section.

Let us now introduce new coordinates X and Y:

x+y x —y
2 2

(5.3)

x;+,=F*(x;,y; ) =f*(x)+g *(x,y)

v'p+ 1 xi +yi
2&„ f 2

+ " 2

x, +y; x; —y;+ f* —vp
2 p 2 2

(5.2)
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X;+,= —,'[f*(X;+Y;)+f*(X;—Y;)],

Y, +,= —,
' [f*(X;+ Y; ) f*(X;——Y; ) ] .

(2) p, (0, scale change Y~ Y/v' —p:

X, +i= —,'[f*(X;+jY;)+f*(X;—jY;)],

Y, +,= [f*(X,+jY, ) f.*(X;—j—Y;)],=1
2J

(5.5)

(5.6)

where j=v' —l.
(3) @=0,no scale change:

X;+,=f*(X,), Y, ~, =f*(X;)Y, . (5.7)

Thus, when G'(x) =0 we have the three "representative"
fixed maps with p =+1,0.

An infinitesimal scale change of Y, i.e., a transforma-
tion X~X and Y~(1+e)Y, corresponds to the follow-
ing change of the original coordinates x and y:

Under the coordinate change, the symmetry line y =x is
transformed into Y=O. That is, in terms of the new
coordinates, the coupled map (2.1) becomes invariant un-
der the reAection operation Y~ —Y. However, the coor-
dinate change (5.3) leaves the rescaling operator (3.2)
unaffected.

In the new coordinates, the fixed map (5.2) becomes

X, +, = —,
' [f*(X,. +v'p Y,. ) +f*(X,—v'p .Y,. )],

(5.4)

Y, +, = [f'(X, +vp Y,. ) f*(X—, —v'pY. ,. )] .
2 p

Note that the normalization condition f*(0)= 1 fixes the
scale of X, whereas the scale of Y has not been fixed yet.
This explains why the critical maps converge to a one-
parameter family of fixed maps (5.4). A compact form of
the fixed maps may be obtained by a scale change of Y.

(1)p )0, scale change Y~ Y/v'p:

f„(x)=af„, f„
CX

G„(x)=e„f„'(x), (5.10)

E~ =26~ i 2 2 (5.11)

where f0(x)=f, (x), GD(x)=G(x), and e0=e. Here f„
converges to the 1D fixed function f*(x).

The recurrence equation (5.11) for e has two fixed
points e'.

1e*—0, —.'2 ' (5.12)

Stability of the fixed point e* is determined by its stability
multiplier A, , where A, =de„/de„ i~ +. The fixed point at
e*=—,

' is superstable (A, =O), while the other at e*=O is
unstable (A, =2). The basin of attraction to the super-
stable fixed point is the open interval (0, 1), that is, any in-
itial e inside the unit interval 0 & e ( 1 converges to
e*=

—,'. The unstable fixed point at (e*=0) is also the im-

age of the other boundary point at a=1 under the re-
currence equation (5.11). All points outside the unit in-
terval diverge to the minus infinity. Consequently, in this
nonlinear coupling case the critical set is the line segment
joining two end points ci (=0) and
cz [=—22*/(e+f)] on the 2 = 2* line; the two end
points c

&
and c2 correspond to @=0 and 1, respectively.

Inside the critical line segment all critical maps are at-
tracted to the fixed maps whose reduced coupling func-
tion is G*(x)=—,'f* (x), while the critical maps at both
ends of the line segment are attracted to the fixed maps
whose reduced coupling fixed function is G (x)=0, like
the case when G (x) is identical to zero.

At the zero coupling point c, , the critical map has the
form of Eq. (5.1) with p = 1 and therefore it is attracted to
the fixed map (5.2) with p= l. At the other end point cz,
the critical map T, has the following form:

x xx~x+E, y~y E
2

'
2

(S.S)

x;+, =F,(x;,y, ) =f, (x)+g, (x,y)
It can easily be shown that the perturbation associated
with the coordinate change (5.8) is the coupling eigenper-
turbation (O, y) of X with a marginal eigenvalue (A, = 1),
where

x; +y, x,- —y,-

2
' +v~p

2

p(x, y) =F*(y,x ) F*(x,y)—
+(x —y)[F,*(x,y) F2 (y, x)] . — (5.9)

+ &@+I
2v'p

x;+y; x; —y,
2 2

' —v'p

Here the subscript i (i =1,2) of F* denotes the partial
derivative of F* with respect to the ith argument. In Ap-
pendix A we also obtain the coupling eigen values
a " (n = 1,2, . . . ) associated with other coordinate
changes.

B. Nonlinear coupling when G (x)%0

In this case we set g(x,y)=c(y —x)(ex+ fy), where
e+fWO. The reduced coupling function becomes
G(x)=ef,'(x), where e= —(c/23*)(e f+). By succes-
sive actions of A on (f„G),we obtain

(5.13)

y;+, =F,(y;, x; ),

where p=( —3e+Sf)/(e+f). Note the difference be-
tween the two critical maps of Eqs. (5.1) and (5.13).
However, the renormalized map T, of T, under A' has
the form of Eq. (5.1). Therefore, the critical map (5.13) is
also attracted to the fixed map (5.2) with
p=( —3e+5f)/(e+ f).

Inside the critical line segment, the critical map T, is
of the form
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x, +, =F,(x;,y; )

2
x;+y;

+v(x; —y; )

1/2

x; —y;
2

(5.14)

tion value of the fixed map (5.16) at the same point,
which showed a fairly close coincidence at a number of
points. In fact, to identify a function, comparing
coefficients is evidently much more efficient and reliable
than comparing function values.

~hen p=+1, the fixed map (5.16) can be further
transformed to the form

y; ~1=F (y;,x; ) =f '[(X' Y;)—'"1 Y;+1=o (5.21)

x;+i=f* '
x;+y;

2
x; —y;

2 1/2

where p= I+(2c//I*)(e f)— and
v= —,

' [I+(c//I *)(e+f)]; the range of v inside the criti-
cal line segment is —

—,
' & v( —,'. It is easy to see that the

critical map at the middle point (v=O, or c =c2 /2) is at-
tracted to the fixed map of the form

by a coordinate change X—+X and Y~&+Y (the signs—and + correspond to the cases p= 1 and —1, respec-
tively). The domain of Y in the map (5.21) is restricted to
Y(O for p=1 and Y~O for p= —1 cases. Combining
the two cases of p=+1, the domain of Y in the map be-
comes the whole real line. Note also that in the new
coordinates the rescaling operator B becomes

y;+, =F*(y;,x; ),
(5.15) a 0

0 a (5.22)

where p, =( —e+3f)/(e+ f).
In the system of coordinates X and Y, the fixed map

(5.15) becomes

X. =f*[(X +pY )' ]

Y;+I=0 (5.16)

Like the case G*(x)=0, we have three representative
fixed maps with @=+1,0 by a scale change in Y.

(1) p )0, scale change Y~ Y/Vp, :
—f + [(X2~ Y2)1/2] Y —0

(2) p (0, scale change Y~ Y/1/ —p, :

f e [(X2 Y2)1/2] Y 0

(3) p=O, no scale change:

X;~,=f*(X,), Y,.~1=0 .

(5.17)

(5.18)

(5.19)

Note that all images I (X„,Y„); n = 1,2, . . . I of any ini-
tial point (Xo, YO) under these fixed maps lie on the sym-

metry line Y=O. Therefore, these fixed maps exhibit
essentially 1D behavior.

At the other interior points (vXO), unfortunately we
could not analytically apply JV to the critical maps. By
numerical implementation of the method of Appendix 8,
we determine fixed maps up to the quadratic terms (here-
after, these fixed maps will be called the quadratic fixed
maps):

X;~1=1+C,(X; +p Y, ), Y;~,=0, (5.20)

where Ci = —1.5276. . . , and p —= I + (2c /2 )(e f). —
Note that the value of C, agrees well with the numerical
value of the coefficient of the quadratic term in the 1D
fixed function [1]. Therefore it would be reasonable to
believe that the quadratic fixed map (5.20) is a truncated
one of the fixed map (5.16) at its quadratic terms. To be
more convinced, the method used in Ref. [6] was also ap-
plied to numerically iterate JV. In the latter method the
function value of the n times renormalized map is calcu-
lated at a given (x,y) point and compared with the func-

Obviously, the map (5.21) is the fixed map of the renor-
malization transformation with the rescaling operator
(5.22), which was found in Ref. [13] where Collet, Eck-
mann, and Koch extended the universality of 1D maps to
higher-dimensional dissipative maps.

C. Linear coupling case

X,. ~I=1+C)X, , Y;~)=Y;, (5.23)

where C, = —1.5276. . . . The form of Eq. (5.23) sug-
gests that the corresponding fixed map be of the follow-
ing form:

X, ~i=f*(X,), Y;~1=Y, , (5.24)

We now consider a linear coupling case. As an exam-
ple, we choose a linearly coupled map with

g (x,y) =c (y —x). In this case the numerical work [10]
has shown that the critical set consists of the zero cou-
pling point and an infinite set of critical line segments ac-
cumulating to the zero coupling point. There exist three
kinds of critical behavior depending on the position on
the critical set: the zero coupling point, two ends of each
critical line segment, and the interior points of each criti-
cal line segment.

As already shown in Sec. V A, the critical map at the
zero coupling point is attracted to the fixed map (5.2)
with p=1. However, repeated actions of JV on the other
critical maps could not be done analytically. Instead, em-
ploying again the method of Appendix B, we numerically
obtain quadratic fixed maps. For an example, consider
the leftmost critical line segment joining two end points
cl (= —1.457727. . . ) and cz (= —1.013402. . . ) on the
/I = /I* line [11]. Critical maps at the interior points
(cL (c (cz ) are attracted to the fixed maps of the form
(5.20), where Ci = —1.5276. . . and the value of p varies
depending on c (see Fig. 1). It is also believed that this
quadratic fixed map indicates the fixed map (5.16) trun-
cated at its quadratic terms.

At both ends (c =cl, c~ ), the quadratic fixed map is
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Josephson-junction arrays [15—18], and p n-junction ar-
rays [19]. Such dynamical systems are known to exhibit
period-doubling or tangent bifurcations [6,15], mode
locking [14], attractor crowding [16], neutral stability of
"antiphase" states [17,18], and clustering [19—21].

Here we study the critical behavior of period doubling
of in-phase orbits in many coupled 1D maps with a global
coupling, in which each 1D map is coupled to all the oth-
er 1D maps with equal strength. We show that the re-
normalization results of two coupled maps are straight-
forwardly extended to this kind of many coupled maps.

A. Many coupled maps with a global coupling

FIG. 1. Plot of p for eL & c & c~.

e5T: X;+I=0, Y;+I=aY, (5.25)

Then the renormalized map T, of T (=T*+e5T) under
1s

X;+,=f*(X;), Y;+)= Y;+2@'Y;+0(e ) . (5.26)

Therefore, the perturbation e6T is an eigenperturbation
with eigenvalue A, =2.

In the original coordinates x and y, the fixed map (5.24)
is of the form

x;+ &
=F*(x;,y; ) =f*(x;)+g *(x,,y; )

which seems to be correct when the numerical method of
Ref. [6] is applied to double-check. Obviously, the map
(5.24) is invariant under JV, and thus we find the third
kind of the fixed map. The fixed map (5.24) is invariant
under a scale change of Y, unlike the above two kinds of
the fixed maps (5.4) and (5.16).

Consider an infinitesimal perturbation e5T to the fixed
map (5.24):

=F(x (t),x +I(t), . . . , x I(t)),
I 1 p ~ ~ ~ (6.1)

where N is a positive integer larger than or equal to 2,
x (t) is the state of the mth element at a discrete time
t, x = (x„.. . , x~ ), o. is the cyclic permutation of the ele-
ments of x, i.e., ox=(xz, . . . , x, ), and cr ' means
(m —1) applications of cr The . periodic condition im-
poses x (t)=x +N(t) for all m. Like the two-coupled
map case (N =2), the function F consists of two parts:

F(x)=f (x& )+g (I), (6.2)

where f is an uncoupled 1D map with a quadratic max-
imum and g is a coupling function. Thus the map T of
Eq. (6.1) becomes

T: x (r+1)=f(x (t))

+g(x (t),x +,(r), . . . ,x,(t)),

Consider an X-coupled map with a periodic boundary
condition:

T: x ((+1)=F(o 'x(t))

x;+y; x; —y;f If! +
2 2

(5.27)

(6.3)

The uncoupled 1D map f satisfies the normalization con-
dition

y;+, =F*(y;,x;) . f(0)=1, (6.4)
In this case, the reduced coupling fixed function is
G*(x)=—,'[f*(x)—1]. Therefore, the fixed map (5.27)
corresponds to the third solution (3.21) for G*. As
shown in the preceding paragraph, there exists a coupling
eigenperturbation (O, y) with eigenvalue X=2, where
p(x, y)=x —y. The reduced coupling eigenfunction of y
is N(x)= —1, which is just the solution (with A, =2) of
the reduced eigenvalue equation (4.18) in the case
G*(x)= —,

' [f' (x)—1].

VI. MANY COUPLED MAPS

Recently much attention has been paid to globally cou-
pled dynamical systems of many elements, in which each
element is coupled to all the other elements with equal
strength [6,14—21]. This kind of globally coupled sys-
tems with continuous or discrete time describes diverse
phenomena such as charge density waves [14],

and the coupling function obeys the condition

g(x, . . . , x)=0 for any x . (6.5)

Here we study a globally coupled map with a coupling
function g of the form

N
g(x)= —g [u(x;)—u(x, )], (6.6)

where u (x) is a function of one variable. Since the value
of g for xI= . =x&=x becomes zero, g satisfies the
condition (6.5). In this global coupling case, each 1D
map is coupled to all the other 1D maps with equal cou-
pling strength J/N inversely proportional to the number
of degrees of freedom N (hereafter, J will be called the
coupling parameter).

This globally coupled map has the permutation sym-
metry, that is, it is invariant under exchange of any two
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elements xk+ x1. In the N-dimensional phase space of
(x„.. . , x)v), the set of invariant points forms a symme-
try line on which x, = . =xN. If an orbit lies on the
symmetry line, then it is called the in-phase orbit;
x, (t)= . =x~(t)=x(t), i.e., x(t)=(x(t), . . . , x(t)) for
all t. Here we study only in-phase orbits.

B. Stability of orbits and the critical behavior

The stability analysis of an orbit in many coupled maps
is conveniently carried out by Fourier transforming with
respect to the discrete space I m ] [4,6]. Consider an orbit
jx(t)] = Ix (t); m = I, . . . , N]. The discrete spatial
Fourier transform of the orbit is

p —1

5$ (t+p)= + [f'(x(t+n))
n=0

N
+ y G(l)(x(t +n))e2ni(l —1)j/)v]5g (t)

1=1

j=0, 1, . . . , N —1 .

That is, the stability multipliers of the orbit are

p —1 N
k = Q [f'(x(t))+ g G'"(x(t))e " "j

]
t=O

j=0, 1, . . . , N —1 .

(6.12)

(6.13)

N

7[x (t)]=—g e ' ' x (t)=g (t),
m=1

j=0, 1, . . . , 1V —1 . (6.7)

Here each k is associated with stability of the mode of
wave number j. An in-phase orbit is stable only when all
its modes are stable, i.e., the moduli of all multipliers are
less than unity. From the condition g(x, . . . , x)=0, it
follows that

The wavelength of the jth Fourier mode is X/j.
To determine stability of an in-phase orbit we consider

an infinitesimal perturbation [5x (t)] to the in-phase or-
bit, i.e., x (t)=x(t)+5x (t) for m=1, . . . , N; 5x (t)'s
are not necessarily of in-phase in general. Since
g (x, . . . , x) =0, x (t) is found from the uncoupled 1D
map, i.e., x ( t + 1)=f(x ( t) ). Linearizing the ¹oupled
map (6.3) at the in-phase orbit, we obtain

N
5x (t+1)=f'(x(t))5x (t)+ g G'"(x(t))5x,+,(t),

1=1
(6.8)

where

N
G'"(x)=0 .

1=1
(6.14)

Ao= + f'(x(t)) .
t=O

(6.15)

Xo is just the same as the stability multiplier of the uncou-
pled 1D map. While there is no coupling effect on A.o,
coupling generally affects other multipliers A j's of j&0.

In the global coupling of the form (6.6), we first define
G(x) as

Therefore, for j=0 the stability multiplier A,o associated
with stability against the in-phase perturbation is

p —1

f'(x) =
dx

Bg(cr I)
~x1+m —1 X X —X

1 N

(6.9)
G(x)—:—u'(x),J

N

where u'(x)=du ldx. Then we have

G( )(x)= =G( )(x)=G(x)

(6.16)

Bg(x)
x1 x ] xpf

G "(x)=(1 N)G (x) . —
(6.17)

Let 5( (t) be the Fourier transform of 5x (t), i.e.,

1 N

5$, (t)=V[5x (t)]=—g e ' ' j/"5x (t),
m =1

j=0, 1, . . . , N —1 .

Then the Fourier transform of Eq. (6.8) becomes

(6.10)

Substituting these G"'s into Eq. (6.13), we find that all
stability multipliers A, s for nonzero j are the same:

p —1

[f'(x (t)) NG(x (t))]-
t=O

p —1= Q [f'(x(t)) Ju'( (—tx))] . (6.18)
t=O

5$ (t+1)= f'(x(t))

N
G(i)( (t)) 2mi(i —i)j/N

1=1

j=0, 1, . . . , 2V —1 . (6.11)

For an in-phase orbit with period p, its linear stability is
determined by iterating the linearized map (6.11)p times:

This implies that all modes with nonzero wave numbers
have the same stability. Consequently there exist only
two independent stability multiplier s ko and
A, ( ( =A, 2

= =A, & i ). Note also that all the stability
multipliers (6.15) and (6.18) are independent of N.

As for the two coupled maps, let us choose
f (x)=1—/Ix as the uncoupled 1D map. Then, in the
J—A parameter space, the stability diagram of in-phase
orbits with period 2" (n =0, 1, . . . ) in N globally coupled
1D maps for any N )2 is the same as that of two coupled
maps because the two independent stability multipliers A,o
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and A, , for any N are the same as for the N=2 case [22].
In fact, the coupling parameter c of two coupled maps
corresponds to J/2 and therefore the stability diagram
can be obtained from the two-coupled map case by re-
placing c with J/2. Consequently the two parameter
scaling factors y1 and y2 associated with scaling of the
nonlinearity ( 3) and the coupling parameter (J), respec-
tively, are the same regardless of N as those of two couple
maps. Namely, the critical behavior of N globally cou-
pled maps for N & 2 is essentially the same as that of two
coupled maps, in which case there exist three kinds of
critical behaviors (for details of the N=2 case, refer to
Ref. [10]).

fn+i
gn+1 gn

(6.24)

=f*(x (t))

+g*(x (t),x +,(t), . . . ,x,(t)),

where the rescaling factor a is 1 /f „(1 ) and f„(g„)is the
uncoupled (coupling) part of the n times renormalized
function F„under the renormalization transformation A'.

Under iterations of JV a critical map is attracted to a
fixed map T*:

T'. x (t+1)=F'(cr 'x(t))

C. Renormalization analysis 771 1 y ~ ~ ~ p N (6.25)

We follow the same procedure of the preceding sec-
tions for two coupled maps. The rescaling operator of
Eq. (3.2) is aI, where I is now an N XN identity matrix.
Applying the period-doubling renormalization operator
A' of Eq. (3.1) to the ¹oupled map (6.3), we obtain the
renormalized map T, :

T, : x (t+1)=F((o 'x(t))

=F, (x (t),x +,(t), . . . ,x,(t)),

where (f ',g*) is the fixed point of A with a= 1/f*(1).
Since f ' is just the 1D fixed map, only the equation for
the coupling fixed function g* is left to be solved, which
satisfies

g*(x)=af * F*
A

+ Q File FQ
A

m=1, . . . , N . (6.19)

The renormalized function F1 also consists of two parts,
the uncoupled part f, and the coupling part g i

..

I O~ 'XF ( ()x=aF F —,. . . , F
CX CX

=f, (x, )+g, (x) . (6.20)

Here the renormalized coupling function g1 also obeys
the condition (6.5), i.e., g, (x, . . . , x) =0 for any x.
Therefore, the renormalized uncoupled function f,
satisfies

af' f*— (6.26)

Like in the two-coupled map case, we construct a
tractable recurrence equation for the reduced coupling
function:

G'"(x)= g l = 1
a (I)

x1 x) = ' =x~=x
(6.27)

That is, differentiating the recurrence equation (6.24) for
g with respect to xi (l = 1, . . . , N) and setting
x1 = . =x& =x, we obtain

X1f, ( x))=F, ( x„.. . , x)(=af f a (6.21) G„"+,(x)=f„' f„ 6 (1)

A

g, (x)=af F +eg F —,. . . , F
CX

L

(6.22)

Then, Eqs. (6.21) and (6.22) define a renormalization
operator A of transforming a pair of functions (f,g ):

(6.23)

where the rescaling factor a is chosen to preserve the
normalization condition f, (0)=1, i.e., a= 1/f (1). Sub-
tracting f, from F„we have

+G(I)

+ g G(E) f G(1—i+1)
a

x
(6.28)

Note that these reduced coupling functions satisfy the
sum rule of Eq. (6.14) and G'"(x)=G"+ '(x) due to the
periodic boundary condition.

In a global coupling case of the form (6.6), the initial
reduced coupling functions [G'"(x)] satisfy Eq. (6.17),
i.e., there exists only one independent reduced coupling
function G(x). Then, it is easy to see that the successive
images [G„'"(x)] of [G'"(x)] under the transformation
(6.28) also satisfy Eq. (6.17), i.e.,

By successive iterations of %, we obtain a recurrence
equation:

G„"'(x)= . . =G' '(x) =G (x)

G„'"(x)=(1 N)G„(x) . — (6.29)
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Consequently, there remains only one recurrence equa-
tion for the independent reduced coupling function G (x): Ao for G*(x)=0

G + (x)= f„' f„ X X—NG„ f„
)fc0 for G*(x)= f—* (x)

1 for G "(x)=—[f' (x)—1] .
N

(6.39)

+G„ f„ X

Then, together with the first row of Eq. (6.24), Eq. (6.30)
defines a reduced renormalization operator A of trans-
forming a pair of functions (f, G):

f.+i f.
G. +1

(6.31)

Gg( ) f 4 f 0

a
—NG* f ' — G*

CX CX

Since the reduced renormalization transformation (6.31)
holds for any globally coupled-map cases of N ~ 2, it can
be regarded as a generalized version of Eq. (3.15) in the
two-coupled-map case.

A pair of critical functions (f, G) is attracted to a pair
of fixed functions (f*,G*) under iterations of the re-
duced renormalization operator %, where f* is the 1D
fixed map and 6* satisfies

where

h„+,(x, ) = [X)h„](x, )

T

=af* f* X1
h„

CX

As noted earlier in Sec. VI B, A,o and A. 1 are independent
of N, and hence they are just the critical stability multi-
pliers in the N=2 case.

Now we examine how a pair of functions
(f*(xi)+h(xi), g*(x)+y(x)) near a fixed point
(f*,g *

) evolves under the renormalization transforma-
tion A. Linearizing % at the fixed point (f*,g

* ), we ob-
tain an equation for the evolution of a pair of
infinitesimal perturbations (h, y):

h„+, h„X, 0 h„
(6.40)

(6.32)

Here G*(x) is related with the reduced coupling fixed
functions I

G*'"] in the same way as in Eq. (6.29), that is,

X1
+ah„ f*

CX

y„+,(I)= [Xzp„](x)+[X3h„](x)),
N

[X2p„](x)=g aF,* F*
i=1 a

N —1

F~ 0 X

(6.41)

(6.42)

G*"'(x)= . . =G*' '(x)=G*(x),
G*"'(x)=(1—N)G*(x) .

(6.33) CT XX 0'n

As in the N=2 case of Eqs. (3.19)—(3.21), we find three
solutions for G*(x):

G*(x)=0,
+ay„F*

CX

N —1
CT X

(6.43)

G*(x)=—f* (x),

G*(x)=—[f*(x)—1] .

(6.35)

(6.36)

X[X h„](x,)= g aF,* F*
i=1 a

Xh„(x;)

ON 'X

For the same reason as for the two coupled maps [see
Eq. (4.17)], the critical stability multipliers have the
values of the stability multipliers of the fixed point of the
fixed map T*. From Eqs. (6.15) and (6.18), we obtain two
independent critical stability multipliers A,o and X1.

A.()
=f* (x ),

A, ,
*=f* (x ) NG *(x ), —

(6.37)

(6.38)

where x ( =0.5493. . . ) is the fixed point of the 1D fixed
map f*(x). A,

*
( = —1.6011. . . ) is just the critical stabil-

ity multiplier of the uncoupled 1D map and the other
multipliers are the same as A.1, i.e.,
A, )* =A, z

= . = A,& i, as in Eq. (6.18). Substituting
G*(x)'s into Eq. (6.38), we have

+czh„F* a
—[X,h„](x, ) . (6.44)

A,y(x) =X2y(x) . (6.45)

We introduce reduced coupling eigenperturbations by

(p(l)( )
~V'(I)

Xl = ' =X~=X
1=1, . . . , N . (6.46)

Here F*(x)=f*(xi )+g*(x), and the subscript
i (i =1, . . . , N) of F;* denotes the partial derivative with
respect to the ith argument. The reducibility of X into a
semiblock form, following the same arguments as for the
two coupled maps, implies that the coupling eigenvalues
of the present interest can be obtained only by solving
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Then, differentiating the eigenvalue equation (6.45) with respect to xi and setting xi = =x&=x, we have a set of %
equations:

AC&'"(x) =f* f*
a

g(l) x +q)(l) f4 f4'

a

+ g G4(l) f4
i =1 a

@((—i+ i) x +q)(i) f e x
G s(l —i+ I)

CX a (6.47)

In a global coupling case of the form (6.6), the reduced
coupling eigenperturbations I4&' 'I satisfy

(2) G*(x)=(1/N)f*(x): no relevant coupling eigen-
value.

(3) G*(x)=(1/I(I)[f*(x) 1]: A, =—2.
4( '(x)= . =e' '(x)—:e(x),
4&("(x) = ( 1 —%)@(x), (6.48)

VII. SUMMARY

M&(x)= f* f* —XG* f*

(6.49)

i.e., there exists only one independent reduced coupling
eigenperturbation 4&(x). Substituting the 4&'"'s and
G""'s into Eq. (6.47), we obtain an eigenvalue equation
for @(x):

The critical behavior of period doubling in two coupled
maps is studied by a renormalization method. We find
three kinds of fixed maps, each of which has a common
relevant eigenvalue associated with scaling of the non-
linearity parameter. But the relevant coupling eigenval-
ues associated with scaling of the coupling parameter
vary depending on the kind of the fixed maps. Their
values agree well with the numerical values of the cou-
pling parameter scaling factor. We also extend the renor-
malization results of two coupled maps to many-
globally-coupled-map case.

The reduced eigenvalue equation (6.49) can also be ob-
tained as follows. Consider an infinitesimal perturbation
(0,@) to a fixed point (f*,G*) of the reduced renormal-
ization operator A of Eq. (6.31). Linearizing % at the
fixed point (f*,G* ), we obtain an equation for the evolu-
tion of N:

4&„+)(x)= [X2@„](x)
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f 4 f 4 +G f X

a
APPENDIX A: COUPLING EIGENVALUKS

ASSOCIATED WITH COORDINATE CHANGES

f 4

CX

(6.50)

In this appendix, we obtain coupling eigenvalues (4.9)
associated with smooth coordinate changes.

Consider an infinitesimal coordinate change
S=I+eU (e small). Here I is the identity transforma-
tion and U is of the form

The eigenvalue equation of the reduced linearized opera-
tor X2 is just the one of Eq. (6.49), which is the same as
Eq. (4.14) of the two-coupled-map case except for the fac-
tor %. Following the same procedure, therefore, the
relevant coupling eigenvalues k in N-globally-coupled-
map case for %)2 are obtained as follows.

(1) G*(x)=0:

U(x ) = ( U, (x), U2(x) ), (A 1)

where x = (x,y), Ui (x,y) = (y —x)i'(x, y), and
U2(x, y)=U, (y, x). This coordinate change generates an
infinitesimal coupling perturbation e6T to a fixed map
T* [x, +,= *(x;,y, ), y;+, =F*(y;,x;)];

a (linear coupling case)
2 (nonlinear coupling case) . (6.51)

6T(x)= (y(x,y), ip(y, x) ),
where

p(x, y) = U, (F*(x,y), F*(y,x)) U, (x,y)F*, (x,y) —U2(x—,y)F2 (x,y)

= tF*(y,x) F*(x,y) ]Q(F*(x,y), F*(y—,x) ) (y x)F i* (x,y))t)(x, y) —(x— y)F—2 (x,y)g(y, x) . —
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Here the subscript i (i =1,2) of F* denotes the partial
derivative with respect to the ith argument. The pertur-
bation y(x,y) is transformed into p& under the linearized
renormalization transformation X2 of Eq. (4.4):

(A4)

[F,( ) F, ( )]q
F*(x7y) F*(y,x)

a

B„=
a„0
0 a„

P„O
0 13„

1 na„=,13„=+a, =
C

T„=JV"(T,)=B„T„,B„'=A„T,A„',
where

(82)

(83)

(84)

—(y x)F—f (x,y)g
0! a

—(x y)F2—(x,y)g a'a (A5)

Therefore, y becomes an eigenfunction of L2 with eigen-
value A, =a "+ ' when g(x,y)=g& (x,y)
=x y (I, m )0). When l+m )0, all eigenvalues are ir-
relevant. When l =m =0, we have the marginal eigenval-
ue A, = 1, which corresponds to the scale change of
Y [=(x—y)/2]; see Eq. (5.8). In the case of the fixed
map (5.27), y(x, y) corresponding to the marginal eigen-
value becomes identically zero, unlike the other two cases
of fixed maps (5.2) and (5.15). This is because the fixed
map (5.27) is invariant under the coordinate change (5.8).

The reduced coupling eigenfunction N of the above
coupling eigenfunction is

C&(x)=[f* (x) —2G*(x)][f*'+ (x)—x'+ ] . (A6)

This is just the eigenfunction of the reduced eigenvalue
equation (4.14) with eigenvalue A. =a "+ '. Note that
the marginal eigenvalue case cannot be obtained from the
reduced eigenvalue equation because @(x)=0 for
t+~ ——O.

X:—R' '(X Y)=R(X i Y i),
Y —=S' '(X, Y)=S(X „Y,),

(85)

(86)

where (Xo, Yo) =(X, Y), and the functions R' ' and S™
are even and odd in Y, respectively.

To proceed, we will Taylor expand the functions in
Eqs. (85) and (86) about the origin (0,0). For brevity, we
will denote the origin simply as 0, and (X &,

Y'
&),

which is the (m —l)th image of the origin under T„asZ, . First, expand R' ' and S' ' about the origin to
obtain

X =R' '(O)+R', '(O)X+R', '(O) Y+-'R', ,'(O)X'

+R ', 2'(0)XY+ —,'R ~ 2' (0)Y +
Y =S' '(0)+S', '(0)X+S2 '(0) Y+ —,'S', ,'(0)X

Here fo
=f, and f„ is the n-times renormalized map, i.e.,

f„(x)= a„f„&(x la„). As n goes to the infinity, T„con-
verges to a fixed map T*: lim„„A ( T, ) = T*

T„of Eq. (82) consists of iterating T, 2" times and
then rescaling. Therefore, to obtain a QA of T„, the pro-
cedure is divided into two steps: (1) Obtain a QA of T, .
(2) Rescale the coordinates X and Yby f, (0).

We erst determine T, up to quadratic terms. Consid-
er the mth iterate of T„ i.e., T, ; hereafter, we will use
m =2". That is, denoting as (X, Y ) the mth image of
(X, Y) under T„

APPENDIX 8: METHOD TO OBTAIN
THE QUADRATIC FIXED MAP +S', ~'(0)XY+ —,'S2™2'(0)Y + (88)

In the following, we outline a method to obtain a quad-
ratic approximant (QA) of a fixed map, i.e., to determine
a fixed map up to its quadratic terms in the system of
coordinates Xand Yof Eq. (5.3).

Expressing the critical map T, of Eq. (3.12) in terms of
Xand Y, we have

X;+,=R(X;, Y, )

where the subscript i (i = 1,2) denotes the partial deriva-
tive with respect to the ith argument. Next, a Taylor ex-
pansion of the second expressions in Eqs. (85) and (86),
i.e., R (X &, Y &) and S(X &, Y &), about the ori-
gin gives

X =R(Z, )+R,(2,)R', "(0)X

+R~(Z, )S', "(0)X+R,(Z, )R2 "(0)Y
=

—,'[f,(X;+Y;)+f,(X; —Y;)]

+ —,'[g, (X;+Y;,X, —Y; )+g, (X;—Y;,X;+Y,. )],
+R~(Z, )s~™ 1)(0)Y+ .

Y =S(Z, )+S,(Z —1)R', "(0)X
(89)

Y;+,=S(X;,Y;)

=
—,'[f, (X, + Y, ) f, (X; —Y;)]-
+ —,

' [g, (X, + Y, ,X; —Y; ) —g, (X; —Y, ,X, + Y, ) ] .

(81)

Note that R is even and S is odd in Y.
The nth image T„ofT, under JV is

+S~(Z i)si "(0)X+Si(Z,)R~ ' (0)Y

+s,(z, )s,' -"(o)Y+ (810)

It can easily be shown that the constant terms are
R ' '(0, 0)=f, (0) and S' '(0, 0)=0. By comparing the
coe%cients of two expansions, the coe%cients of linear
and quadratic terms can also be obtained recursively,
which is represented in a matrix form as follows:
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R( R2

S) S2

R) R2

S) S2

L
m —1

m —1
m —1

(811)
where the subscript i (i =1,2) denotes the partial deriva-
tive with respect to the ith argument. Note that M can
be determined from the elements of L . We thus have
theQA of T, .

where

R( ( RI 2 R22
+ S S S Z ™-Ir

1, 1 12 22 m —1

(812)
X
Y

f, (0)

0

X
+L y +—Q 2XY1

Y2

(815)

R(m) R(m)
1 2

L—m S(m) S(m)
1 2

R (m)
1, 1

S(m)
1, 1

R (m)
1,2

S(m)
1,2

R (m)
2, 2

(I)S22 o

(813)

Rescaling the coordinates X and Y'by P„' [ =f, (0)],
we obtain the Q A of T„as the following form:

m —= 2R™S('—m 1 1

S(m)
1

S(m)S(m)
1 2

S(m)'
2

R (m)R (m) R (I)
1 2 2

R (m)S(m) +R (m)S(m) 2R (m)S(m)
1 2 2 1 2 2

Xi +1

Y;+i

1 X;
+L„y + Q„

I 7l

X;

2X; Y;

YI

(816)

(814) The QA of T„converges to that of T" as n ~ ac.
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