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Anomalous diffusion in dynamical systems: Transport coefficients of all order
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The theory of Ruelle's zeta function [Thermodynamic Formalism (Addison-Wesley, Reading, MA,
1978)] is extended to describe anomalous transport induced by dynamical chaos. It is shown that P(q)
for the generating function of the displacement may not exist for supradiffusive processes, and that the
di%culty may be overcome by the introduction of a two-parameter function P (P, q). We present two ex-

actly solvable examples of anomalous diffusion induced by intermittency, to which our method is ap-

plied.
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I. INTRODUCTION

A transport process such as diffusion is a most conspi-
cuous phenomenon in spatially extended chaotic systems.
Examples include Auid mixing, high-temperature plas-
ma, and celestial mechanics. Over the last few years,
deterministic diffusion has been studied from the point of
view of dynamical systems. The transport coe%cient and
the decay rates of relaxation have been successfully relat-
ed to dynamical quantities of deterministic chaos such as
the Lyapunov exponent, the Kolmogorov-Sinai entropy,
and the Ruelle resonances [I].

Many model systems of deterministic diffusion display
a chaotic "sea" that coexists with certain regular orbits in
the phase space [2]. If a regular component is merely
neutrally stable, a typical orbit can return and remain in
its neighborhood for a very long time, with a pausing-
time distribution displaying an algebraic long tail. Each
such sojourn results in an episode of either ballistic or
stagnant motion, depending on the nature of the regular
component. Consequently, the square displacement after
a time t may grow like ([r(t)—r(0)] ) —tr, y&1; then
the diffusion coefficient does not exist (y & 1 in the ballis-
tic case and y (1 in the stagnant case). The effects may
also be subtler when y = 1, but certain higher moments of
r(t) —r(0) behave anomalously, and higher-order trans-
port coefficients such as the Burnett coefficient [3] are
divergent. A systematic approach to anomalous diffusion
should enable one to calculate the transport coeKcients
of arbitrarily high order. The aim of the present work is
to propose such a general description.

A natural way to describe diffusion is to introduce a
function P (q) as follows [4,5]:

P(q)= lim —In(eq '" ' ' )
1

where the average ( ) is performed with an invariant
measure of the dynamical system. Then, in principle, the
long-term behavior of all moments of r(t) —r(0) could be

deduced from P (q). Let us define the kth-order transport
coe%cient as

1 d P
2k

q=0

[we assume that the system is translationally symmetric,
so that P(q)=P( —q)]; then the diffusion coefficient 2)
and the Burnett coefficient X are given by

2)—=%,= lim —([r(t) —r(0)] ),1
1

%—=X~= lim —
t (Ir(t) —r(0)] )

1

g~~ 41

—3([r(t)—r(0)]')'] .

In a most general sense, we shall say that a diffusive pro-
cess is normal if all %k exist, and that it is anomalous oth-
erwise. In other words, anomalous diffusion is identified
to the nonanalyticity of P (q ) at q =0.

However, as we shall demonstrate below, for anoma-
lous diffusion it is not guaranteed that P (q) exists. If this
happens to a chaotically diffusive state that is not isolated
from a certain regular state, the latter will dominate the
long-terrri behavior of the system, and hence determine
P(q). In this paper we introduce a two variable function-
P(P, q), a generalization of P(q), where P helps to select
the desired invariant measure to be used in computing
transport coefticients. We shall illustrate our approach
by two exactly solvable models of anomalous diffusion in
intermittent dynamics. Those are perhaps the simplest
situations of chaotic motion in the presence of a ballistic
mode or a stagnant mode, respectively, so our con-
clusions drawn here may be considered as quite general.
At the end, we shall apply our results to the interpreta-
tion of a recent numerical work on the Hamiltonian stan-
dard map.
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II. THE ZETA FUNCTION

Let us consider a map f(x) defined in a one-
dimensional array of unit intervals (cf. Fig. 1), such that
f(1—x)= 1 —f(x) for x G [0,1] (refiection symmetry) and
f(k +x)=k +f(x) (translational symmetry). The unit
interval [0,1] is divided into three subintervals, I „Io,
and I+„such that [f(x)]=i if x EI;. ([x] denotes the
integer part of x. ) The displacement after n iterations
starting at x is given by r (n, x)= [f "(x)]. Because of the
translational symmetry, the diffusion can be described by
a reduced map f (x)=f(x) (mod 1) defined on an elemen-
tary cell (the unit interval). In terms of an indicator func-
tion I (x) =i if x HI;, the displacement in the original sys-
tem is now expressed as r (n, x) = gk O I(f"(x)).

According to the thermodynamic formalism of dynam-
ical systems [6], we introduce a topological pressure that
depends on two parameters, P and q:

The P (P, q) function, from which many diffusion proper-
ties can be derived (as we shall see below), is expressed
solely in terms of the dynamical stretching factors of the
periodic orbits, without ad hoc assumptions or probabilis-
tic approximations.

We have P (P, q) = PF—(P, q), where F(P,q) is formally
a free energy. P (P, q =0) is the well-known Ruelle topo-
logical pressure of the map f (x) [6]. The parameter p,
formally an inverse temperature, selects an invariant
measure of the system. In particular, p= 1 corresponds
to the natural measure of Sinai, Bowen, and Ruelle. The
second parameter, q, is formally analogous to an external
field. The partial derivatives of P(p, q) with respect to q,
at q=0, yield the generalized transport coefficients S„(p),
corresponding to the p-dependent invariant measure.
Note that P(P= 1, q)=P(q) of Eq. (1). If we define a
zeta function

P (P, q) = lim —lnZ„(P, q ),1
(4a)

oo

g(z, P, q) =exp g —z "Z„(P,q)n=i"

f"(x)=x k=0

where Z„(P,q) is a partition function, given by a sum
over all the cyclic orbits of period n of the map f (x),

n —1

Z„(P,q) = g exp —P g 1n~ f'(f (x))
~

then P(P, q)=in[1/z*(P, q)], where z*(P,q) is the small-
est singularity of g(z, p, q).

Consider orbits of length n such that
n —1 1 n —i

in~ f '(f "(x))
~

-A, , —g I(f"(x))—v,
"k=o Pf k 0

(0)

+q g I(f"(x))
k=0

(b)

(4b) where A, and v are the Lyapunov exponent and the dis-
placement velocity of finite orbits. Suppose that the num-
ber of orbits with the same values of A, and v grows ex-
ponentially with the orbit's length n, as -exp[nS(A, , u)],
where S(A,, u) is an entropic function. Then, we have

f(x} 1(x} P(P, q) =S( & k &, & u &)—& A, &P+ & v &q, (7)

where (A, ) and ( u ) are the mean values as functions of p
and q. S((A, ), (u ) ) is hence a Legendre transform of
P(P, q).

Let us give a simple example. Consider the chaotic
diffusion induced by the following map [7]:

10 10

7x if 0&x (—,'

f(x)= 7( —,
' —x)+ —,

' if —,'&x & —,'

7(x —1)+1 if —,'&x &1

[with f(x +k) =k +f(x) ]. The function P (P, q) can be
readily obtained, which gives

(c) P(P, q)=ln[3+4cosh(q)] —Pln7 . (9)

f(x} f(x} Note that P (p) =P (p, q =0)= ( 1 —p)ln7. Transport
coefficients of all orders exist since P(q) is an analytic
function of q. Furthermore, from Eqs. (7) and (9), we

have
0 I I I I I I

O A A - ".A A-2 2

0 I I I."A A A A ." 1
1 2

FIG. 1. (a) The GT map and (b) the GNZ map defined in the
interval [0,1]. (c) The reduced GT map that is piecewise linear-
ized in each of the doubly infinite intervals 2+k, k =1,2, . . . .
(d) Same as (c) for the reduced GNZ map, where the middle
branch is neglected.

(10)
'dP 4 sinh(q)

(v g=
Bq 3+4 cosh(q)

In this case, (v) is independent of p. Therefore, the
mean velocity is not zero if the "external field" q is
present. It is a monotonically increasing function of q,
converging to +1 as q ~+~, respectively.
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III. ANOMALOUS DIFFUSION

In what follows we shall calculate P (13,q) explicitly for
two exactly solvable models of anomalous diffusion.
They are piecewise-linearized versions of the Geisel-
Thomas (GT) map and the Geisel-Nierwetberg-Zacherl
(GNZ) map [8] displayed in Figs. 1(a) and l(b). The GT
(GNZ) map is known to exhibit subdiff'usive
(supradiff'usive) behavior due to a Pomeau-Manneville
(PM) mechanism of intermittency. We shall show by
these examples how the analyticity of P(P, q) is broken
because of anomalous effects of arbitrary order.

First consider the GT map [Fig. 1(a)]. Its reduced map
f (x) has a slope everywhere larger than 1, except at
x = 2. For ~x

—
~ ~

&& 1,f (x) has the following form:

f (x+ —,')= —,'+x+c sgn(x) x "+'~ ', a)0 .

With the partition shown in Fig. 1(c), the unit interval
is divided into a doubly infinite cells, Ak,
k =+1,+2, . . . . We can choose Ak such that

:::::::.::::::::::diff usi~e::::.':.'::::::.

:::::::::::::::,state'. :::::,::::,::.':.::.:::..-::.

ba jlisti c
state

ba I li st i c

state

(b)

~k—= I&+kI-[k —(k+1) ] — (a/2)k '+"
k~ oo

For this simple model, the zeta function of Eq. (5) can
be calculated exactly (see the Appendix), which yields

'(z, P, q) = (1—z) [1—2MO(z, P)cosh(q) ], (13)

where Mo(z, ij)= g„",z "b,~. As expected, there are two
ways for g(z, P, q) to diverge. The simple singularity
zo = 1 corresponds to the neutral fixed point, and the
singularity z*, given by

(12)

gk &
b.k =

—,'. The map is linearized in each cell, much
like for the PM map of intermittency [9]. The slope of
the map in the cell 2+k is sk =

leak

~/bk I
k = I »

(50=1). The local stretching rate is

kk
—=lnsk — 1/k —+0 .

k~ oo

4 g n b, „
n=1

0 if ca&1
C

finite if') 1 .
(15)

In fact, the transport coefficients of all orders, %k, can
be explicitly calculated. Qualitatively, one can deduce
from Eq. (14) that, in the case of a & 1, P(P= 1, q)-q
for ~q~ &&1. Thus, if 1/(m+1) &a&1/m,

FIG. 2. The phase diagram in the (P,q) plan. (a) The GT
map has two phases: diffusive and localized motion. (b) The
GNZ map has three phases: one diffusive and two ballistic
motions. The anomalous diffusion occurs along the phase-
separation curve in both cases. Please see the text for more de-

tails.

Mo(z*, P) =
—,'sech(q), (14) %k=0, k=1 2, . . . , m, and% +, =Do . (16a)

describes the chaotic diffusion for almost all initial condi-
tions.

Which of the two singularities is the smallest one [and
hence determines P(13,q)] depends on the parameters P
and q. The (P, q) plan is divided into two regions (local-
ized and difFusive state) [Fig. 2(a)]. Note that, with q=O,
P (P, q=O) is reduced to the P(P) of the PM intermitten-
cy, with P(P)—:0 for 1&P [9]. In the (/3, q) plan, the
curve P(q), which separates the localized state from the
diff'usive one, is given by inserting z*=1 into Eq. (14).
The curve thus obtained is an even function of q, with a
unique minimum at P= 1 [see Fig. 2(a)]. In other words,
even for f3~1, when the localized state is dominant if
q=O, the application of an "external field" (q&0) may
delocalize the system, and chaotic diffusion becomes pre-
valent.

Many properties of the diffusive dynamics can be ob-
tained from Eqs. (12) and (14). For instance, the diffusion
coefficient 2) is given by [10]

And, if 1 ~ m &a &m +1, we have

P(P=1, q)= g %kq "+X q +o(q );
k=1

hence,

%k=finite, k =1,2, . . . , m, and X +i=De . (16b)

These conclusions are universal in the sense that they de-
pend only on the exponent n of the original system. In
particular, we emphasize that, when the diffusion
coefficient 2) is finite, transport coefficients of sufficiently
high order must diverge.

We now turn to the GNZ map [Fig. 1(b)]. As before,
we reduce the problem to a circle map f (x). In this case
the middle branch off (x) is not essential, and is replaced
by a vertical line at x =

—,'; the remaining two branches
are matched so that f (x) is defined over the whole unit
interval [see Fig. 1(d)]. The map f (x) satisfies
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r

x+cx if x «1f (x)= '
i+i/ax —c(1—x) if 1 —x &(1, (17)

const if k ~m
(R) (1—p)' ' oo if k )mP~1

(23b)

M+ = g z "(2b,„)ie+—'i" .
n=1

We have either P (p, q) =+q of the ballistic motions (with
constant velocity +1), or the nontrivial P(p, q) =1n(1/z*)
of chaotic diffusion, where z* is given by

g z*"(2b,„)~e " g z™(2b, )~e =1 .
n =1 m=1

(19)

All transport coefficients %k can be computed from Eq.
(19). For instance, the difFusion coefficient [11]

2

g n 6„—2 g nA„
n=1 n=1

2g nA„
n=1

r

finite if a) 2
C

if ex~2 . (20)

for 0(a. The function f (x) is linearized in each of the
doubly infinite cells shown in Fig. 1(d), with b, k

=
l 2+k l

satisfying Eq. (12).
For this map, the zeta function g(z, p, q) can again be

explicitly obtained, which yields

'(z, P, q)=(1 —ze i)(1 —ze+'i'(I —~+~ ),

For instance, in the limit p~l, if 1&a &2, then
2)-(1—P) ~ oo; and if 2 & a &4, then 2) is finite, but
S-( I —P) ~~ oo.

IV. CONCLUDING REMARKS

Let us end with a comment on a recent study of the
momentum diffusion in the Hamiltonian standard map
[5]. These authors defined a function 4'(q) that is related
to P(q) simply as P(q) = (U )q —%'(q). It was found nu-
merically that in the presence of an acceleration mode
(corresponding to ballistic motion), the function P(q) is
the same as that of the acceleration-mode periodic orbit
itself. On the other hand, in the presence of
nonacceleration-mode islands (corresponding to stagnant
motion) P(q) is nontrivial and the diffusion coefficient Xl
is finite. These results are in perfect agreement with our
analytic predictions. On the basis of a similarity between
the PM intermittency and two-dimensional Hamiltonian
maps [13],we suggest that with nonaccelerator-mode is-
lands, the function P(q) of the standard map is not ana-
lytic; indeed, the Burnett coefficient X may already be
divergent; and with accelerator modes the function
P(p, q) instead of P(q) ought to be considered. Further
studies are worthwhile from the present point of view, on
the standard map as well as on more difficult problems
like the stochastic web in the ABC fiow [14).

It can be readily seen that as long as q&0 and P) 1 no
solution exists for Eq. (19). So the situation here is quite
different from the previous case: letting p= 1, we do not
have a nontrivial singularity, and P(q) must be that of a
fixed point of the ballistic motion [12]. The (p, q) plan
[Fig. 2(b)] is divided into two (ballistic and diffusive)
phases, separated by a curve p(q) given by inserting
z* =exp(+q) into Eq. (19). For 1 —p« 1, one has

(21)
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Therefore, one must first calculate the nontrivial
P(p, q) with p& 1, and then study the limit p~ 1 after-
wards. Let us expand P (p, q) for lql (& 1 —p &(1,

P(P, q)=P(P)+ g Xk(P)q'",
k=1

(22)

(P) ( I P)(i —2k)/a

P—+1
(23a)

and in the case of a) 1, if 2m &a(2(m +1),
m =0, 1,2, . . . , then

where Si, (p) are the generalized transport coefficients as
function of p. From Eq. (19) one can show that as long as
p(1 all the coefficients Sk(p) are finite, and hence the
diffusion is normal. Moreover, in the limit p —+1, in the
case of a&1,

APPENDIX

In this Appendix we provide a proof of Eq. (13). If the
unit interval is partitioned into three cells I „Io, and
I+„each orbit of the map f (x) [Fig. 1(c)] is uniquely
coded by a string of spins: x =(oo, o „.. . ,
o„„o.„, . . . ), if f'( )ExI, o;= —1, 0, or +1. The

partition function Z„(P,q) [Eq. (4b)] is that of a spin lat-
tice of size n; the interaction Hamiltonian of the n spins
among themselves and the interaction of the spins with
the external field, respectively, are represented by the first
and second terms of the argument of the exponential
function in Eq. (4b). The periodic boundary condition on
the spin lattice is equivalent to the use of periodic orbits
of the original dynamical system.

In order to evaluate
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oo n

in'(z, P, q)= g Z„(P,q),
n

(Al)
T= +Uo U+

QU+ Uo QU+ U

0 (A6)

n+1 n+1
u„= gAk= gin

k=2 k=2
(A2)

For the three types of spin domains, we define Uo, U+,
and U as follows:

we shall substitute the sum over spin states by a sum over
states of spin domains. A k domain of type i = —1,0, 1

consists of k spins of that type, necessarily followed by a
spin of difj"erent type. Domains of type 0 are exclusively
responsible for long-range interactions. We denote by u„
the interaction potential of an n domain of type 0,

=ln ~.+1

QUU, QUU, 0

in[((z, P, q)]= g + e
n n

—PA,
QO

, d

Then, it can be readily seen that in[((z, P, q)] of Eq.
(Al) with the periodic boundary condition may be writ-
ten as

u)

Uo = g z "exp( —Pu„)= g z"
n=1 n=1 1

00
1

U+ = g z "exp( PA—,n +, qn ) =
z 'exp(/3A,

&

—q) —1

oo
1

U = g z"exp( —Pi, ,n qn)—=
z 'exp(PX&+ q) —1

(A3)

(A4)

(A5)

(A7)

with tr(T) =0.
The factor 1/d in Eq. (A7) is explained as follows. In

the sum over spin states in Z„(P,q), there is a rotational
symmetry that gives n times the value of a typical term.
We may use this n to cancel the factor 1/n in Eq. (Al).
The final result is the sum over the spin states that does
not have the rotational symmetry. The corresponding
sum over the domain states also breaks the rotational
symmetry: a factor 1/d is included to compensate for the
multiplicity d due to the rotational symmetry in tr(T ).

It follows from Eq. (A7) that
where A, t =in(1/6& ).

Equation (Al) may now be expressed as a sum over all
possible configurations of U+, Uo, and U domains. In
order to take into account the fact that one domain must
be followed by another of different type, we define the fol-
lowing transfer matrix:

g(z, P, q) =(1—z) '(1 —ze '
)

X(1—ze '
) '[det(I —T)] (Ag)

where I is a 3 X 3 identity matrix. An explicit calculation
of det(I —T), using Eqs. (A2) —(A6), yields Eq. (13).
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