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Thermodynamic behavior of chains on the Bethe lattice

Evaldo Botelho* and Jurgen F. Stilck
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We solve models of self- and mutually avoiding M-mers placed on the Bethe lattice with additional en-

ergies that include (i) semiAexibility of the chains, (ii) attractive interactions between first neighbors, and
(iii) preference for spatial orientation of bonds on the lattice. Free energies and phase diagrams are ob-
tained and compared to earlier results when available. For the case of polymers on an anisotropic Bethe
lattice with a coordination number equal to 4, we find two different polymerized phases.

PACS number(s): 05.70.—a, 64.60.Cn, 05.50.+q

Self- and mutually avoiding chains placed on regular
lattices have been studied for quite a long time as models
for a variety of experimental situations. Without at-
tempting completeness, we may mention dimer models
[1], originally proposed for studying adsorbed diatomic
molecules on a solid surface [2], and infinitely long
chains, which have been extensively used as models for
polymers [3]. In our recent work [4], the problem of cal-
culating the entropy of chains with M monomers (M-
mers) each placed on Bethe and Husimi lattices was con-
sidered, and it was shown that this problem is exactly
solvable in a variety of cases. Also, for some particular
cases where exact results on regular lattices are available,
the entropy calculated on Bethe and Husimi lattices
turned out to be quite close to the exact values on the
regular lattices with the same coordination number, indi-
cating that calculations on cores of trees may be a good
approximation for estimating properties on regular lat-
tices.

In this paper we generalize the earlier athermal calcu-
lations [4] by associating an energy to each chain
configuration on the lattice, thus studying the thermo-
dynamic properties of chain models on the Bethe lattice
in three specific cases.

(i) Semifiexible chains, where a bending energy E is as-
sociated with each m. /2 rotation (bending) of the chain
(for hypercubic lattices the angle between consecutive
bonds may be either 0 or m/2). This type of model has
been used to study polymer melting [5].

(ii) Self- and mutually interacting chains, where an at-
tractive interaction energy c is included between first-
neighbor monomers which are not consecutive along the
same chain. Thus we consider an "M-mer lattice gas, "
which for the particular case of dimers (M =2) may de-
scribe diatomic molecules adsorbed on a surface [6]. For
the case of polymers (M~ ~ ), the interacting model has
been used for studying the collapse transition [3].

(iii) Anisotropic lattices, where an additional energy s
is associated with each bond which is on a particular
direction (excited state). This model may describe chains
in a medium with an hydrodynamic Bow, thus favoring
bonds lying along a particular direction.

Let us consider the problem of placing p self- and mu-
tually avoiding chains formed by M consecutive mono-

mers on a lattice of N sites, so that the number of lattice
sites visited by chains is m =Mp, and the total energy as-
sociated with each particular mode of distribution of the
chains on the lattice is E =no, where n is the number of
configurations with which we associate an energy c.

In an ensemble which is grand canonical with respect
to the number of chains the relevant partition function is

@(x,co)=max [plnx —y(p, E)],

where p=m IN is the density of monomers on the lattice.
We therefore have Bqv/Bp =lnx, so that

y(p, E)= f ln[x (p')]dp' . (2)

To solve the models on the Bethe lattice with arbitrary
coordination number q, we proceed in a way quite similar
to the earlier athermal calculation [4), defining partial
partition functions associated with the subtrees and label-
ing them according to configuration of the root of corre-
sponding subtree. We then obtain recursion relations be-
tween partial partition functions associated with subtrees
of successive generations.

In the case of semiAexible chains, we define M partial
partition functions in a way that g, is associated with the
subtrees with empty root site, whereas g;, i =2, 3, . . . , M,
refers to the subtrees whose root is occupied by the ith
monomer of a chain. The fixed point of the recursion re-

Y„M(x,~)= y yx ~"r~M(m, n),
m =On=0

where x is the activity of a monomer, cu is the Boltzmann
factor associated with the configurations of energy c.

[co=exp( Elk—T)], and I ~ M(m, n) is the number of dis-
tinct ways to place the chains on the lattice, so that all
constraints are satisfied. The sum is over all values of I
and n between zero and infinity, since for values which do
not satisfy the constraints (in particular, if m is not a
multiple of M) we have I ~M(m, n) =0.

The grand-canonical potential @(x,co ) =N
Xln[ Y&~(x,co)], in the thermodynamic limit (N~ oo ),
is related to the adimensional free energy p(p, E) by the
Legendre transform
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no longer monotonic, but display a first-order transition
ending at a critical point. The corresponding phase dia-
gram may be found in Fig. 4, where the first-order line
was calculated via a Maxwell construction. In the poly-
mer limit M~ ~, the results are qualitatively different, a
tricritical point being found in the phase diagram, as may
be seen in Fig. 5. The tricritical point in the phase dia-
gram co versus x, is located at

4.0
disordered

phase

ordered
phase

xTc = 1/(q —1),

ETC�=�

(q —1)/(q —2),

and we recover earlier results on the collapse transition of
polymers on the Bethe lattice [7].

The problem of M-mers on an anisotropic Bethe lattice
is formulated considering that of q incident lattice bonds
on each site, two correspond to excited states with an ad-
ditional energy E (type 1 bonds), and the remaining
(q —2) correspond to the ground state (type 2 bonds). In
the case of general M, we obtained the recursion rela-
tions, but we were unable to find its fixed point analytical-
ly. We thus concentrated our attention on the particular
limits of dimers (M =2) and polymers (M —+ oo ), where
analytic calculations were performed.

In the case of dimers, we defined four partial partition
functions according to configuration of the (type 1 or
type 2) root bonds of the subtrees, which may be occu-
pied by a dimer or not. The density of dimers on type 1

bonds p, and the total density of dimers p are given by,
respectively,

critical
point
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FIG. 4. Phase diagram for interacting dimers (M =2) on a
q =4 Bethe lattice, showing the line of first-order transition
(dotted line) and the spinodal lines (dashed lines).

—(q —2 —2')+ [(q —2 —2') +4'(2 —p)(q —2 —p)]'~2
2~' "(2—p)

In general, the model does not present any phase transi-
tion. However, for lattices with coordination number

q =3, in the particular limit of full coverage p=1, a
phase transition is observed as may be seen in Fig. 6,
where the function p, (co) displays a discontinuity in its
derivative dp, /de when co assumes the critical value
co, =—,'. This behavior is observed also in exact calcula-
tions of the anisotropic dimer model on two-dimensional
lattices with a coordination number equal to 3, such as
the hexagonal lattice [1). It may be mentioned that the
critical value of co for full-packed dimers on the Bethe lat-
tice with q =3 is equal to the exact value on the hexago-
nal lattice.

In the case of polymers on the anisotropic Bethe lat-
tice, we define four partial partition functions in a way
similar to the preceding case of dirners. Analyzing the
stability of the fixed points of the recursion relations, we
find a polymerization transition at the critical activity

x, =2I(q —3+co)+ [(q —3+co)+4'(q —1)]'
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The fixed points associated with the polymerized phase
are given by non-negative roots of the polynomial

FIG. 5. Phase diagram for interacting polymers (M~ ~ ) on
a q =3 Bethe lattice, showing the second-order (full line) and
first-order (dotted line) transition lines, as well as the spinodal
lines (dashed lines).
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FIG. 6. Phase diagram for dimers (M =2) on an anisotropic
Bethe lattice with q =3. Full line, p= 1; dotted line, p=0. 95;
dashed line, p =0.8.

FIG. 7. Phase diagram for polymers (M~ ~ ) on an aniso-
tropic Bethe lattice with q =4. Phase I, nonpolymerized phase;
phase II, usual polymerized phase; phase III, uniaxial polymer-
ized phase.
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In conclusion, we wi11 make some comments on our re-
sults. The problem of semiAexible chains has attracted
much attention recently [8], the main interest in these
contributions being the scaling properties of semiAexible
polymers. One relevant point is related to the depen-
dence of the radius of gyration upon the molecular
weight of the chain, as the flexibility of the chain is

where

2, =co' (q —2)a+(q —2)(q —3)/2,
Az=coa +2''~ (q —3)a+(q —3)(q —4)/2 .

For q )4, the polynomial P(a) admits only one non-
negative root, so that a single polymerized phase is found.
When q =4, however, an additional root o, =0, for co&0,
is found in the fixed-point equation, thus signaling the ap-
pearance of another polymerized phase, where all bonds
of the polymer lay on lattice bonds of type 2 (ground
state). The corresponding phase diagram is given by Fig.
7, and the second-order transition line between polymer-
ized phases is given by

varied. Since, however, our calculations are done on the
Bethe lattice, which is a lattice of infinite dimension [9],
we were not able to calculate the radius of gyration
directly. Nevertheless, it is worth mentioning that for
infinite chains, the density p(x)=(x —x, ) for q )2, so
that the critical exponent 6 =1. Since b =1—a and us-

P P
ing the hyperscaling relation d v= 2 —n we get

5 =dv —1. (9)
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Therefore, our results, as expected, are consistent with
the classical exponent v= —,

' for d =4.
The case of chains with attractive interactions between

first neighbors for finite chains corresponds to a lattice
gas of M-rners, a generalization of the Ising lattice gas
which is recovered when M =1. As M is increased, the
critical values of co and x decrease and increase, respec-
tively, and in the polymer limit M —+ ~ the critical point
turns into a tricritical point.

Finally, for chains on an anisotropic lattice the appear-
ance of two distinct polymerized phases when q =4 was
quite surprising for us. One may ask if something similar
happens on the square lattice or if in this case the Bethe-
lattice solution of the model is qualitatively difterent from
the behavior found on regular lattices. We are presently
investigating this point.
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