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Domain walls in nonequilibrium systems and the emergence of persistent patterns
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Domain walls in equilibrium phase transitions propagate in a preferred direction so as to minimize the
free energy of the system. As a result, initial spatiotemporal patterns ultimately decay toward uniform
states. The absence of a variational principle far from equilibrium allows the coexistence of domain
walls propagating in any direction. As a consequence, persistent patterns may emerge. We study this
mechanism of pattern formation using a nonvariational extension of Landau s model for second-order
phase transitions.

PACS number(s): 64.60.My, 42.65.Pc, 47.20.Ky, 82.20.Mj

Second-order phase transitions, such as in ferrornag-
nets or liquid-vapor systems, are manifestations of spon-
taneous symmetry breaking occurring near thermal equi-
libriurn. The coexistence of broken symmetry states
beyond the transition point gives rise to spatial patterns
consisting of domain walls or fronts separating regions of
different phase. The dynamics of domain walls near
thermal equilibrium is dictated by a variational principle,
namely, the minimization of the free energy. As a conse-
quence, initial spatiotemporal patterns ultimately decay
toward the stationary homogeneous states of lowest free
energy. Front structures are cornrnonly observed in far-
from-equilibrium systems as well. Walls separating con-
ductive and convective states in binary mixtures [1], ex-
cited and recovery regions in autocatalytic chemical reac-
tions [2], or different phase-locked states in parametrical-
ly forced surface waves [3], are a few examples. Unlike
equilibrium systems, however, no general variation prin-
ciple, like the minimization of free energy, applies for sys-
tems maintained far from equilibrium. The possible out-
come, as emphasized recently [4—7], is the appearance of
localized structures and, more generally, persistent spa-
tiotemporal patterns.

In this paper we further elaborate on pattern formation
as a nonvanational effect. We consider spatiotemporal
patterns involving domain walls and show that rnultiplici-
ty of stable front solutions may give rise to persistent pat-
terns. As a model system we choose to study a nonvaria-
tional extension of the Landau-Ginzburg model for a sca-
lar order parameter. The extended system takes the form
of coupled reaction diffusion equations that have been
studied extensively in the context of chemical and biolog-
ical patterns [8—13]. Some of the results to be described
here have already been obtained in that context before,
particularly by Rinzel and Terman [12]. We rederive
these results and present them here in a way that best il-
lustrates the different point of view we put forward in this
paper.

Consider a variational system whose free energy
(Liapunov functional) is given by

V= f [Vl(g, h)+P, /2]dx, (1)

where Vl(g, h) = —P /2+/ /4+hP, P(x, t) is a scalar or-

der parameter, h is a constant bias field and the subscript
x denotes the spatial partial derivative. For h values in
the range —2/(3v'3) & h & 2/(3&3) the free-energy den-
sity, VL, has a double-well form. The two wells corre-
spond to stationary homogeneous states, characterized by
order-parameter values P (h) and P+(h) that solve the
cubic equation P —P+ h =0. The relaxation toward any
of these stationary states is governed by the equation

P, = —5V/5P, or

P, =f (P, h)+P„, f (P, h) =P P —h.— (2)

Front solutions, P=P(y) where y=x ct, of (2—) [14]
propagate in a preferred direction dictated by the minim-
ization of X The speed of a front connecting P+(h) at
y= —~ to P (h) aty= Oo is given by

c =p(h)=a[A'(P ) —Vl(P+)], (3)

h, =eg (P, h)+5h „, g (P, h) =P —ao —a, h, (4)

where e) 0 is the ratio, ~&/~&, between the time scales as-

where a(h) =1/ f" P'(h) dy is positive [11]. For nega-

tive h values, R(P ) )6'(P+ ) and the front moves in the
positive x direction (c )0) so as to increase that part of
the system having lower energy. When h is positive the
front propagates toward negative x values (c &0). Notice
that (2) remains invariant under the transformation
x~ —x. Thus, in addition to a front connecting P+(h)
to P (h) and propagating, say, at positive speed c, there
exists a symmetric front connecting P (h) to P+(h) and
propagating at a negative speed —c. In the following, we
refer to these syrnrnetric solutions as representing the
same type of front solution.

Imagine now that h is not constant but, instead, a
second field h =h(x, t) coupled to P=P(x, t). A variety
of physical, chemical, and biological systems fall in that
category. Bistable optical systems [15], crystal growth
[16], autocatalytic chemical reactions [2,8], and
predator-prey systems [17] are a few examples. For the
present purposes it is sufficient to consider the simplest
case where h (x, t) is a diffusive field that responds linear-
ly to changes in the order parameter P(x, t). More
specifically we assume the form [8]

1063-651X/93/48(2)/705(4)/$06. 00 48 705 1993 The American Physical Society



706 ARIC HAGBERG AND EHUD MERON 48

sociated with the two fields p and h, 5=Db /D& is the ra-
tio of diffusion constants, and the coefficient a, is posi-
tive. The combined system (2) and (4) [denoted hereafter
by (2+4)] is no longer variational. Yet, it resembles the
original system (2) in having, for a proper choice of ao
and a „three stationary homogeneous solutions of which
two are stable. The stable solutions correspond to the in-
tersection points of the nullcline g(g, h)=0 with the
branches P=P+(h) and denoted here by (P+,h+) (see
Fig. 1). Unlike the variational system, however, the two
stable states can be connected by more than one type of
front solution when e is sufficiently small [10—13]. Pre-
paring the system at the lower state (P, h ) and per-
turbing it locally so as to induce a transition to the upper
branch P=P+(h) yields a front propagating to the right:
(P(y), h (y) )—+(P+,h+ ) as y~ + ao, c & 0. If, on the oth-
er hand, the initial state is the upper one, (P+,h + ), a per-
turbation that induces a transition to the lower branch

(h) yields a front connecting the same asymptotic
states but propagating to the left:
(P(g), h(g))~(P+, h+) as g~+ ac, c&0. The two
fronts are not related by the symmetry x~ —x and,
therefore, represent two different types of front solutions.

The multiplicity of front solutions and the symmetry

(a

x~ —x of (2) imply that along with a front that trans-
forms the lower state (P, h ) to the upper state
(P+,h+ ), there exists another front (hereafter "back")
propagating in the same direction that transforms the
upper state back to the lower one. A combination of the
two may yield a persistent localized structure, provided
there exists a mechanism which binds the back to the
front.

To study the emergence of such a structure we consid-
er the small e regime, e «1, and assume a nondiffusive h

field, or 5=0 (allowing diffusion of h will not affect the
results qualitatively as long as 5 is not too large). We
then distinguish between front and back regions where h

barely changes, and outer regions where P can be elim-
inated adiabatically, P=P+(h) [8—10]. Imagine now a
front transforming the down state (P, h ) into the
upper one (P+, h+) and propagating to the right. The
front speed is determined by the local value of h:
c =p(h ) &0. A back that follows the front (so as to
form a single up-state domain) will be affected by the field
h (y) that develops behind the front. This field, as we will
show below, provides the binding force the front exerts
on the back. In order to find that field we insert

P =P+(h) in (4) to obtain a closed equation for h, and use
the boundary conditions h(yf)=h and h(y)~h+ as
y~ —~, where gf denotes the front position in a frame
moving at speed c. Solving for h we find

e~( —O
)h(y)=(h —h+)e f +h+, (5)

—1 5 1.5

where h+ =2(+1—ao)/(I+2ai) and fr=(ai+ —,')/c. In
deriving (5) we used the linear approximation
P+(h)=+1 —h/2 valid for small ~h~.

For an up-state domain to become a localized structure
of fixed size, the back speed should be equal to the front
speed c. We thus require p(hb ) = —c, where hb = h (yb ) is
the local value of h at the back. This relation determines
hb. Note that h& must be positive, whereas h, the value
of h at the front, is negative. Inserting h =hb and y=gb
in (5) we find for the size of the localized structure

gf gb lno o

EK

h+ —h

h+ —h„

—1.5 1.5

According to (6), a localized structure of fixed size exists
f'or h+ & hb (for h+ & hb the front speed is larger than the
back speed and the up-state domain expands indefinitely).
We will now show that this structure is also stable to
translational perturbations. To this end we represent the
back in the form

Qb(xit) Nb(X +b )+ebb(g Xb~&t)

FIG. 1. Phase portraits of front solutions connecting the
(P+,h+) state at y= —oo to the (P, h ) state at y= oo. The
light colored curves are the nullclines f=O and g=O and the
dark colored curves are the numerically computed trajectories.
The computational parameters are (a) a=1.0, 5=0, al =2.0,
ao=0, (b) @=0.2, 5=0, a& =2.0, a0=0.

where yb=yb+gb(et) is the actual back position, and
write the level of h at the back as
hb=h(gb)=hb+ehb(et) Using these f.orms in (2), as-
suming h is constant across the back, we find

a,'yb+ ca,yb+ ( 3yb )4'b =hb e'x— —
dX

where the dot over yb denotes differentiation with respect
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to t. Solvability of (7) requires the right-hand side of that
equation to be orthogonal to (dp'bldg)exp(cy). This
leads to

yb=P(h+ —hb)(1 —e '). (9)

The linearization of (9) about fb =0 gives the equation

yb = e~—p(h+ hb—)fb Sin.ce a') 0, we conclude that for
e «1, a stable localized structure is formed whenever
h+ )hb.

We consider now the other extreme, e&&1. Adiabatic
elimination of h reduces (2+4) to the variational equa-
tion

4t =(I—&i ')4 0'+u—o«i+0, (10)

with h =P/ai —ao/a„where we assumed that 5«e.
Equation (10) is equivalent to (2) and, consequently, has
only one type of front solution connecting the two states
(P+,h+). When ao=0 the system(2+4) has an odd sym-
metry about (P, h)=(0,0). The two states (P+,h+) are
equally stable and the front that connects them is station-
ary. When 5=0 it becomes an exact solution of (2+4)
that exists for all e values. Figure 1(a) shows a phase por-
trait of this front solution in the (P, h) plane. It amounts
to a straight diagonal line, h =a, 'P, connecting the two
states. We recall that for e«1 Eqs. (2+4) admit two
types of propagating solutions. One may therefore expect
to find a bifurcation from a single to multiple front solu-
tions as e is decreased [12].

To study this bifurcation we consider the symmetric
model (ao=0) with a nondiffusive h field and write a
propagating front solution, P=P~(x ct), h =h—~(x —ct),
as a power series in c

p =p, +cp, +c pz+

h =h, +ch, +c h2+

where (P„h,=a, 'P, ) is the stationary front solution.
Expanding e as well, e=ep+ce, +c @2+ -, and using
these expansions in (2+4) (with ao =5=0) we find solva-
bility conditions, one at each order, that determine the
coefticients 6p E'] ~ ~ . . Carrying out this perturbation
scheme to third order in c we find op=a&, e, =0, and
e2 &0. These results imply a supercritical pitchfork bifur-
cation occurring at E Gp a, . Near the bifurcation
the front speed scales like c —(e, —e)' . Numerical
studies on (2+4) confirm these results. A numerically
computed bifurcation diagram for the symmetric case
a0=0 is shown in Fig. 2(a).

The leading-order corrections in (11) take the form

P, =0, h, =P,'. Using these forms in (11) we see that the
difference between the stationary and the counterpro-
pagating solutions close to the bifurcation point is that in
the latter the field h is translated to the right or to the left
by an amount proportional to c. This translation breaks
the odd symmetry of the stationary solution and gives

i b=Pehb

where P is a positive constant. Using (5) to evaluate
hb =h(gb) and consequently ebb we find from (8)

rise to phase portraits deviating from the diagonal,
h =ai 'P, as shown in Fig. 1(b). The speed c can be
directly related to this deviation by using (11):

c =a, f fP,'dy, g=h —a, 'P (12)

where a, =1/ I (P,') dy is positive. Thus a front con-
necting (P+,h+) aty= —"to (P-,h ) at y=" propa-
gates to the right (c&0) when the deviation from the di-
agonal is negative (1'&0) and to the left when the devia-
tion is positive (1")0). As before, we refer to the latter
case as describing a back.

A significant distinction between the stationary front
solution P=P„h =a i 'P, (in the symmetric model) and
the two propagating solutions p=p„h =ai 'p, +cp,'
that bifurcate at e=e, can be made by looking at the
phase O=arctan(hi/). Across the stationary front the
phase remains constant everywhere except for the core
where it suffers a jump of nas t.he fields P and h vanish
and change sign. Across a propagating front, on the oth-
er hand, the phase smoothly rotates by m. keeping the
modulus (P +h )' nonzero. Similar types of walls have
been found in the context of anisotropic ferromagnets
[18] and, recently, in a nonvariational model describing a
periodically forced oscillating medium [19] (see also Refs.
[20,21]). They are referred to as Ising walls when the
phase is singular and as Bloch walls when the phase ro-
tates smoothly.

~ ~
0 ' ~

0—
~ 3 .4

~ 0

~ ~

~ 1
~J

FIG. 2. Bifurcation diagrams of front solutions. The dots are
data points representing the speed of the different types of stable
front solutions that exist for each value of e. (a) The symmetric
case (ao =0}. (b) The nonsymmetric case (ao =0.1).
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The symmetric model is nongeneric unless the relevant
physics dictates an odd symmetry. Unfolding the sym-
metric case by allowing nonzero values of ao yields a bi-
furcation diagram as shown in Fig. 2(b). In that case,
front multiplicity arises by a saddle node bifurcation
occurring at esN(ao ) (e, . For small ao we find the scaling
behavior, Ec EsN 0

In the small e regime we could show, using leading-
order singular perturbation analysis, that front multipli-
city gives rise to persistent patterns. We postpone the
analogous analysis for higher e values to a subsequent
study and present here, instead, results of direct numeri-
cal integration of (2+4) (with 5=0). Our observations
are summarized in a phase diagram shown in Fig. 3 (see
also Fig. 6 of Ref. [12]). To the right of the solid curve
e=esN(ao) only one type of front solution exists and, as
we expect, initial patterns decay toward a uniform state.
We note that along the line ao=0 the decay can be ex-
tremely slow and unnoticeable in practical situations [22].
As we cross the solid curve by decreasing e below esN(ao)
front multiplicity arises. For some range of e initial pat-
terns still decay toward a uniform state. Persistent pat-
terns, in the form of stable solitary and periodic traveling
waves, appear below a second critical value of e, that is,
in the region to the left of the dashed curve.

We have presented here a mechanism of pattern forma-
tion in systems undergoing a bifurcation from Ising to
Bloch-type fronts. A key ingredient in this mechanism is
the coexistence of stable, counterpropagating front solu-
tions connecting the same asymptotic states as ~y —+ ~.
Coexistence of such fronts cannot occur in variational
systems having free energies. The mechanism can be test-
ed in bistable chemical reactions [2].

FIG. 3. Phase diagram in the e-ao plane. For the region to
the right of the solid curve only one type of front solution exists
and initial patterns do not persist. In the region between the
solid and the dashed curves multiple stable fronts coexist but
patterns still decay toward a uniform state. For the region to
the left of the dashed curve initial patterns evolve toward per-
sistent patterns in the form of stable traveling waves. Computa-
tional parameters are 6 =0, a

&
=2.0.
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