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Self-organized criticality (SOC) in a wide variety of systems is seen to arise as a consequence of a
singularity in the diffusion coefficient of the hydrodynamic limit. %'e demonstrate that this description
is valid for several models on a closed system and observe that it can break down if the driving is
sufficiently strong on the open systems where SOC is observed. In this case fluctuations play an impor-
tant role, and if fluctuations are large enough then pure power laws in event-size distributions are ob-
served. In contrast, when diffusion holds on SOC systems the characteristic event size diverges sub-
linearly in the system size. We derive an exponent inequality which provides a necessary condition for
the singular-diffusion description to hold on the open driven system. The inequality involves the order
of the diffusion singularity, the driving rate, and standard critical exponents.

PACS number(s): 64.60.Ht, 05.40.+j, 05.60.+w

I. INTRODUCTION

In this paper we examine the role of fluctuations in the
behavior of self-organizing systems. In particular, we
consider cellular automata which exhibit the behavior re-
ferred to as "self-organized criticality (SOC)"—
nontrivial scaling of certain event-size distributions as a
function of system size without the explicit tuning of a
parameter —which was first introduced by Bak, Tang,
and Wiesenfeld (BTW) [1]. The prototypical example of
this phenomenon is a "sandpile" model, in which "sand"
is added one grain at a time to randomly selected sites on
a d-dimensional integer lattice, and when the local height
or slope exceeds a threshold, sand falls according to a
prescribed set of rules. Since this concept was first intro-
duced, simulations indicate that a wide variety of models
have qualitatively similar behavior [2—5].

One key to understanding the scaling behavior of many
of these systems is the observation that on the closed sys-
tem the hydrodynamic limits are singular-diffusion equa-
tions describing the evolution of a conserved quantity
[6,7]. That is, in an appropriately rescaled limit, the hy-
drodynamic description of the evolution of the conserved
density (e.g., height or slope), which we will call p, is
given by a diffusion equation of the form

D(p)- 1

(p, —p)~
(2)

Simply stated, a diverging diffusion coefficient is an indi-
cation that the typical transition lengths (event sizes)
diverge as the density approaches the critical value p, . In
some cases this hydrodynamic limit has been established
rigorously [7] or analytically [8], and in other cases the
singularity in the diffusion coefficient has been ascer-
tained numerically via relaxation times for density per-
turbations or variances of tagged particles [9,10].

In this paper we present an exponent inequality that
provides a condition under which the hydrodynamic
description is expected to break down on the open driven
system due to Auctuations in the empirical density. As
we shall see, the key ingredients are the order of the
singularity P and standard critical exponents. In Table I
we present a summary of the diffusion singularities as
well as other exponents, which will be important in this

where the diffusion coefficient not only depends on the lo-
cal density, but in fact has a singularity at a critical value
PC~
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TABLE I. Critical behavior of SOC systems. Here p, is the critical density, P is the order of the
diffusion singularity (2), v is the exponent characterizing the divergence of the spin-spin correlation
length g, g is the exponent characterizing the small k behavior of the structure function (7), V is the ex-
ponent describing the divergence of the characteristic event size g as in (19) (v & 0 for any SOC system),
and p is the exponent describing the scaling of density fluctuations on an individual site as in (12). For
the BTW model we have taken the threshold value h, =4. For the limited local and limited nonlocal
models we have taken z, = n =2. For the unlimited local model we have taken z, =4 and n =2. Apart
from changes that lead to trivial behavior, different values of the parameters should only alter the value
of the critical density, p„ leaving the exponents unchanged. When blanks appear in place of exponents,
the values have not been measured, or, in the case of the limited local model, our measurements have
not led to we11-defined values.

Model

Two-state
BTW
Count

Limited local
Limited nonlocal
Unlimited local

pc

1

2.12+0.005
1

2
3
2
3
2

2

3
2.3+0. 1

2.25+0. 15

v( —2+ g)

0
0

0.95+0.15

1

0.74+0.01
1+0.1

paper, for the collection of models that we have con-
sidered to date. The list is by no means exhaustive, but
rather illustrates the range of behaviors that can be ob-
served in these simple models.

The diffusion description above is derived for the
closed system. That is, the diffusion limit describes the
relaxation of a nonequilibrium density profile, which is
bounded away from the singularity p, on a closed system
such as a torus, when the number of sites diverges.
Presumably this description also holds in the thermo-
dynamic limit, i.e., on the full integer lattice. For SOC
the utility of this result comes from assuming that we can
use this description to determine the stationary states of
the open driven systems. In particular, one solves the
stationary equation

C)P =V' [D (p)Vp] =0, (3)

with boundary conditions appropriate to the driving
mechanism [6]. The resulting solution yields a steady-
state profile on an N -site system which scales as
p, —pz( )x-N " for all values of x&(0, 1) . The ex-
ponent b is related to P and to the boundary conditions.
Furthermore, if one knows enough about the equilibria at
local density p and about the (microscopic) transition
rates, then the scaling of event-size distributions can be
calculated from the scaling of p&(x).

However, for the open driven systems encountered in
SOC, the validity of the hydrodynamic limit is not au-
tomatic. If one assumes that the diffusion limit holds,
then the density converges to the singularity as the sys-
tem size N diverges, raising the possibility of an illegal in-
terchange of limits. More explicitly, there are two pri-
mary ways in which the hydrodynamic description can
break down: (1) Fluctuations in the empirical density can
force the local density over the singularity in macroscop-
ic regions of the system. (2) Local equilibrium can break
down, since the open systems sustain a Aux which, under
rescaling, is typically diverging with system size.

The main results in this paper are as follows.

(a) The derivation of conditions under which a break-
down of hydrodynamics occurs due to fluctuations, as-
suming the validity of local equilibrium through the
crossover. This is the topic of Sec. II.

(b) A demonstration of how this sort of breakdown is
consistent with our numerical observations of several
models, including the BTW sandpile model. Our simula-
tions indicate that when fluctuations become relevant,
pure power laws in event-size distributions are seen in
one dimension, and in any dimension under sufBciently
hard driving. On the other hand, when diffusion holds
the characteristic event size diverges sublinearly with the
system size. This is discussed in Sec. III.

(c) Results from simulations of the limited local sand-
pile model which indicate that the breakdown of local
equilibrium occurs before fluctuations begin to dominate.
This is also presented in Sec. III. General conditions for
the failure of local equilibrium are a topic of current
research.

(d) A summary of values of the order of the diffusion
pole as well as other statistical-mechanical exponents for
a variety of SOC systems (Table I). Some of these results
have not been published previously, and, with a few ex-
pections, are determined numerically.

Before proceeding to the next section we brieAy discuss
certain aspects of Table I. One interesting feature is that
the limited local and limited nonlocal sandpile models,
which differ only slightly in their toppling rules, both
have the same diffusion singularity P =4, while in Ref. [2]
it was reported that the multifractal scaling exponents for
these two models are different. These results are not in-
consistent because the diffusion singularity represents the
long-time, large-wavelength behavior of these systems,
while the scaling laws refer to the rates of microscopic
events in the systems. It is also interesting to observe
that the unlimited local model has a different value of P.
The behavior of this model is very different from the oth-
er systems we have considered, due to the fact that on the
open system using the microscopic transition rules it is
easily shown that states with density below p, are tran-
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sient (i.e., when the density of the open system exceeds p,
it can never drop below p, ). In this case we find that the
average density is always greater than p, for this relative-
ly simple reason, and as the system size increases the den-
sity monotonically approaches the diffusion singularity
from above. For sufficiently hard driving the BTW sand-
pile model also approaches p, from above. However, in
this case there are no such constraints on the density, and
the behavior is only observed after the diffusion descrip-
tion has clearly failed.

II. FLUCTUATIONS AND THE FAILURE
OF HYDRODYNAMICS

We now derive an exponent inequality that indicates
when fluctuations destroy the diffusion hydrodynamics
on the open drive system. Before we begin it is important
to clarify exactly what the hydrodynamic limit is describ-
ing. The N -site system is rescaled into [0,1]". We
denote the spin (height, slope) at sitei/Nby g(i/N). The
object of attention is the empirical density p& ~(x), which
is the empirical (random) density of the conserved quanti-
ty in a box of size 21 which is a subset of [0,1] .

BsN 0$Ã

at
=V' [D(p~)s~]+7' D'(p~)s~

Bx

+~'[[~(P~)+« '")~'(s ~»x]J~]
where j, is the standard Gaussian noise. The full equa-
tion and boundary conditions are required to ascertain
the effect of the driving mechanism on local equilibrium.
However, here we are only interested in the effect of the
fluctuations on the size of the higher-order terms. Re-
scaling spatial variables by N ' and noting that
D (p~)-N ~, we see that the first term on the right-hand
side scales like N ~ ' while the second term scales like
N~~&+'~ ' (when the second term is relevant, all
higher-order terms grow at least this quickly), implying
that the higher-order terms cannot be neglected when
b ~ a. This breakdown can also be seen in the third term
involving the conductivity cr [14].

For the breakdown condition b ~ a to be of the greatest
use, we need to determine a and b from more readily
available information about the underlying system. To
this end, we will now use scaling arguments to calculate a
and b from the boundary conditions and the statistical-
rnechanical properties of the system.

pi ~(x) =(2lN) g(y /N),
ly

—xl( ~ IN)

(4) A. Scaling of the mean density

where ~y
—x

~

is the maximum difference of coordinates,
so that the sum above is over a box of size (2lN) sites.
One should think of I as being very small (one takes
N~ ~, and then l ~0), and we will omit it in subsequent
notation. The hydrodynamic description is valid when
the solution to the diffusion equation pz(x) adequately
approximates the empirical density p~(x). Since the
solution pz and expected density E[p~] are both con-
verging to the singularity p„one must clarify what is
meant by the phrase "adequately approximates. "

The appropriate criterion is that as N ~ ~ the Auctua-
tions in the empirical density are governed by a linearized
[about pz(x)] diffusion equation with an appropriate sto-
chastic driving. That is, we linearize (1) about the
steady-state solution p&(x) of (3) which is simultaneously
converging to the singularity: p, pz(x)-N .—Note
that this approach differs significantly from that of Refs.
[11,12], which assume that the behavior of the system is
smooth in the continuum limit, i.e., that there are no
singularities in the diffusion coefficient or the conductivi-
ty. In our case the singularities are explicitly taken into
account, and are, in fact, a crucial ingredient.

Denoting the stochastic fluctuations about p& by
s~ =—(Var [pz])'~ -N ' and the gap p, pz(x)-N—
hydrodynamics fails in the above sense if b a; that is, if
the fluctuations decay more slowly than does the gap
from the singularity, so that the empirical density Auctu-
ates above the singularity. See Fig. 1 for an illustration of
this behavior in the BTW sandpile model. To see that
this is the correct criterion, we linearize the singular
diffusion equation (1) and add an a, propriate noise term
[13] (we include this term solely foi completeness). We
will, however, keep terms to second order in the gradient
expansion:

The value of b can be determined self-consistently, by
balancing the time scales associated with driving and
diffusion. The idea here is that density changes which de-
velop on the time scale of the driving mechanism must
relax at the rate associated with the diffusive mechanism.
Therefore these rates must balance as long as the
diffusion description is valid. Referring to (1), we rescale
x by N ' and, since p, —p&(x)-N, we find that the
right-hand side scales like N"~, which implies that the
diffusion time must scale as X

Next we focus on the driving time scale. The mass of
any injected or removed particle has weight
1/N N =N, where the first term is the usual scaling
and the correction X is due to the fact that we are look-
ing at a gap from the singularity of size N . The bound-
ary driving dimension is denoted by d~, and quantifies
the scaling of the driving rate with system size, so that

b+d~ —d
the relevant driving rate scales as 1V . Therefore
the relevant time scale for the driving mechanism is

d —b —d~

Making the topological assumption that a positive
fraction of the driving region does not overlap the open
boundary (even in the continuum limit) [15], we equate
the diffusion and driving times scale to obtain

2 G+8gb= (6)

The exponent dz warrents further elaboration. In the
most familiar cases, dz corresponds to the dimension of
the boundary along which the conserved quantity is add-
ed to the system. However, d~ need not equal the scaling
dimension of the set of points on which the driving mech-
anism acts. For example, in one-dimensional systems
such as the limited local sandpile model or the two-state
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model, particles can be added at a single boundary point
(dimension zero); however, the addition rate can be a
function of the system size so that d~ is nonzero. In this
way typically well-behaved systems can be forced into re-
gimes in which hydrodynamics is no longer valid. We
will elaborate on this point below.

B. Scaling of density fluctuations

The appearance of a singularity in D (p) does not imply
anything about the critical behavior of the underlying
spin system. The singularity is present as a consequence
of transition lengths g diverging (think of site percolation,
where spins are uncorrelated, since they are assigned in-
dependently, but where there is a phase transition in the
cluster size). Therefore, if the spin-spin correlation
length g' is uniformly bounded for all densities p&p„
Auctuations will satisfy the central limit theorem, i.e.,
a =d/2. This turns out to be the case for the BTW sand-
pile model (see Table I).

There is, however, the possibility that the spin system
is critical at p„as happens, for example, in the limited
local model. The size of the density Auctuations
is related to the small-k behavior of the structure
function S(k)=g„e'"'"S(x), where S(x)= ( g(0/N)
—(g(0/N) ) ][/(x/N) (g(x/N) ) ])—is the correlation
function, and x denotes a d-dimensional integer lattice
site. The scaling hypothesis for S at a critical point is

(7)

from which one finds that s& —N " "" +"'. It should
be pointed out that central limit Auctuations occur where
v=O and, consequently, g=2. When g(2 Auctuations
are enhanced (e.g., ferromagneticlike correlations) and
when g&2 fluctuations are suppressed (e.g. , antiferro-
magneticlike correlations). In the latter case, some stag-
gered order parameter will have enhanced Auctuations;
but here we are only concerned with the Auctuations of
the density, which can be suppressed at a critical point.

In our problem, however, the system is not at the criti-
cal point; rather it is converging to it as N~ ~. Denot-
ing the spin-spin correlation length by g(p) as above, the
scaling hypothesis becomes

C. Exponent inequalities

Assembling the previous results provides a condition
under which Auctuations result in the failure of di6'usion
hydrodynamics. We have assumed the following.

(1) The underlying spin system has a correlation length
which scales like g-~p, —

pJ
' and a structure function

which scale like S(k, g) -g
(2) The singular-diffusion coefficient scales like

D (p)- p, —
p~

~ and the driving rate 5 scales like

5(N)-N ~

Substituting (6) into (10), we find that the condition on
the driving rate which implies failure of the hydrodynam-
ic description due to Auctuations is

+1 —2.
2 —v( —2+g)

s~= var [g(i)]—~p,
—p "-N (12)

with b given in (6). Defining a modified correlation func-
tion

(13)

the extension of (9) to this setting is

a7. —(1/2)[d+ bv( —2+ g) ]sx -s&cv

~—(1/2) [d+ bv( —2+ g) —bp] (14)

and the exponent inequalities such as (10) are easily
modified:

Finally, it should be pointed out that, for example, in
the two-state models introduced and studied in Refs.
[6,7], the situation can arise where the correlation length
remains infinite, but where the single-site variance scales
nontrivially. This occurs because the diff'usion singularity
coincides with the upper bound on allowed densities.
Consequently, Auctuations are suppressed simply because
Auctuations above p, cannot occur. In this case, define
the scaling of the single site variance sz to be

—,
' [d +b v( 2+g ) bp ] & b—. — (15)

—,
' [d —2+ ri] when b v & 1

2 [d+bv( —2+g)] when bv & 1 . (9)

Since p, —p&-N, we have g'-~p, —
p~ '-N '. The

variance of the density Auctuations is found to scale as
s&-X ', with

III. OPEN-SYSTEM RESULTS

In this section we discuss results from numerical simu-
lations of the first four models listed in Table I, with em-
phasis on the role of Auctuations and the validity of local
equilibrium.

A. Two-state models

—,
' [d +b v( —2+ 7) ) ] & b . (10)

We consider the second case only (since g is efFectively
bounded by system size), and conclude that fluctuations
are relevant when

We begin with the one-dimensional two-state model of
Ref. [6]. This is one of a general class of models con-
sidered in Ref. [7]. In this system each site is occupied by
a 1 or a 0 and the 1's jump at rate 1 to the nearest vacant
site to the right, and likewise to the left. For this model
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we take as the closed system a lattice of length N with
periodic boundary conditions. The open (driven) version
of the system that we consider has an open boundary at
the right edge where 1's may leave the system, and a

dB
closed edge on the left where 1's are injected at rate N
The case d~ =0, which corresponds to simply injecting
particles at rate unity for all system sizes N, was con-
sidered in Ref. [6]. However, to see the crossover to
failure of diffusion hydrodynamics we will allow d~ to
vary, thus introducing a system-size-dependent driving
rate.

In this model the equilibria are product measures—
that is, sites are uncorrelated. In Ref. [6] it was shown
that the diffusion coefficient is D (p) =gk Ok p"
=(1+p)/(1 —p) so that p, =l and /=3. In this case,
fluctuations are suppressed because the critical density

p, =1 is an upper bound on the density. The correlation
functions are identically zero, so that v=0 and g=2.
The single site variance s& =p(1 —p) so that p = 1 in (15).
This inequality implies that hydrodynamics fails when
b ~ 1, a situation that corresponds to a finite number of
zeros in the system for any system size which is an in-
herently a noisy limit. To understand this last statement,
one must recall that we are interested in the gap between

p, = 1 and the empirical density. Since
1 —E[g(i/N)]-N ", we map each spin according to
g(1/n)~N [1—g(i/N)], where the prefactor Nb ex-
pands the gap so that in the limit N ~ ao the result is a
nondegenerate random variable. Assigning mass N ' to
each site, one sees that the density field is

gN '[1 g(i /N) ].—When b = 1 this is just counting the
number of 0's in the range of the sum, which remains a
random measure in the limit of large system size.

B. BTW sandpile model

Next we discuss the two-dimensional BTW sandpile
model, first introduced and studied in Ref. [1]. In this
model sand is added one grain at a time to sites on an
N XN integer lattice, and when the local height equals or
exceeds a threshold value h, =4 one grain of sand is
transferred to each of the four neighboring sites. To
define the closed system we impose periodic boundary
conditions, and instead of adding new sand to the system
we exchange single grains of sand between nearest-
neighbor sites in a randomly selected direction at a fixed
rate. This has the effect of conserving sand.

Our numerical results for the critical behavior of this
model are obtained on a 128X128 system and are sum-
marized in Table I. The critical height density

p =2.12+0.005 and diffusion singularity (t) =2.3+0. 1 are
determined on the closed system via measurements of the
rate at which the primary (i.e., sinusoidal) inode of a
small-amplitude perturbation relaxes to equilibrium as a
function of the systemwide average height as in Ref. [6].
An equilibrium measurement of the distribution of rela-
tive displacements of tagged particles as a function of the
average height confirms that the variance of the distribu-
tion diverges at the same value of the density p„with a
singularity of order P —1=1.3+0.1. This is consistent
with the two-state model for which it was proven [9] that

the singularity in the variance of a tagged particle is of
order P —1. Direct measurements of the height-density
fluctuations in a box of fixed size indicate that they are
independent of the average density; that is,
v( —2+g)=0. By varying the system size, we confirm
that the decay rate of the fluctuations satisfies the central
limit theorem. We also measure the height-height corre-
lation function and find that the correlations decay rapid-
ly (within a few sites), and do not appear to depend on the
height density in the system (i.e., v=0).

On the open system, the conventional driving mecha-
nism involves adding sand to randomly chosen sites
across the entire lattice. This corresponds to dz =d, i.e.,
the dimension of the driving mechanism is equal to the
dimension of the system. Substituting the exponents
from Table I into (11), we find that fluctuations are
relevant when dz ~1.3, and we conclude that hydro-
dynamics should fail for the conventional driving
(d~ =2). This is a consequence of the very hard driving,
which scales like the volume, and the relatively low-order
diffusion singularity.

By modifying the driving mechanism we can bring the
system back into a regime where the diffusion description

dBholds. The procedure used to drive the system like N is
as follows. On each "addition" step to the automata we

either add a new particle with probability N /N" or
transfer particles between nearest-neighbor sites with

dB
probability 1 —(N /N ). Avalanches relax as before.
Note that both on the closed system and on the open sys-
tem when d&%2 the Abelian nature [3] of the model is
lost. We adopt the above procedure to decouple the re-
laxation and driving mechanisms —that is, to allow the
occurrence of avalanches without the addition of sand.

The inequality (11) which predicts a crossover at
d~ =1.3 is consistent with our simulations. However, it
is very hard to get into the asymptotic regime, and our
best numerical estimates allow us to conclude that fluc-
tuations begin to dominate at some value of d~ in the in-
terval 1~d~ ~ 1.5. To obtain this estimate we consider
dz =0.5, 1, 1.5, and 2 for system sizes N XN with
N=8, 16,32,64, 128. In each case we monitor the time-
averaged distribution of densities P&(p) both on the mid-
dle 4 of the system and on the system as a whole. Exam-
ples of situations in which the system does and does not
fluctuate above the singularity are illustrated in Fig. 1.
To check for convergence, we compare the mean and the
width of the Gaussian distributions on disjoint, exponen-
tially growing time intervals until all of the values (for
both the middle —, and systemwide distributions) for con-
secutive intervals have changed by less than 1% for
N =8, 16,32 or 5% for N =64, 128. Typically the average
densities converge faster than the fluctuations, but in
each case the equilibration time is surprisingly long. For
example, with d~ =1 we accumulate data for over 65 000
events per site, or over five million events on the smallest
8X8 system. For larger values of d~ somewhat fewer
events are necessary for convergence, but the events were
larger on average, so the equilibration time was compara-
ble. These constraints on equilibration time prevent us
from simulating larger systems.
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For the case d~ =2 (i.e., the conventional driving), the
density fiuctuates above the singularity for all system
sizes, that is, s&)p, —p&. In fact, for the larger system
sizes the average density in the middle —' of the system is4

above the singularity, indicative of a clear breakdown of
diffusion hydrodynamics. In contrast, for the other
values of dz we have s~ &p, —p&, for each of the system
sizes we have considered, while according to (11) a break-
down is predicted for large enough system sizes when
d~ =1.5. Thus the crucial question is how are the densi-
ties and fluctuations scaling with increased system size.

In Fig. 2 we plot the ratio sIv/(p, —
pIv ) as a function of

N for dz =0.5, 1,1.5. If hydrodynamics holds, i.e., a )b,
then sIv ~0 faster than (p, —

pIv )—&0, and this ratio
should approach zero as N increases. Alternately, when

0.5—

0.2—

0.1—

0.05—

0.02—

O. O I.

10
I I I I I I I

50 100

20

15—

10—
0

I I I I I I I I I I I I I I I

dB=1, N=32 (&)

p =2.12

FIG. 2. The ratio of the density Auctuations s& to the dis-
tance from the singularity p, —

p& as a function of N. Here p&
corresponds to the mean, and s& to the width, of distributions
such as those illustrated in Fig. 1. For d& =0.5 and d& =1 the
ratio approaches zero as N~ ~, indicating that diffusion hy-
drodynamics holds on the open system. However, for dz =1.5
the ratio curves back up for larger N, indicative of a change of
behavior for 1 & d~ & 1.5. When diffusion breaks down the ratio
will diverge as N~ ~, as we expect to occur for d~ =1.5. The
results for d& =2, where diffusion clearly breaks down, do not
appear since in that case not only the fluctuations s&, but also
the mean density p&, exceed the diffusion singularity for the
larger systems (N =64, 128).

0 I I I

1.8 1.9 2.0
I I I I I I I I I I

2. 1 2.2 2.3

I I I I I I I I I I I I

d8=2, N=32

15—

I I I I I I I

(b)

p =2.12

hydrodynamics breaks down and a (b the ratio should
diverge. Figure 2 shows the indications of a crossover be-
tween dz = 1 and dz = 1.5. In the case of d~ = 1, the ratio
is scaling to zero roughly as a power of N, while for
dz = 1.5 the ratio initially decreases, but with appreciable
curvature in the log-log plot, suggesting an eventual
divergence.

As previously mentioned, numerical constraints on sys-
tem size restrict our ability to fit the asymptotic forms in
(6) and (9). For example, one can use the average density
in the middle —,

' of the system to attempt to fit a power
law of the form

p, —pIv= A!N (16)

o
1.8 1.9 2.0 2. 1 2.2 2.3

FIG. 1. Distribution of the height density in the middle —' of4
the system for the BTW sandpile model. (a) illustrates our re-
sults when d&=1 and N=32, and (b) illustrates our results
when d& =2 and N =32. The data is accumulated until both the
mean p& and the width s& of the distributions and the corre-
sponding distributions for the systemwide density have met the
convergence criterion stated in the text. The vertical line at
p=2. 12 represents the diffusion singularity. In (a) s& &p, —

p&
and diffusion hydrodynamics holds, while in (b) s& &p, —p~ and
diffusion breaks down.

selecting 3 and b to minimize the error
6'=+[in(p, —pIII) —ln( 2!N )] . The logarithms are
taken to avoid unduly diminishing the weighting of the
large systems. This one-exponent fit does not work well,
yielding values of b that are roughly 10% off the predict-
ed values. The results depart even more from the pre-
dicted values when the density of the entire system is
used, because of considerable edge effects associated with
boundary layers such as those described in Ref. [6]. A
similar fit for the Auctuations yields values for a that de-
viate from the anticipated central-limit value of d/2=1
by roughly 20%. These results are not adequate to locate
to a change in behavior due to fluctuations.

In order to improve our estimates, we assume a correc-
tion to scaling of the form
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D
pc pN Nb ~c1+ (17)

The curvature in the d~ =1.5 plot of Fig. 2 suggests that
such a two-exponent fit is necessary to see the crossover,
and in fact it reduces 'the error, which is obtained by
minimizing the function analogous to 6 given above with
respect to the four parameters 3, b, c, and D, by one or
more orders of magnitude, and yields much better agree-
ment with the values predicted by (6). The corresponding
correction to scaling for the density Auctuations gives
similar results. In particular, for dz =1.5 this fit yields
a =1.05 and b =1.13, which agrees well with the calcu-
lated values a =1.0 and 6 =1.15, and confirms our pre-
diction that the density will Auctuate above the singulari-
ty for systems that are sufficiently large. These results
are illustrated in Fig. 3. By extrapolating the scaling
forms we estimate that the value of N above which one
would truly see the fluctuations exceed the critical densi-
ty is X-10, well beyond the range that is numerically
feasible. Finally, a similar fit for d&=0. 5 and d&=1
gives values consistent with the analytical estimates, and
indicates that diffusion holds in these cases.

Lastly, we consider the question of local equilibrium.
Note that our results for the BTW model are consistent
with the validity of local equilibrium on the open system.
This will not be the case for the limited local sandpile
model, which shows a clear breakdown of local equilibri-
um on the open system.

For local equilibrium to be a valid approximation, the
correlation functions in any region of the open system
must be asymptotically equal to those of the closed sys-

I I I I I i I

5 10 20 50 100

FIG. 3. Results of the two-exponent fits (17) for the density

(p, —
p& ) (+s) and fluctuations s&( X ) for d~ = 1.5 and N X N

systems with N=8, 16,32,64, 128. (The error bars are much
smaller than the sizes of the data-point markers). The best fit

agrees well with the data and gives estimates b=1.13 and
a = 1.05. Note that for the system sizes we consider
s& & (p, —pz); however, the s& data curves downward with in-

creasing system size, while the (p, —p&) data curves upward.
An extrapolation of the fit predicts a dominance of fluctuations,
s~ & (p, —p), at system sizes in excess of N = 10 .

tern at the same local density in the limit of large system
size. In particular, when local equilibrium holds, the ex-
ponents listed in Table I, which are measured on the
closed system, should describe the behavior of the open
system as well, where the average density depends on sys-
tem size. The results above show that the scaling ex-
ponents are consistent with (6) and (9), which implies that
the order of the diff'usion singularity P and the size of the
fluctuations are the same for the open and closed systems.

One can also look at event-size distributions to check
the validity of local equilibrium. We denote the equilibri-
um probability of an event involving n sites by P(n). The
singularity in D (p) suggests that near p,

P (n)- g (n IP),1
(18)

where g is the length scale characterizing the (typically
exponential) cutoff in the event-size distribution,

g- I/(p, —p) (19)

Figure 4(a) shows a scaling collapse of P(n) with respect
to the distance from the singularity (p, —p) for the closed
system. The result 9=0.74+0.01 is obtained from this
collapse and agrees with the value obtained previously in
Ref. [16]. Figure 4(b) illustrates the corresponding re-
sults for the open system with dz = 1, where the average
density in the middle —, of the system is used in the col-

lapse. Some deviation between the exponents which best
collapse the closed and open system distributions does
arise. However, the difference is sufficiently small that
we may attribute it to the curvature of the density
profiles on the open system. This explanation does not
imply a breakdown of local equilibrium. Instead, when
the average density is not constant one should in princi-
ple integrate (18) over the spatially varying density to ob-
tain the systemwide events distribution. If we attempt to
collapse the open system data [Fig. 4(b)] with the closed
system exponents, we observe that the discrepancy be-
tween the open and closed systems decreases systemati-
cally as system size increases (and consequently the spa-
tial variation decreases due to decreased edge effects) sup-
porting this explanation.

Finally, it is worth noting that with the conventional
driving d~ =2 the event-size distribution P(n) is substan-
tially altered. In that case, we cannot possibly collapse
the data with (p, —p) as in Figs. 4(a) and 4(b) because, as

previously mentioned, for the large systems the average
density is greater than p, . In this case we can, however,
perform a finite-size scaling collapse with X. The result is
illustrated in Fig. 4(c). Here the cutoff is given by the
system size g =N, and the event-size distribution is essen-
tially a pure power law. In contrast, when diffusion holds
on the open driven system [as in, for example, Fig. 4(b)],
when we perform a scaling collapse with respect to the
system size N rather than the density p, —p, we observe
that the characteristic event size scales like g-N", with
bv & 1, i.e., the divergence is sublinear in the system size.
In that case, under the spatial rescaling of X ' that leads
to the diffusion limit, even the largest events correspond
to local transitions. In contrast, when g-N typical
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I I I I III I I I I I III I I I I I II+ events are nonlocal, involving a finite fraction of the sys-
tem. In general, we expect that when the typical event
size is of order the system size diffusion hydrodynamics
must fail, i.e., local events are a necessary condition for
diffusion to hold.

C. Couat model
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We introduce and brieAy discuss another automaton
which exhibits both the failure of hydrodynamics under
hard driving as weH as nontrivial critical behavior at the
diffusion singularity. In this system, as in the two-state
model, each site is either a 1 or a 0. The rules are as fol-
lows. If a 1 is located at site i, then at rate unity the 1

moves to the first site k &i such that there are more 0's
than 1's in the intermediate interval. Specifically,
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3
I I I I III I I I I I I I lg k =inf j)i: g g(m) ( g [1—g(m)] . . (20)
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FIG. 4. Scaling collapse of the distribution P(n) of events in-

volving n sites. (a) illustrates our results for the closed system,
where the data is rescaled by the distance from the singularity.
The x-axis rescaling is d0 from which we extract the event-size
correlation length exponent @=0.74. (b) illustrates the corre-
sponding results for the open system with dz =1. In this case
we estimate that 0=0.85. (c) illustrates our results for d& =2.
In this case we rescale by the system size, and the x-axis rescal-
ing is dbms=2. Thus the distribution cuts oft' at events of size

g —X, and the distribution is essentially a pure power law ex-
tending from the smallest events out to the system size.

One should picture the moving 1 as starting off with one
unit of momentum, and then gaining an additional unit at
each 1 encountered and losing a unit at each 0 until the
particle has zero momentum, at which time it stops. The
symmetric rule holds for jumps to sites k & i. It is clear
that a singularity in D (p) will occur when p= —,'; this is
nonrigorous, but if the system possesses any element of
ergodicity then for any density in excess of —, there is pos-
itive probability that a 1 will move an infinite distance.

The singularity at p, =
—,
' is in fact observed numerical-

ly, with a pole of order /=2. 25+0. 15. Simulations also
show that the system is sustaining a phase transition in
the sense of diverging spin-spin correlations at p, =—,'. It
is diS.cult to independently extract the value of v directly
from numerical measurements of the correlation func-
tion. The divergence appears to be rather slow, and does
not give a good fit to a power law at the densities we con-
sider. Instead, we use measurements of the fIuctuations
as a function of the density to extract the estimate
v( —2+g) =0.95+0. 15, which clearly indicates that fluc-
tuations are suppressed at p, =

—,
' relative to the central-

limit value. On the open version of the system (driven ex-
actly as were the two-state models, above), substituting
these exponents into (11) imphes that fluctuations should
dominate when dz ~ 0. 19+0.22.

Figure 5 shows the variation of the exponents a and b
with driving exponent dz. Here the density p& and Auc-
tuations s& are measured in the middle half of the system.
The solid lines are the predictions of Eqs. (6) and (9) for b
and a, respectively, using the values P =2.25 and
v( —2+g)=0.95. The predictions are consistent with
the measured values in the regime where hydrodynamics
is expected to hold.

Figure 6(a) illustrates a collapse of event-size distribu-
tions P (n ) as a function of density for the closed system.
The data is rescaled by the distance from the singularity.
Figure 6(b) illustrates a similar collapse for the open sys-
tem at dz = —0.25, which is well below the threshold at
which fluctuations should destroy diffusion hydrodynam-
ics. As for the BTW model, here we use the density in
the middle half of the system to obtain the scaling col-
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FIG. 5. Exponents a (describing the scaling of s& with system
size N) and b [scaling of (p, —p~ ) with N] as a function of driv-
ing exponent d& for the count model. The density and fluctua-
tions have been measured in the middle half of an open system.
The solid lines are the predictions of Eqs. (6) and (9) for b and a,
respectively, where we have taken P =2.25 and
v( —2+g)=0.95. These values fit the data reasonably well in
the regime d& 0 in which hydrodynamics is expected to hold.
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lapse. We again observe a mild discrepancy between the
values of 0 which best collapse the data on the open and
closed systems. The discrepancy decreases as the system
size is increased, so that, as before, we attribute the
difference to spatial variations of the density on the open
system rather than a breakdown of local equilibrium.
Figure 6(c) shows the results for the open system with
dz =0.25, which is in the hard driving regime where hy-
drodynamics has broken down due to fluctuations. In
this case the distribution has been rescaled by the system
size. As in the BTW model when

fluctuations

are
relevant, in this case the event-size distribution is essen-
tially a pure power law with g-N. For the count model
we also observe an excess of systemwide events. We have
observed a similar excess in the BTW model with dz =2
imposing periodic boundary conditions in x and open
boundaries in y.
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D. Limited local sandpile models

Finally, we consider the one-dimensional limited local
model, introduced and studied in Ref. [2]. This model
and the BTW sandpile model discussed above are the two
most studied SOC models to date. The model is an ¹ite
integer lattice, and each site i has an associated height
h (i) that represents the number of grains on the site.
Each site also has a slope z(i)=h(i) —h(i+1). Slope is
the relevant conserved quantity, speci6cally because one
can study the equilibrium statistical mechanics for closed
systems in terms of slope. The rules are as follows. Sand
is added one grain at a time to a randomly chosen site. If
the slope at a given site i is above a threshold slope z, =2,
then two grains fall to the neighboring site:
h (i) +h (i)—2 and—h (i+1)~h (i)+2. The rules can be

10
0.001

I I I I IIII I I i I I III

0.01 0.1

n/N'

I I I I Illi i

FIG. 6. Scaling collapse of the event distribution P(n) for
the count model. (a) shows the results for the closed system
with N =8192, and (b) is the open system with
N=64, 128,256,512,1024 and d&= —0.25, which is below the
threshold at which fluctuations dominate. In each case the data
is rescaled by the distance from the singularity. From (a) and
(b) we estimate 0= 1.0+0.1. (c) is the open system with
N=64, 128,256,512,1024 and d&=0.25, which is in the hard
driving regime where hydrodynamics has broken down due to
fluctuations. In this case we have collapsed our data with
respect to system size N as in Fig. 4(c). The distribution is a
pure power law out to the system size, at which point there are
an excess of systemwide events.
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written purely in terms of slope where the concept of
"troughs" becomes evident [17].

Previously it was found numerically that P =4, a result
that was later obtained analytically in Ref. [8]. For the
usual open version of this system, addition of grains re-
sults in a net drift of slope [z(i)=z(i)+1 and
z(i —1)=z(i —1)—1, so slope fiows from left to right
when sand is added at site i] W. e remove this drift by
symmetrizing the addition rule, which does not change
the singularity. The system is then driven in the same
way as the two-state model, injecting slope at the left
boundary and allowing slope to leave the system at the
open right boundary. This avoids pathologies associated
with the usual boundary conditions and allows us to tune

dBthe driving rate to scale as X
On the closed system it appears that fluctuations are

suppressed, even away from p, . Measurements of the
density fluctuations in boxes up to size 512 on a system of
size 8192 yields s&-N ' with a =0.8, well above the
central limit value of —,', independent of the distance from
the singularity. This result is surprising: if there are no
diverging length scales away from p, then fluctuations
must eventually be central limit as 1V is increased. The
fact that we still observe suppressed fluctuations suggests
that there is a very large (possibly finite) correlation
length in the system which has not been reached at the
system sizes considered here.
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0.0
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0.5

FIG. 7. Exponents a (describing the scaling of s& with system
size) and b [scaling of (p, —p~) with system size) as a function
of driving exponent d& for the limited local model. The density
and fluctuations have been measured in the middle half of an
open system. The two dashed lines are the predictions of Eq. (6)
when d= 1: b=ll+d~)/(P —1). The lower dashed line is for
/=4 (the value measured in the closed system), the upper
dashed line is / =3.75. Note that neither value of P fits the data
for b, even in the regime where b &a. The breakdown of local
equilibrium is clearly indicated by the values of a, which are
clearly incompatible with Eq. (9), which would predict that
when a & 2, the slopes of a and b as a function of d& should
have the same sign. We note finally that the inequality b ~ a for
fluctuations to become relevant still seems to have some con-
tent, since the smooth behavior of the curves changes above
their crossing point at dz =0.5.

On the open system with the conventional driving,
suppressed height fluctuations were observed earlier in
Ref. [18]. We also observe suppressed fiuctuations on the
open driven system when the driving dimension dz =0
corresponds to the driving dimensionality of the conven-
tional case. However, in direct contradiction to the va-
lidity of local equilibrium, for the open system we find
that as the system is driven harder (i.e., d~ is increased,
so that convergence to the critical density is increased),
the fluctuations become less suppressed, with a limiting
central limit value of —, for large dz. This is illustrated in
Fig. 7, where we plot a and b as a function of dz. If local
equilibrium held, then a and b would both increase with
increasing d~. The decrease in a is a direct indication
that this approximation has broken down. The fact that
fluctuations actually increase suggests a structure for the
stationary distribution in the open system that is very
different from that of the closed system, even for very
small dz. We speculate that the long-range correlations
observed on the closed system may ultimately provide an
explanation of this phenomenon, as it may be that even a
relatively small flux through the system will interfere
with this large correlation length.

IV. CONCLUSIONS

Chronologically, this study began with a detailed nu-
merical examination of the four sandpile models in Ref.
[2]. In particular, we set out to measure the diffusion
singularities and verify the consistency between the
behavior on the closed and open systems. The experience
was somewhat sobering, and it became clear that the
behavior of these seemingly simple automata could be
quite complex, involving not only a diffusion singularity
but also a phase transition in the density. Furthermore,
even that extra level of complexity does not sufficiently
explain the range of behaviors observed in these models,
as made evident by the lack of complete documentation
for them in Table I. We have, however, numerically ob-
served some very large length scales that may provide a
partial answer, and we hope to have more to say on the
subject in a later publication.

One of our first observations was that the unlimited
models of Ref. [2], while exhibiting singular diffusion
coefficients on the closed system, actually converge to the
singularity from above on the open system, in apparent
contradiction of the hydrodynamic description. It has
since become clear that there are pathologies with the un-
limited models on the open system —the systems get
stuck in configurations with density above the singulari-
ty.

However, from this we learned that the hydrodynamic
description could fail, and, in fact, should fail when fluc-
tuations force the system over the singularity with non-
negligible probability. We have presented (1) an explana-
tion for why such fluctuations can invalidate the diffusion
description, (2) a simple exponent inequality, involving
standard critical exponents, which establishes when this
occurs, (3) numerical evidence that shows that failures of
the diffusion description is in fact observed under hard
driving with palpable changes in avalanche distributions,
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and (4) numerical evidence for the failure of local equilib-
rium in the limited local model.

This leads to two important unresolved issues for fu-
ture work. First, in the case where the diffusion descrip-
tion breaks down as a consequence of fluctuations which
extend above the singularity, one may ask: What is the
new description which replaces (I)? An answer to this
question would, for example, assist in understanding the
BTW model with the conventional driving (d~ =2).

The second issue that remains unresolved is a quantita-
tive understanding of the breakdown of local equilibrium.
For example, it would be useful to develop an exponent
inequality analogous to (11). The assumption of local
equilibrium is relied upon heavily in the analysis of other
nonequilibrium systems. Alternative descriptions have
been developed for some Auids problems for conditions
under which local equilibrium is not a good approxima-
tion [19]. It is not clear how to address this question for
the SOC systems that we have considered here. Because
of the diverging transition lengths, this failure may occur

more readily in SGC systems, suggesting the possibility
that they may provide a useful arena in which to examine
the question of the breakdown of local equilibrium in
driven systems.
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