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A model is presented that is intended to provide a realistic physical picture of the energy-transfer
mechanism in cell microtubules. A classical ¢* model in the presence of a constant electric field is used
as a conceptual basis. It is demonstrated that kinklike excitations arise as a result of the guanosine 5'-
triphosphate (GTP) hydrolysis and that an intrinsic electrical force may cause them to propagate along a
microtubule. A discussion is given on the possible effects of these excitations on the dynamics of micro-

tubules.
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I. INTRODUCTION

The interiors of biological cells are structurally and
dynamically organized through the presence of networks
of interconnected protein polymers. These networks are
referred to as the cytoskeleton due to their bonelike
structure. Of the various filamentary structures which
comprise the cytoskeleton, microtubules (MT’s) appear to
be the most prominent ones. It can safely be said that
MT’s are ubiquitous through the entire biology [1].

Parallel-arrayed MT’s are interconnected by cross-
bridging proteins which are called microtubule-associated
proteins (MAP’s), as shown in Fig. 1. These interconnec-
tions, together with MT’s, are believed to be responsible
for numerous cellular activities such as growth and
division, which are essential for the living state. From
the characterization of structure and function, MT’s ap-
pear very well suited for dynamic information processing
[1-3].

MT’s represent hollow cylinders formed by
protofilaments aligned along their axes (see Fig. 2) and
whose lengths may span macroscopic dimensions. In
vivo, the cylindrical walls of MT’s are assemblies of 13
longitudinal protofilaments, each of which is a series of
subunit proteins known as tubulin dimers. Each tubulin
subunit is a polar, 8-nm dimer which consists of two
slightly different 4-nm monomers with molecular weight
of 55 kilodaltons. These two constituent parts are usually
called a and B tubulin. Each dimer may be physically
viewed as an electric dipole p whose dipolar character
originates from the 18 calcium ions bound within each S
monomer. An equal number of negative charges required
for the electrostatic balance are localized near the neigh-
boring @ monomer. Thus, MT’s can be identified as an
example of electret substances, i.e., oriented assemblies of
dipoles. They are predicted to possess piezoelectric prop-
erties that may be quite important in their functions,
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especially in the very interesting assembly and disassem-
bly behavior [4,5].

A very important role is played by guanosine 5'-
triphosphate (GTP), an energy-providing analog of
adenosine 5'-triphosphate (ATP) which binds to polymer-
izing tubulin dimers. It is a very appealing mechanism
from the biochemical point of view since the order of
magnitude of the energy produced is just right. The
chemical reaction involved is [6] the hydrolysis of GTP,
which is

GTP* +H,0->GDP* +HPO,> +H" ,

and under normal physiological conditions approximate-
ly 10 kcal/mol (0.42 eV/molecule) of free energy is
released in this reaction, where GDP denotes guanosine
5’-disphosphate. It is known that the energy produced
during GTP hydrolysis is delivered to assembled MT’s,

FIG. 1. A parallel microtubule network.
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although a precise manner in which this energy is utilized
is still not understood. One possible mechanism for the
utilization of this form of energy is the production of
coherent lattice vibrations as proposed by Frohlich [7]
and by the scores of other researchers that followed his
idea of biological coherence over the past two decades.
Although Frohlich’s theory has never been confirmed by
experiment, we believe that the basic mechanism pro-
posed by Frohlich merits continued interest. Our ap-
proach in the present paper will not follow Frohlich’s
theory but will be influenced to a certain degree by his
ideas.

An interesting suggestion was made by Barnett [8] that
filamentary cytoskeletal structures may operate much
like information strings in analogy to semiconductor
word processors. Barnett conjectured that MT’s are
indeed processing channels along which strings of infor-
mation bits can move, transferring messages from place
to place. In addition, within this context protofilaments
could be envisaged as playing the role of parallel-arrayed
memory channels. It was also suggested [2,3,9] that con-
formational states of tubulin dimers present within MT’s
may be coupled to charge or dipolar states, thereby al-
lowing for cooperative interactions with neighboring tu-
bulin states. Such interactions were modeled in the
framework of molecular automata in which the confor-
mational states of individual tubulin subunits represent
bits of information that can change under the dynamic
X
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FIG. 2. (a) The structure of a microtubule, (b) its cross sec-
tion, and (c) two neighboring dimers.

influence of the neighbor subunits.

Another intriguing property of MT’s is the process of
their assembly. Since in solution containing their sub-
units MT’s are not true equilibrium polymers, the process
is rather complicated to model. Dark-field microscopy
was the technique used to investigate the process experi-
mentally [10]. It was found that when a single MT is
monitored, its two ends grow at different rates. The ac-
tive “+” end grows faster than the inactive ‘“—" end.
However, each end independently stops growing in a sto-
chastic manner and then immediately begins to shorten
at a high rate. After the shortening period, a microtu-
bule suddenly stops and restarts the growth phase. A
very important experimental observation was made that
the presence of MAP’s significantly suppresses uncorre-
lated phase conversions and stabilizes MT’s in their
growth phase.

In this paper we will put forward a theoretical model
based on the creation of kinklike excitations in MT’s.
Their presence will be linked to GTP hydrolysis and the
energy released therein. This will offer a plausible ex-
planation of this aspect of the very complex and intrigu-
ing MT dynamics. The model proposed in this paper will
also provide a starting point for the physical description
of a molecular computation system.

II. THE PHYSICAL MODEL

Biological systems in general, and MT’s in particular,
possess a high degree of order. This is predominantly in
the form of functional organization but also, to a large
degree, represents spatial arrangement. One basic physi-
cal idea concerning the nature of biological order was put
forward by Frohlich [11]. Frohlich considered an ensem-
ble of molecular dipoles that are capable of high-
frequency oscillations that can be subjected to an external
electric field and allowed to strongly interact among
themselves. He conjectured that, provided the supply of
energy to the dipolar system exceeds a critical value, a
nonequilibrium metastable state may be formed that is
characterized by long-range coherence manifested by a
macroscopic occupation of a single mode. An example of
such a system could be the dipoles of a cell membrane in
the presence of a transmembrane potential [12]. The con-
ditions described above may also apply to the assembly of
dimers within a MT which was already described as an
electret. The supply of biochemical energy in the form of
ATP or GTP hydrolysis may be the source of nonequili-
brium excitations.

We believe that the entire MT may be viewed within
the context of the Frohlich model as a regular array of
coupled dipole oscillators interacting through resonant
(i.e., frequency-specific) long-range forces. Furthermore,
coherent vibrations within regions of a MT may take the
form of kinklike excitations (KLE’s) separating adjacent
regions with opposite polarization vectors. The dipole
orientation is in the direction of the protofilament axis.
It should be mentioned that macroscopic mobile domain
structures are of great practical interest due to their po-
tential applications as active components in optical
switching and memory devices [13]. It is the number of
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KLE’s formed and their mobility that determine their
most important characteristics, such as the switching
time, effective polarization, power dissipation rate, and
hysteretic behavior.

In the physical model that is put forward here, the
basic argument is that the MT system has a strong uniax-
ial dielectric anisotropy so that the array of dipole oscil-
lators can be effectively described in terms of only one de-
gree of freedom. In fact, experiments showed [14] that
tubulin undergoes a conformational change induced by
the GTP-GDP hydrolysis in which one monomer shifts
its orientation by 29° from the dimer’s vertical axis.
Thus, we deduce that the single degree of freedom re-
tained in our description (analogous to Landau’s order
parameter; see Ref. [15]) is the projection on the MT
cylinder’s axis of the monomer’s displacement from its
equilibrium position. The inherent symmetry of a MT
enables one to view them as nearly perfect one-
dimensional crystals.

In this paper we intend to describe the nonlinear dy-
namics of dimer dipoles in one protofilament of a MT in
terms of the well-known double-well potential model.
This approach has been proven extremely useful in the
physics of bistable molecular systems [16]. Its successes
in other related areas, for example in the description of
dipolar excitations in ferroelectrics [17], are widely ac-
knowledged. The essential argument in favor of intro-
ducing the double-well model stems from the fact that
the longitudinal projection of the dimer displacement in-
teracts with the rest of the lattice through a mean-field
force due to an anharmonic crystal-field potential. A
similar inorganic ferroelectric, i.e., antimony sul-
phoiodide (SbSI), possessing a filamentary structure with
parallel filaments [18], has been also analyzed in a similar
manner.

The overall effect of the surrounding dipoles on a
chosen site n can be qualitatively described by the
double-well quartic potential

V(u,)=—1Aul+1Bu}, 2.1)
where u, is the longitudinal displacement of the nth di-
mer, 4 and B are model parameters such that B >0 and
is temperature independent, while A is typically a linear
function of temperature that may change its sign at an in-
stability temperature T, i.e., A =a(T—T,). With a>0,
below T, A >0 and u, =0 is a maximum of the potential
such that ¥(0)=0. Two symmetric local minima exist at
u,=xV' A4 /B for which V,;,,=— A?/4B. This is illus-
trated in Fig. 3. The anharmonic potential discussed here
is meant to approximate the average effect due to the en-
vironment when all the neighboring dimers assume their
equilibrium positions. As shown in Fig. 4, the mobile
electron on each dimer can be localized either more to-
ward the @ monomer or more toward the 8 monomer.
The latter possibility is associated with changes in dimer
conformation. Experimental evidence indicates [14] that
a conformational distortion of 29° from vertical occurs in
the B state. We, therefore, identify the variable u, with
the amount of B-state distortion when the latter is pro-
jected on the vertical axis.

A V(%)
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FIG. 3. The double-well on-site potential of Eq. (2.1).

In the next step of developing our model, account is
taken of the experimental fact that the MT cylinder taken
as a whole represents a giant dipole. When the cross sec-
tion of a MT is viewed using electron microscopy, the
outer surfaces of a MT are surrounded by a “clear zone”
of several nm which apparently represents the oriented
molecules of cytoplasmic water and enzymes [19]. This
could be explained by the presence of an electric field
produced by a MT. Therefore, we assume that, together
with the polarized water surrounding it, a MT generates
a nearly uniform intrinsic electric field parallel to its axis
(see Fig. 2). Consequently, the additional potential ener-
gy due to this electric field and associated with each di-
pole is

Vg=—cu, , c=qE , (2.2)

where g denotes the effective mobile charge of a single di-
mer and E is the magnitude of the intrinsic electric field.

We are now in a position to write the model Hamil-
tonian for a microtubule. It can be given as

H= § Lo |22 | +ik(u u, P— L2

= M= 1 -, -

<2 dt e ntooa2n
+%u,‘,‘—~cun (2.3)

The first term above represents the kinetic energy associ-

Mobile Electron
Localization

FIG. 4. An illustration of switching between conformational
states (a and B) in microtubule dimers.
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ated with the longitudinal displacements of constituent
dimers, each of which has mass M. The second term
arises from the restoring strain forces between adjacent
dimers in the protofilament. If the stiffness parameter K
is sufficiently large (so that the intersite strain energy
exceeds the depth of the on-site potential well:
— A?/4B), then it is expected that large-amplitude long-
wavelength excitations of the displacement field will be
formed. They will be manifested by a slowly varying
modulation of u, along the MT axis.

In order to derive a realistic equation of motion for this
system, it is indispensable to include the viscosity of the
solvent and introduce the associated damping force. As-
suming for simplicity that the solvent is made up of only
water molecules, we may infer the following properties
[20]:

(i) The dipolar water molecules will have a very
significant effect on the long-range electrostatic energy
between the dimer dipoles.

(ii) Water will provide a viscous medium that will
damp out vibrations of dimer dipoles.

The first effect has already been mentioned, and it can
be accounted for by an appropriate choice of the model
parameters, especially by an inclusion of the dielectric
constant. The second effect can be simply taken into ac-
count by adding the viscous force to the equation of
motion with

(2.4)
ot

where y represents the damping coefficient that will be
estimated in the next section. We are now in a position
to obtain and analyze the relevant equation of motion for
the displacement field.

III. THE EQUATION OF MOTION

Based on our assumption that the dipolar oscillations
of dimers within a MT form a system that can be
classified as displacive ferrodistortive, we can use the con-
tinuum approximation whereby

u,(t)—ul(x,t) (3.1

and

, dul(x,t)

Ju(x,t)
+3Ro ax?

ox

U, 1(t)—>u(x,t)+R, 4 ...

b

(3.2)

where R, represents the equilibrium spacing between ad-
jacent dimers.

An equation of motion for dipolar oscillations can be
now derived using the Hamiltonian of Eq. (2.3), applying
the continuum limit of Egs. (3.1) and (3.2) and adding the
viscous force of Eq. (2.4) to the thus-obtained Euler-
Lagrange equation. We therefore find that

Qu

2 2
M— —KR}— — Au~+Bu’+vy
x ot

—gE=0. (3.3)

Note that the x coordinate is along the protofilament

axis. Moreover, for longitudinal sound waves the disper-
sion relation ©=V K/M can be used to identify the
sound velocity with vo=wR,=V K/MR,,.

We now seek solutions of Eq. (3.3) in the traveling-
wave form where the moving coordinate £ is given by

1/2
”A}T'IZAL‘E)— (x—vt)=alx—uvt),
UO_U

&= (3.4)

where v denotes the propagation velocity and the
coefficient a is, of course,

172
| 4]

T 3.5
M(v}—v?) B3

a=

Consequently, Eq. (3.3) is reduced to the ordinary
differential equation below:

Ma(w?—v3)u" —yau'— Au+Bu’*—gE=0, (3.6

where u'=du /d§. This is an equation for an anharmon-
ic oscillator with linear friction, and a recent paper [21]
was devoted to describing is analytical solutions, one of
which will be discussed shortly. In addition, Lal [22] dis-
cussed a similar problem concerning the existence of kink
solutions when friction is present and emphasized its im-
portance in biological applications.

For the sake of convenience we now introduce a nor-
malized displacement field as

P(E)=u(b)/w, (3.7)

where the normalizing coefficient o=V |4 /B| corre-
sponds to the minimum of the double-well potential in
Eq. (2.1). The dimensionless equation of motion now
takes the form of the ordinary differential equation
below:

V' +p — P +P+o=0, (3.8)
where we have used the symbols

p=yv[M@w3—v?)|4|171? (3.9)
and

o=qV'B|A|73E . (3.10)

It has been shown [17] that Eq. (3.8) has a unique bound-
ed solution which is given by the formula (and illustrated
graphically in Fig. 5)

_ b—a
PY(g) a+—1+exp(B§) N (3.11)
where
B=(b—a)/V2 (3.12)

and the parameters a, b, and d satisfy the cubic equation
(Yp—a)yp—b)p—d)=y*—p—o0o . (3.13)

It is important to note that the above kinklike solution
propagates along the protofilament with a fixed velocity

2 -1/2
14 —=X

(3.14)
9d*Mv}

v=vo[
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FIG. 5. The form of a kinklike excitation of Eq. (3.11).

This velocity is less than the sound velocity v, and it ob-
viously decreases with an increase of the friction
coefficient y. It is clear that v depends on the magnitude
of the electric field E through the parameter d. The
dependence of d on E is not very simple, since it involves
the cubic equation (3.13). However, for T < T, and large
fields E, we know that d ~E'/3, while for small fields
d ~y,+AE, where y,==1 is the mean-field solution for
E=0 and A is a constant coefficient. In order to gain a
more quantitative understanding of this result, we now
wish to estimate the magnitude of the intrinsic electric
field E in the protofilament. To this end, we assume that
the length of a MT, L, is much greater than the diameter
D, L>>D. Hence, for points along the protofilament
that are sufficiently removed from its ends, the magnitude
of the electric field can be approximated simply as

E= Q
4eyr

T (3.15)

where Q represents the effective charge on the ends of the
hollow cylinder and 7 is the distance between the selected
point and the end of the protofilament.

Taking, as an example, a moderately long MT consist-
ing of approximately 10? dimers gives L ~107¢ m. Then
the effective charge Q consists of 2 X 13 protofilament end
dimers, each of which has a charge of 18X2e due
to the presence of 18 Ca?t ions. Consequently,
Q=26X36e=9.4X10% with e=1.6X10"! C. There-
fore, the field in the vicinity of the middle point on the
protofilament is found to be on the order of E ~4X 10°
V/m. Taking into account the dielectric effects of the
surrounding water molecules, this value must be reduced
by almost two orders of magnitude to approximately
E~10° V/m. As shown in Fig. 6, the magnitude of the
electric field E(x) sharply increases as we approach the
end points.

Unfortunately, no reliable experimental data exist at
present regarding the values of the potential coefficients

_J

FIG. 6. Plot of the intrinsic electric-field distribution along
the MT axis.

Distance L

A and B or indeed whether the form of our potential is
suitable. In principle, at least, neutron-scattering experi-
ments should provide a dynamic structure factor for mi-
crotubules which could be used for modeling purposes in
a manner similar to that used for ferroelectrics [23]. In
the absence of any hard data for MT’s we can use some
typical values for crystalline ferroelectrics, knowing that
they do not vary substantially between different com-
pounds. For example, the well-studied [23] ferroelectric
PbsGe;0,; has been demonstrated to support the forma-
tion of kinklike domain walls. There, A(T)=a(T—T,)
with @=10J m? and B=1.6X10* Jm™* while
T.=500 K. Assuming that the critical temperature T,
for MT’s is in the room-temperature range or somewhat
above it, we take T,~320 K and estimate that in the
room-temperature region

A(T=300K)=200Jm~ 2, B=10*Jm™*. (3.16)

Thus, with the parameter values obtained in this section
we find

oc=~2X10"°E . (3.17)

It is, therefore, clear that even for very strong electric
fields (E ~10® V/m) the inequality o <<1 holds right up
to the protofilament ends. Under these circumstances we
can safely approximate the KLE of Eq. (3.11) as

2
W) o I T ep(V26)
2
sup [1—-——=—— |, 3.18
- 1+exp(V2§) ( )

where the amplitude of the dimer displacement field has
the value uo=V[A[/B =1.4X10" ' m. Let us now as-
sess other consequences of smallness of the electric field.
First, the propagation velocity of a KLE is approximated
(for T well below T, and large values of y) as

172

3v
9 qE (3.19)

_ MB
yl4l

2

!

v

and it is generally much smaller than the sound velocity
(v <<vy). Equation (3.19) can be interpreted as a linear
response between the propagation velocity v and the mag-
nitude of the electric field E. The coefficient of propor-
tionality in this relationship represents the KLE mobility
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172

3v
0 q. (3.20)

2

MB
2

R

u

In order to evaluate the magnitude of u we require an es-
timate of the damping coefficient y. To do so we will use
simple fluid mechanic arguments. First of all, note that
each dimer can be roughly viewed as a sphere of mass M.
Then, using the well-known result for a sphere of radius
R moving through fluid with velocity du /dt, the drag
force exerted by the fluid on the sphere is

du du
F,=—6mRn——=—y—, 3.21
d TR g Y ar (3.21)
where 7 is the absolute viscosity of the fluid. In our case,
the fluid is assumed to be water and its viscosity is tem-
perature dependent. However, at physiological tempera-
tures ( ~ 300 K) we take

p=7X10"*kgm s !. (3.22)
Substituting R =4 X 10~° m into Eq. (3.21) we obtain
y=5.6X10"" kgs!. (3.23)

The last quantity required in our estimate is the sound ve-
locity v,. The experimental results [24] of v, for DNA

produced the value
vo=1.7X10* m/s . (3.24)

M=(55X10%)X(2X107?%)
g=18X2X(1.6X1071%)

Finally, then, putting
kg=1X10"2? kg and
C=6X10"' C, Eq. (3.21) yields

p=2X10""m2v-is7 1, (3.25)

Thus, taking E=10° Vm™! as a representative average
value of the electric field, the propagation velocity of a
KLE is on the order of

7=2m/s . (3.26)

However, in close proximity of MT ends E may reach 107
Vm™! and, consequently, the KLE may accelerate up to
v ~10% m/s.

Assuming a smooth journey from one end of the
protofilament to the other, we estimate the average time
of propagation for a single KLE to be

F=L/v=5X10""s. (3.27)

However, increasing the length of the protofilament will
increase 7 on two accounts: (a) increasing the numerator
in Eq. (3.27), and (b) affecting the mean velocity through

the dependence of the electric field on L. Indeed,
E ~L 2 and hence 7 ~L ~2. Consequently,
F~L7T3, (3.28)

leading to a rapid increase of 7 with L.

While the model presented here is very closely related
to the one developed by Collins et al. [17] for ferroelec-
trics, we should mention that the effects of discreteness of
the lattice may play an important role. For example,
Kimball’s analysis [25] of kink dynamics for a discrete
lattice indicates that there may exist a threshold value of

the external field required to sustain kink motion. More-
over, it appears that fast-propagating kinks are more
stable than slow ones. Similar conclusions were obtained
by Sanchez and Vazquez [26], who studied the propaga-
tion of topological kinks in a stochastically perturbed ¢*
model. Their numerical simulations confirmed the con-
clusion that for all noise strengths studied slow kinks
were more affected by the perturbation than fast ones.
Finally, in this context, Combs and Yip [27] demonstrat-
ed that discreteness of the lattice may be accommodated
by continuous equations of the form in Eq. (3.3) by add-
ing higher powers of the time derivative of the field, i.e.,
terms like (du /9z)%. A general discussion on the propa-
gation and stability of kinks and their generalizations in
dissipative nonlinear models can be found in Ref. [28].

IV. STATISTICAL PROPERTIES
OF THE KLE ENSEMBLE

It is well known that extra energy is required in order
to create a kink, since kinks are not solutions of the equa-
tion of motion with the lowest energy. Thus, outside the
immediate proximity of the critical temperature T, kinks
are not easily formed. Due to their topological stability,
however, they are not readily destroyed once they are
formed. An injection of energy into the system in the
form of incoherent pulses of electromagnetic radiation is
expected to stimulate kink creation. This extra energy
can be produced, for example, during the hydrolysis of
ATP or GTP, as was already mentioned in this paper.
Due to their mutual repulsion over short distances, the
number of KLE’s formed is limited from above.

In order to formulate a statistical description of an en-
semble of KLE’s we must first calculate the energy of a
single kink. This is found by substituting the displace-
ment field solution of Eq. (3.18) into the model Hamil-
tonian of Eq. (2.3) so that

_ 1 + o
E~—R—Of_w dx H(x,1), @.1)
and we find
2V2 42 V2 A4, 1| 4 MAa |,
E=52"22 4 TS L S22 2 42
3 B 388 3 |3vare |V WP

The first term in the formula above represents the well-
known binding energy of a KLE. Its magnitude is much
greater than that of the remaining two, being on the or-
der of 1 eV. The second term in Eq. (4.2) corresponds to
the resonant transfer of energy responsible for the propa-
gation of KLE’s along the MT. The third term is the
classical kinetic energy of a KLE, which can be expressed
as

E =1M*v?, (4.3)
where the effective mass M * is
«_ 4 MAa
=T =L 4.4
3V2 RoB 44

Thus, the total energy can be rewritten more compactly
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as
E=A+1M*v?, 4.5)
where
2V2 A4? K
==L 14+ . .
A 3 B 3"] (4.6)

Using the same set of parameters as before, including the
DNA value for K (=32 Nm™!), we obtain the following
estimates for a MT:

A 2
2—”—2—%0.“10—‘9 7,

3
%K%zo.sx 107205, 4.7)

M*=~5%X10"% kg .

This estimate appears to indicate that thermal energy is
insufficient to create a significant number of KLE’s.
Thus, we must seriously consider the hydrolysis of GTP
from the surrounding medium (or injection of energy
pulses of another type) as a main potential source of KLE
formation. At normal concentrations of attached GTP
molecules one expects a few KLE’s to be generated so
that their mean separation by far exceeds their width. In
this regime, KLE’s can be viewed as a gas of weakly in-
teracting quasiparticles whose velocities are thermalized.

In the following we provide a more quantitative statist-
ical calculation [29] intended to demonstrate that thermal
generation of KLE’s is negligibly small. The partition
function for a single KLE with a number of available mo-
menta p is

_—1_ L M*vo _
=D fo dx fo dp exp(—BE) , (4.8)

where D is a normalization constant, dT'=dx dp is an
element of the phase space, p =M *v is the momentum of
one KLE, and B=(kzT)" !, where kjp is the Boltzmann
constant and T is the absolute temperature. In order to
calculate the mean number of KLE’s, we first define the
grand partition function = as

== § _'Z"exp(iB;,L)=exp[Z exp(Bu)], 4.9)

1!

where Z' is an i-particle partition function and u is the
chemical potential. Then, standard thermodynamic rela-
tions give

- oF
F=—kzThE , (n)’—‘—a , (4.10)
and the mean number of KLE’s is found as
(n)=2Zexp(Bu) . (4.11)

The mean density of KLE’s in the MT is their number
per unit length, i.e.,

_{n)
PO— L
2 1/2 . 1172 A
= L=a
D ‘ 25 ’ erf v, 2 exp kT I,

(4.12)

where erf( ) denotes the error function which stems from
the p integration in Eq. (4.8). However, the most impor-
tant factor in Eq. (4.12) is exp(—A /kgT), since at room
temperature A=~0.2 eV, kzT=0.02 eV, and the expres-
sion for p, is reduced by a factor of ¢'®. This fully sup-
ports our earlier predictions and also agrees with the re-
sults of Koehler et al. [30].

Finally, the thermodynamic equation of state for an en-
semble of KLE’s on a MT can be found as

B

where A is the uniaxial stress on the MT. This result
takes the form of an ideal-gas equation relating the space
occupied by KLE’s with the magnitude of the electric
field that influences the value of the chemical potential.
This is consistent with the emergence of piezoelectric
properties of MT’s.

AL = exp(Bu)={nYkyT , (4.13)

V. SUMMARY AND CONCLUSIONS

This paper provided a general biophysical picture re-
garding the structure and function of microtubules. A
physical model has been developed based on nonlinear di-
polar excitations. Although this is but a first step in the
direction of quantitative modeling of microtubular
behavior, we believe that it will be very useful in future
investigations. The basis of our model has been the ap-
proach due to Collins et al. [17] that has proved very
useful in ferroelectric and ferroelastic applications. In
our model, we have assumed the existence of an intrinsic
electric field in MT’s and included its interactions with
dipolar oscillations in the constituent dimers. Lastly, the
presence of the surrounding water molecules has been ac-
counted for by the addition of an effective viscous force
that opposes the motion of dimers in an aqueous environ-
ment. We have estimated the required model parameters
using available experimental data.

Our main result is that a unique kinklike excitation ex-
ists which may propagate with a unique velocity that, in
the given range of parameters, is proportional to the
magnitude of the electric field E. We predict that these
excitations may be observed experimentally, for example,
through neutron-scattering and polarization experiments.
In the past, somewhat similar ferroelectric materials pos-
sessing filamentary structure [23] (e.g., Sb-Si) have been
precisely analyzed using light-, neutron-, and x-ray-
scattering data [31,32].

Although quantitative experimental evidence to sup-
port our model appears rather tenuous at present, there
are a number of facts that are consistent with the qualita-
tive features of our approach. For example, the observed
growth rates of MT’s are different at both ends in spite of
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an identical concentration of the surrounding monomers.
This can be explained on the basis of the following argu-
ment. We assume that KLE formation is mainly due to
the hydrolysis of GTP into GDP so that one act of hy-
drolysis corresponds to the conformational change result-
ing in the formation of a single KLE. However, a KLE is
preferentially oriented towards the direction of the intrin-
sic electric field. The propagation of a KLE will then dis-
tribute the energy of hydrolysis at the preferred end of a
MT. This energy will then be used to detach dimers from
the MT. This picture is in accordance with a hypothesis
put forward in a recent paper by Krischner and
Mitchison [33], who stated that on-rate (growth) is limit-
ed in principle only by the rate of diffusion of the mono-
mer subunits into the MT polymer (i.e., by the concentra-
tion of the constituent monomers in solution). On the
other hand, the off-rate (depolymerization) can be ex-
tremely rapid and the net amount of MT polymer formed
can be regulated independently by the hydrolysis of GTP.
Our model can be especially useful in the explanation of a
peculiar dynamical effect known as “treadmilling.” In it,
the “+” end grows at the same rate as the “—" end
shortens so that the overall length of the MT remains
constant under the condition of constant temperature
and concentrations. See Fig. 7 for an illustration of this
process.

It is reasonable to expect that at the onset of the MT
assembly process, when MT’s are very short, the forma-
tion of KLE’s is very unlikely (or even impossible), since
for a short chain the displacement field gradient required
would be very high and the associated energy to form it
prohibitively large. However, when the length of a MT
reaches a threshold value, kink formation could become a
real possibility. Excitation of kinks, being related to
GTP hydrolysis, would become dependent on the GTP
concentration. As MT’s become longer, KLE propaga-
tion becomes an important new factor, and it introduces
disassembly at the “—”’ end, whose rate is proportional
to the rate of KLE’s arriving per unit time at the “—”
end.

It has been emphasized [33] that the existence of a so-
called “cap” of dimers containing GTP near the “+” end
is a factor stabilizing the growth of GTP. If dimers
within this cap do not hydrolyze, the growth of a MT is
maintained. However, an intensive hydrolysis of this cap
is a trigger mechanism for the disassembly of MT’s
occurring at both ends. We also attribute this instability
to the energy transfer through KLE’s, since the probabil-
ity of a growing MT to start shrinking is thought to be
governed by the stochastic loss of the fluctuating GTP
cap.

E=const

N ~—
< Oo g’ £—— Kink soliton : ()}DO .
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FIG. 7. Schematic representation of the “treadmilling” pro-
cess involving tubulin dimers of a microtubule which takes
place at the (—) end with disassembly and at the (+) end with
assembly.

We have seen in our model that the intrinsic electric
field governs the rate of propagation of KLE’s. By add-
ing an external electric field to the Hamiltonian we can
introduce a new control mechanism in the MT dynamics.
An applied electric field will result in a faster-moving
population of KLE’s and thus a greater stability against
thermal fluctuations; if, on the other hand, the intrinsic
and applied electric fields are oriented in opposite direc-
tions, then KLE’s motion may be slowed down or
stopped altogether. This then can be seen as a basis for
treating MT’s as artificial information strings. Each
KLE within a MT can be viewed as a bit of information
whose propagation can be controlled by an external elec-
tric field.

Another important experimental fact is that stability of
MT’s is greatly enhanced by the presence of lateral
cross-bridging proteins (MAP’s). From the physical
point of view, these bridges represent lattice impurities in
the MT structure. Interactions between solitonlike pulses
and impurities have been studied very extensively in the
pst few years. It was demonstrated that impurity modes
play an important role in soliton propagation. In partic-
ular, kinks may be totally reflected by an attractive im-
purity if their velocities lie in specific resonance velocity
“windows” [34]. Hence, if the velocity of KLE’s lies
within such a “window,” the rate of arrival of KLE’s at
the “—”" end will decrease or even stop as the number of
MAP’s increases. This mechanism can lead to a
significantly reduced rate of MT disassembly. This mech-
anism together with a control mechanism offered by an
external electric field may provide a number of interest-
ing possibilities for information transmission and storage
in MT’s.
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