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The transport of radiation in the bulk of multiply scattering media is well understood within the
diffusion approximation. Such a description does not hold in the skin layers, where the transport
mechanism crosses over from free propagation to diffusive propagation, or vice versa. In this work,
we examine the effects of the skin layers of optically thick slabs on various quantities, including the
angularly resolved diffuse reflection and transmission and the shape of the enhanced backscattering
cone. This study is based on the ladder approximation to the multiple-scattering expansion. It does
not rely on the diffusion approximation and incorporates a systematic treatment of the internal
reflections which take place when the random-scattering medium and the outside have two different
optical indices, in an arbitrary ratio m. Many exact results are recovered in the absence of internal
refiections (m = 1). A systematic approach describes accurately the large-index-mismatch regime
(m —+ 0 or oo), where the improved diffusion approximation is shown to become exact asymptotically.
The analytic predictions of the large-index-mismatch approach are compared in a detailed way with
numerical results and with the outcomes of previous works.

PACS number(s): 42.25.Gy, 42.25.Bs, 42.25.Fx, 42.25.Md

I. INTRODUCTION

The study of light propagation through turbid media
has been an intensive field of research for many decades.
It has a wide range of applications, including interstellar
clouds, stellar atmospheres, fog, milky liquids, human
tissues and brains, etc. Physical experiments concern
mostly substances such as solid Ti02 (a component of
white paint), tefion, or suspensions of polystyrene spheres
or Ti02 particles in a fluid.

Many aspects of the transport of light in such me-
dia are well described by the so-called radiative-transfer
equation [1,2]. This transport equation has been derived
long ago by astrophysicists. On scales much larger than
the mean free path, it is equivalent to a difFusion equa-
tion. The transfer equation can also be obtained by sum-
ming the contributions of the dominant scattering pro-
cesses, i.e. , the so-called ladder diagrams, in a systematic
multiple-scattering expansion.

The diffusion approximation works very well for trans-
port in the bulk of a multiply scattering medium. Among
the physical consequences of difFusion theory, let us men-
tion Ohm's law for the electrical conductance, which is
equivalent in the present problem to the 1/L decay of
the total transmission, where L is the sample thickness.
Accurate measurements confirming this behavior quanti-
tatively and a comparison with numerical data have been
reported, e.g. , in Ref. [3]. Another interesting effect due
to diffusion concerns speckle correlations. The memory
of a typical speckle pattern is lost when the frequency
of light is changed by an amount of order Av D/L,
where D is the diffusion coefficient [4,5]. Similarly, in

time-resolved transmission experiments, the decay of the
transient response to a pulse in transmission exhibits a
characteristic time constant of order ~ L2/D [6,7].
More recently, the validity of diffusion theory has been
confirmed in an experiment where a small object (a glass
fiber or a pencil lead) was placed in a milky liquid. It was
found that the effect of the obstacle on the transmission
and reflection patterns can be understood quantitatively
within diffusion theory [8].

Near the boundaries of a turbid medium, however, the
difFusion approximation breaks down for the simple rea-
son that light undergoes too few scattering events. In
the skin layers, i.e. , when the distance to the boundary
is of the order of a few times the mean free path, diffusive
transport crosses over to free propagation, or vice versa.

In practical situations, the optical index no of the scat-
tering medium is usually different from the index ni of
the surrounding medium (air or glass). Let m = no/ni
denote the ratio of optical indices. The index mismatch
causes reflections at the interface. These internal reflec-
tions are known to generate important efFects for which
ad hoc corrections have been made in the interpretation
of experiments. It has been proposed [9] to describe these
effects within an improved diffusion approximation. Al-
though such an approach yields accurate results, it may
require new assumptions, or new parameters to be fitted,
whenever a new quantity is calculated. One of the sur-
prising outcomes of the present study will be that the im-
proved diffusion approximation becomes asymptotically
exact in the limit of a large index mismatch, i.e. , for
m ~ 0 or m —+ oo. This commonly used scheme will
thus be given a mathematical justification.
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More generally, the aim of the present work is to pro-
vide a microscopic description of the effects of internal
refiections on the diffuse transport of waves through thick
slabs. We restrict the analysis to scalar waves. For multi-
ply scattered electromagnetic waves, this is realistic pro-
vided one studies quantities that are averaged over the
polarizations. We mainly consider isotropic scattering by
pointlike scatterers located at uncorrelated random po-
sitions. (A consistent treatment of point scatterers in
d = 3 was given recently in Ref. [27].) Since in low-
density systems the only relevant property of the scat-
terers is their far-field t matrix, the assumption of point
scatterers is actually not restrictive. However, realistic
dielectric particles do not scatter isotropically. The re-
striction to isotropic scattering will therefore be relaxed
in Sec. II G. Finally, we only consider the regime where
the mean free path t is much larger than the wavelength
A. This implies that essentially all scatterers are in the
farfield of their neighbors. Even in this idealized situa-
tion, internal reflections have effects of order unity and
thus overshadow many interference and loop effects. In-
deed, the latter are typically of the order A/t.

In Sec. II, we derive the transport equation in the
presence of internal reflections, we relate its solutions
to physical quantities concerning diffuse reflection and
transmission, and enhanced backscattering, and we dis-
cuss some consequences of this general formalism. The
analysis will be performed for the case of isotropic scat-
tering. The situation of anisotropic scattering will be
discussed briefly in See. IIG. In Sec. III, we present a
self-contained derivation of exact results in the absence
of internal reflections, i.e. , for m = 1, most of them being
known from early works by astrophysicists [1,10]. Section
IV is devoted to the study of the large-index-mismatch
regime (m —+ 0 or m —+ oo). We derive approximate ana-
lytic formulas, which provide very accurate results, even
for moderate values of the ratio m of optical indices. This
analysis also demonstrates the asymptotic validity of the
improved diffusion approach. In Sec. V we compare our
analytic predictions to numerical results, obtained by a
solution of the relevant integral equations. Section VI
closes up with a discussion.

II. MICROSCOPIC TREATMENT
OF INTERNAL REFLECTIONS

The usual microscopic description of diffusive trans-
port consists in resumming the so-called diffuse lad-
der diagrams of a systematic multiple-scattering expan-
sion. These diagrams are dominant for the long-distance
physics, i.e. , length scales much larger than the mean
free path, and they lead to the ladder approximation
for the Bethe-Salpeter equation [ll] for light propaga-
tion through a multiply scattering medium in the ab-
sence of internal reflections. This procedure provides a
microscopic basis for the macroscopic transport equa-
tion, introduced by astrophysicists in the 1930s, under
the name of radiative transfer theory. For the geometry
of a slab limited by two parallel planes, this approach re-
produces the well-known one-dimensional Schwarzschild-

Milne equation [1].
The main goal of the present work is to extend the

above approach to the case where the optical index takes
different values inside the diffusive medium and outside.
In this situation, the index mismatch generates internal
refiections. We are thus led to study the same scattering
events, but they have a different weight.

A. Generalities

We study the propagation of scalar waves and consider
first a semi-infinite random medium, namely the half-
space z & 0. It contains a density n of isotropic point
scatterers, with scattering length u, situated at uncorre-
lated random positions. The scattering mean free path
is thus equal to t = 4~/(nu ). We make the assumption
that the density of scatterers is small, so that l is much
larger than the wavelength Ap of light inside the medium.
The present study only involves the microscopic scatter-
ing mechanism through the mean free path t. In partic-
ular, because scattering is isotropic, we do not need to
distinguish between transport mean free path and scat-
tering mean free path. The general case of anisotropic
scattering will be considered briefly in Sec. II G.

The optical index is assumed to take two different val-
ues, namely np inside the diffusive medium (z ) 0) and
nq outside (z ( 0). We introduce the ratio m = np/nq
of both optical indices.

After averaging over the random positions of the scat-
terers, the mean-amplitude Green's function inside the
medium obeys the equation

8 i 5

Bz
kp+ —

~
G(z, z', q) = —6(z —z')

2t)

(z ) 0), (2.1)

ql = q = kr sin 0 = kp sin ~', (2 2)

where 8 is the incidence angle of the incident beam, mea-
sured with respect to normal incidence, and 8' is the cor-
responding angle, measured inside the medium. These
definitions are illustrated in Fig. 1, and listed in Table I,
together with other useful notations.

We consider the scattering of a plane wave, with unit
amplitude, and transversal wave vector q~, incident from

where q is the transversal wave vector, obtained by a
Fourier transformation with respect to the transversal co-
ordinates p = (x, y). We denote by kq = 2~/Aq = wnq/c
the wave number of light outside the random medium,
c being the velocity of light in vacuum. Similarly, kp =
Blky = 27l /Ap = 4Jnp/c denotes the real part of the wave
number inside the medium. In the present framework,
the small imaginary part 1/(2t) of that wave number is
the only manifestation of the presence of a small den-
sity of point scatterers. The transversal wave vector q
is conserved across the boundary, leading to the Snell or
Descartes law
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P =
1
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—q,i )
p =k, —q.2 — 2 2 (2 4)

The intensity of the refracted incident beam decays
exponentially inside the medium, according to

I (r) = 14 (r)l' =
P (2 5)

z:c

FIG. 1. Schematic plot of multiple scattering in a slab ge-
ometry, defining the various incidence angles listed in Table
I. A beam incident at an angle 8 generates a specularly re-
flected beam and a difFracted beam with incidence angle 8'.
After difFusive transport has taken place, a wave approaching
the interface at an angle Hq generates an internally reflected
wave and an outgoing beam at an angle Og.

the left (z = —oo). Throughout the following, the index
a (5) will refer to the incident (outgoing) beam.

Because of the index mismatch, the incident beam gen-
erates a reflected and a refracted beam, so that we have
the following amplitudes

In this formula, which expresses the Lambert-Beer law,
T = T(q~) is the transmission coefficient, given in Table
I. Since we are interested in the regime kpt )) 1, we have
omitted the small imaginary part of the wave vector P.
We shall do so whenever this is possible. This approxi-
mation will be shown to be compatible with the conser-
vation of flux, as testified by the sum rules (2.27) and
(2.36). Notice, however, that the imaginary part under
consideration is needed to obtain the leading exponential
decay in Eq. (2.5).

The starting point of the analysis is the following ob-
servation. The solution of Eq. (2.1) inside the medium
(z, z' ) 0) simply consists of a "charge" term and a "mir-
ror charge" term, namely

W

g( ZI. q)
~ eip~z —z'~ + p ip(z+z')

2P P+p
(z ) 0, z' ) 0). (2.6)

eiqa'p+ipa z

pin(r) = &

with

tqa 'p spa Z

Pa+ Pa
2n iq p+iP ze

& &a+Pa

(z & 0)

(z & 0),

(2.3)

The prefactor of the second term in Eq. (2.6) is the Fres-
nel reflection amplitude. In order to evaluate the re-
flected or transmitted intensity, we shall also need the
mean amplitude Green's function for a source at z ) 0
inside the medium, emitting in a direction defined by q
at an abscissa z' & 0. This quantity reads

TABLE I. Definitions and expressions of kinematic and other quantities related to an incident
or an outgoing light beam, inside and outside the difFusive medium. Some of the notations are
illustrated by Fig. 1.

Quantity
Optical index
Wave number

Incidence angle

Outside medium
Ag

ki = Aih)/C
0

Inside medium
Ao = mAQ

kp = npur/c = mki
gl

Parallel wave vector
p = k] cos8

= kpgp —1+ 1/m

P = kocos8'

Total-reflection
condition

Transverse
wave vector

m & 1 and sin8 & m m ) 1 and sin8' ) 1/m
(i.e., P imaginary) (i.e. , p imaginary)

lql = q = ki sin 0 = kp sin 0' = kpgl —p~

Reflection

transmission
coefBcients

Partial
reflection

Total
reflection

/ P —p ~P —gV' —1+1/m'~R=
1 )gP + P I p, + ~p, ~ —1+ 1/m2)

4' 4p, gp~ —1 + 1/m~

(P+7) (y, + qadi
—1+ 1/m )

fR=1,
[T = 0
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G(z, z';q) = e' ' '"'
p+p

(z' ( 0 ( z). (2.7)
inate in the mirror charge terms. For isotropic point
scattering, we have

B. Transport equation

The diffuse intensity 4(r) is the key quantity of the
problem. Indeed, predictions concerning physical quan-
tities (reflection, transmission, enhanced backscattering)
will follow from the study of 4 (r), which obeys a trans-
port equation, to be derived below.

As mentioned in the beginning of this section, we re-
strict the analysis to the ladder approximation to the
Bethe-Salpeter equation, which amounts to resumming
the ladder diagrams [ll]. Within this framework, we are
led to consider the following integral equation:

G(r, r') 4 (r') d r' (2.8)

The first term on the right-hand side (rhs) of Eq. (2.8)
is a source term, which describes first-order scattering of
the incoming intensity. All the higher-order scattering
events —in the ladder approximation —are generated by
iterating this equation.

We consider from now on the situation where the dif-
fusive medium is either a slab of thickness I or a half-
space (for L = oo). The diffuse intensity 4 (r) then only
depends on z or rather, as a matter of fact, on the ratio
z//. We thus define the optical depth r = z/l and the
optical thickness b = L/I, , and we set

M(r, r') = Mg (r, r') + Mr, (r) r') + Ml. (b —r) b —r'),
(2.11)

with

Mg(r, r') =

ML, (r, 7') = 1d~ R(+)& (~+~ )i/0

2p

(2.12)

The Milne kernels can be interpreted as follows. The
bulk kernel M~ originates in the angular average of the
Lambert-Beer law (2.5), for intensity generated at an op-
tical depth r' and arriving at a depth r without having
been scattered. The layer kernel ML, describes intensity
which has been refIected once at the interface, whence
the occurrence of the intensity reflection coefficient R(p),
given in Table I. The layer kernel decays exponentially
away from the boundary; it therefore represents a sur-
face efFect, which is only important in the skin layers
(z t, and L —z t in the case of a slab with finite
thickness L = bt). However, even when the system is op-
tically thick (L )) t, i.e. , b )) 1), internal reflections lead,
via the layer kernel Ml„ to effects of order unity. We
shall now explain how physical quantities can be related
to solutions of Eq. (2.10).

(2 9) C. DifFuse reHection

Let us now insert the form (2.6) of the Green's function
into Eq. (2.8). We can neglect the crossed terms, since
they are found to be rapidly oscillating, and thus sub-
leading for kot )) 1. Moreover, we are led to make this
approximation, as well as that described below Eq. (2.5),
by considering the Ward identity which relates the kernel
M(r, r') to be defined in Eq. (2.11) to the form of the
left-hand side of Eq. (2.1) [11].

The remaining diagonal terms yield the follow-
ing integral equation, which generalizes the known
Schwarzschild-Milne equation [1,10]

(2.10)

where the source term exp( —r/p ) describes the decay
of the incident beam, according to Eq. (2.5). I'(r) thus
represents the normalized diffuse intensity, scattered at
a distance z = lw, induced by a normalized plane wave,
incident under an angle 6I~.

In the following, Eq. (2.10) will be referred to as
the Milne equation of the problem. The Milne kernel
M(r, r') has a bulk contribution M~, coming from the
charge term in the expression (2.6) of the Green's func-
tion, which is already present in the absence of internal
reflections, and two layer contributions ML„which orig-

We consider erst the refIected intensity, in the case of a
half-space geometry (b —+ oo). The Milne equation (2.10)
has a special solution I's(p;7.), whereas the associated
homogeneous equation (with no source term) has a solu-
tion I'H(r), with the following asymptotic behavior for
large depths:

(2.13)

(r —+ oo). The additive constant ro depends only on the
ratio m of indices in the present case of isotropic scatter-
ing. ri (p ) also depends on the direction of the incident
beam. Both parameters will be given an interpretation
below.

It is advantageous to relate the functions de6ned above
to the special Green's function Gs(r, r') of the Milne
equation. This quantity is de6ned as the solution of the
following equation:

M(r, r")Gs(r", r') dr",

(2.14)

with the condition that Gg(r, r') remains finite as r or
w' goes to in6nity. It has the symmetry property
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Gs(r, r') = Gs(r', r),

as well as the following limit:

Ilim Gs(r, r') = —I'R(r).
'T ~OO

(2.15)

(2.16)

with

dR(a ~ b)

dA b
(2.23)

(2.24)

The prefactor of this last result has been determined us-
ing the diffusion approximation, which yields the sim-
ple behavior Gs(r, r') = (1/D)min(r, r ) in the long-
distance regime (r, 7', ~r —r'~ )& 1). The diffusion coef-
ficient D reads, in reduced units,

and

V(P, Pb) = r, (&.; r). .~~ —dr

MR(r, 0)r dr = —,3' (2.17)
Gs(r, r')e ~" dr e ~"'dr'.

(2.25)

I's(p r) = G, (r, r'). »dr', —
(2.18)

i.e., D = ct/3 in physical units. Within the present work,
i.e. , to leading order in the density n of scatterers, the re-
duction of the speed of light due to scattering resonances
[3] is negligible.

As a consequence of the above definitions, we have

The function p(p, pb) is defined by Eq. (2.25) for any
positive values of its arguments p and p,b, although these
variables have the physical meaning given in Table I,
i.e. , p, = cos8', only when they are smaller than unity.
It is worth noticing the following relationship between
p(p, pb) and ri(p):

and in particular, using Eq. (2.16),
ri(pa) = lim 7(pa Pb)

P bazoo Pb
(2.26)

1
ri(p) =

D
I'H (r) e ~~ dr. (2.19)

which is a consequence of Eqs. (2.16), (2.19), and (2.25).
The result (2.24) obeys the following sum rule:

The diffuse reflected intensity for a half-space geometry
can be evaluated as follows. %'e assume for a while that
the cross section of the sample is a Bnite rectangle, with
area A, and that periodic transverse boundary conditions
are employed. This leads to a quantization of the wave
vector q, which assumes discrete values. The reflected
intensity at a point r' = (z', p'), with z' ( 0, reads

A (8a, 8b) cos8bdAb = T cos8, (2.27)

which expresses the conservation of Aux in the z direc-
tion, since the flux of the incident beam (of the beam
generated by specular reHection) reads cos 8 (R cos 8a).

The sum rule (2.27) assumes a simpler form in terms
of the coefficient p(pa, pb) defined in Eq. (2.25), namely

IR(z', P') = d'p ~(z p) I G(z, p; z', p') I' drab T(P b)'Y(Va ~ Pb) (2.28)
OO 1

dz d p C(z, p)

x ) G(z, z', q) G*(z, z'; q')

~ ~~(~—~') (c —~') (2.20)
dPb

T(pb)e i"' = 1—
2

M(r', r")dr", (2.29)

This formula can be proven by means of the following
identity:

The integration over p leads to the condition q = q' =
qb, and thus, using Eq. (2.7),

C'(z)e b ~~~'i& dz.

and by using then Eq. (2.14) for the Green's function
Gs(r, r'), together with its symmetry property (2.15).

Finally, by comparing Eqs. (2.26) and (2.28), we obtain
the following identity:

(2.21)
dp
2 T(p)ri(p) =1 (2.30)

As expected, this result is independent of the point
(z', p'). Using ~qb~ = ki sin 8b and the substitution

qb

d qb

(2~)2 )&
cos 8bdAb, (2.22)

we obtain the following prediction for the diffuse reflected
intensity per solid angle element dAb.

D. Diffuse transmission and electrical conductance

Consider now the geometry of an optically thick slab,
of thickness L = b/, with b && 1. The solution of
Eq. (2.10) for such a geometry can be constructed from
the solutions in a half-space by means of a matching pro-
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I &(p..; ~) — I H (~) (0 & «b/2)&i(S )

p( ) ~ ( b+ 270
~i(V ) F (b )$+ 2&p

(b/2 & «b)
(2.31)

cedure commonly used for dift'usion equations. In the
present ease, the matching conditions are determined by
the asymptotic form (2.13) of the solutions of Eq. (2.10)
for 6 = oo. We thus obtain the solution pertaining to a
thick slab

Consider indeed a metallic sample with a slab geom-
etry, at zero temperature, with a small concentration of
elastic scatterers. The present formalism applies to such
a situation, in the regime where the phase coherence
length is very large (L « L~), up to the replacement
of ko by the Fermi wave vector k~. In this problem, the
analog of a mismatch between optical indices is a dif-
ference between the pot;entials in the sample (V = Vo)
and in the leads (V = Vj). The parameter m should
now be interpreted as (kz —Vc)/(kz —Vj). The conduc-
tance G of the sample can be evaluated by means of the
multichannel Landauer formula [12], namely

Both expressions of Eq. (2.31) lead to the linear (diffu-
sive) behavior

I'(~) = (b+~0 —~)+ O(e, e ib ~) (2.32)
where

2e2 A
Tflux =

+ 2 toBy (2.37)

dT(a ~ b) AT(e. , eb)
dOg 6+ 27p

(2.33)

in the bulk of the sample, whereas the precise form of the
solutions I'H and I'g describes the intensity profile in the
skin layers, i.e. , in the vicinity of both boundaries (7. 1
and b —w 1). The result (2.31) also exhibits explicitly
the conservation of Aux. Indeed, for a finite optical thick-
ness 6, the transmitted fIux is simply subtracted from the
refiected one.

The result (2.32) suggests to interpret ~o as the efFec-
tive dimensionless thickness of one skin layer. Indeed,
the denominator 6+ 2~p is a measure of the apparent op-
tical thickness of the slab. This physical interpretation
will become more evident when considering, e.g. , the ex-
ample of the electrical conductance, at the end of this
section.

The diffuse transmitted intensity can be evaluated in
analogy with the difFuse reflected intensity, namely by
considering first the ease of a large but finite sample cross
section A. We thus obtain, along the lines of Eqs. (2.20)—
(2.22), and using also Eq. (2.19),

2e2k2 l
o-

3vrh
(2.38)

is known as the Boltzmann conductivity, in spite of its
quantum character [13].

It is more suggestive to express the resistance R = 1/G
of the sample as

IR= +2R~.
tTg

(2.39)

The first term of this expression is the bulk contribution,
which has the usual length-over-area form, referred to as
Ohm's law, whereas the second contribution shows that
the skin layers generate two extra boundary resistances,
or contact resistances, Bt-, namely

3vrhc =
2e2gk2 0. (2.40)

The above expression shows that R~ is proportional to
the dimensionless thickness Tp of the skin layer and in-
versely proportional to the number N —/k+2/(2vr)2 of
open channels across the sample.

cos 6~ T~Tb
(e f b) =

2 'r&(p~)r&(p»).
12'7t fA p~ pb

(2.34) E. Enhanced backscattering cone

cos ObTs: = ) &q,i.—
cos Og,

ga)gb
(2.35)

Using again the procedure of Eqs. (2.20)—(2.22), together
with the identity (2.30), we obtain the following result:

k02 A
3' 6+ 27- (2.36)

This formula provides an exact sum rule for the dift'use
intensity, which has an interesting physical interpreta-
tion.

The expression (2.34) of the diffuse transmission also
fulfills a sum rule, which is similar to some extent to
Eq. (2.27). Indeed, define the total flux transmission
Tfl„as follows:

Q = kol8b ——kileb (2.41)

is the dimensionless scattering wave vector.
For a normalized incident plane wave, the dift'usive in-

tensity in the vicinity of the exact backscattering direc-
tion consists in [7,16] (i) a background term, given by

The above formalism can be extended to the predic-
tion of various correlation functions pertaining to the
multiple-scattering problem. Let us focus our attention
onto the enhanced backscattering which takes place in
the vicinity of the exact backward direction (qb

——q~), in
an angular domain of order 8 1/(kol) « 1. This yields
the celebrated enhanced backscattering cone [14,15].

Restricting the analysis to normal incidence (q = 0)
and to a half-space dift'usive medium, for the sake of sim-
plicity, we set qb = Q/l, where
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the result (2.24) for the diffuse reflected intensity, namely
A (0, 0) = T(1) p(1, 1)/(4vrm2); and (ii) an extra con-
tribution, called enhanced backscattering and given by

A (Q) =,."', .-(Q) --,' (2.42)

It turns out that the maximal value p~(0) coincides
with the background contribution p(1, 1). The physi-
cal explanation of this property is as follows. In the
backscattering direction, every path is in phase with its
time-reversed counterpart, whence a doubling of the am-
plitude. This argument does not hold for a subclass
of scattering events, which are their own time-reversed
transforms. In the low-density limit, only the single-
scattering events have to be discarded. The reflected
intensity at exact backscattering is therefore enhanced
by a factor that is slightly below 2, because of the sub-
traction made in Eq. (2.42) of the term 1/2, representing
the contribution of the single-scattering events.

I et us make the content of the result (2.42) more ex-
plicit. We have [7,16,17]

Q. The backscattering cone is thus a narrow peak on top
of a smooth background.

The opposite regime of a small reduced wave vector Q
can be dealt with as follows. We notice first that I'~(Q; w)
coincides with I'g(1; v.) for Q = 0, so that p~(0) = p(l, 1),
as announced above. For small values of Q, the backscat-
tering amplitude exhibits the celebrated triangular shape

~ (Q) =~(1,1)11— +".
I) (Q ~ 0), (2.47)

which is a consequence of the following linear behavior:

I'e(Q &) = I'~(1 ~) —~i(1)1'H(~)IQI+ ". (Q o)

(2.48)

The prefactor of the term involving I'H (w) has been fixed
by matching the expansion (2.48) with the expected be-
havior I'~(Q;r) —C(Q) exp( —lQlr) at large r, where
the amplitude C(Q) has a finite limit for Q ~ 0, which
has to coincide with ~i(l). We thus obtain the following
expression:

&~(Q) = I'e (Q; r)e d7., (2.43)
3q(1, 1)
l&i(1)]

(2.49)

where I'~(Q; r) is the solution of the Q-dependent Milne
equation

I'~(Q;~) = e M(Q; 7., r') I'c, (Q; 7') dr'. (2.44)

The Milne kernel still consists of two parts, just as in
Eq. (2.11), namely

Mg(Q;7. , r') =

Ml, (Q;~, 7') =

2p
Jo &-&' 1-p' p

x e—
~

v.—v' (/p

dp
2p

~0 Q(~+ ~') v'1 —I '/I

x ~(~)e-(+ 'l», (2.45)

1
Vo(Q) = —+

0 0

1 z 1(m, —l)2 1

4Q 2 (~+ 1)2 Q&

M(Q; ~, r') e dr e dr' +

(IQI ~) (2.«)
This result implies that A+(Q) falls off as 1/lQl for large

where Jo(z) is the Bessel function of zeroth order.
The behavior of the amplitude p~(Q) at normal in-

cidence in the limit of small and large values of the re-
duced wave vector Q can be obtained as follows. For Q
large, both kernels exhibit a fast decay: M~(Q;7, 0)
Ml, (Q;&, 0) exp( —lQ~]). As a consequence, the
backscattering amplitude can be approximated by the
erst orders of the multiple-scattering expansion, namely
[18,19]

for the reciprocal slope of the cone at its top [17].
The full shape of the backscattering cone can be ob-

tained by solving the Milne equation (2.44). This will
be done in the following, either exactly in the absence of
internal reflections [20] (see Sec. III) and approximately
or numerically in the general case (see Secs. IV and V).

F. The air-glass-medium interface

The above approach can be generalized to other ex-
perimental situations involving internal refIections, such
as that of a fluid difFusive medium, which is necessarily
enclosed in a transparent cell, usually made of glass. In-
ternal reflections can then occur both at the fluid-glass
interface and at the glass-air interface. The latter re-
inject partly the outgoing intensity into the medium.

The eKects of both types of internal rejections can be
easily taken into aeeount in the framework of the present
analysis. We consider for definiteness a planar double
interface (air-glass-medium) with thickness d. We denote
by n, the optical index of the medium number i, where
i = 0 corresponds to the random scattering medium (z )
0); i = 1 corresponds to the outer medium (air) (z & —d);
and i = 2 corresponds to the intermediate layer (glass)
(—d&z&0).

Consider a normalized beam, incident from the air. It
is characterized by a transversal wave vector q and three
longitudinal wave vectors p, , with p; + q = k, , and
k, = tun;/c. The amplitudes of this beam in the three
media assume the form

piQ P+iP1z + i.eig P ill z '—(z & d)
(&) g sic P+iPgz + g eicos P iPqz ( d & z & 0)—

g+Cg P+'GPpZ (z ) 0).
(2.50)
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In this formula,

(» + P2)(pl P2) (PO P2)(pl + p2)e

(» +72){pl + P2) (» P2)(pl ps)e

It turns out that p depends only on the relative scatter-
ing angle, both for isotropic scattering and for anisotropic
scattering after averaging over all orientations of the scat-
terers. Then the p and p' dependence of p can be inte-
grated out. We thus define

4&1&2 (u -S )~

(» + p2)(pl + p2) (» p2)(pl p2)e
(2.51)

»(p; p') = (2.56)

are the amplitude reflection and transmission coefBcients.
The expressions for t1 and t2, which describe the beams
inside the glass pane, will not be needed.

In practical situations, the thickness d of the glass layer
is not fixed within optical precision. Hence we are led to
define a mean intensity reflection coeKcient B3 and a
mean intensity transmission coefBcient T3 through

The transport equation is usually presented in the lit-
erature [1,2,10] under a form which is local in 7, and
known as the radiative transfer equation. Let I(~, p, ')
denote the normalized specific intensity arriving at an
optical depth v in direction p', &p', averaged over p'. The
radiative transfer equation reads

Rs = &I&l') (2.52) p,
' I(~, p') + I(7., p') =

1

»(p'; p,")I(~, p").
—1

where the brackets represent a uniform averaging over
the phase 2p2d. %'e thus get

(2.57)

(»+pi)(sosi+s2) (2.53)
Because of the presence of internal reflections at the inter-
faces, Eq. (2.57) has to be complemented by the following
boundary conditions at w = 0+ and r = 6

It is worth noticing that the results of Table I for R{p)
and T(p, ) are recovered in the case pi = p2 = p, » =
P = &OP"

The predictions exposed above concerning the inHu-
ence of skin layers can be extended to the present case
by making use of the expressions (2.53) at suitable places,
namely by replacing the transmission coeKcients T and
Tb by the expression (2.53) for Ts, with values of the p,
determined by the directions of the incident and outgoing
beams; and the reHection coefficient R(p) in Eqs. (2.12)
and (2.45) for the layer Milne kernels by the expression
(2.53) for Rs, with p = »/ko.

I(0,p, ') = b(p' —p~)
b

+R(p')

I(b, —p, ') = R(—p, ') dhole (b ~')—/y',
(2.58)

G. Anisotropic scattering
and the radiative transfer equation

Until now we have studied only the case of isotropic
scattering. In more realistic situations, an anisotropic
scattering cross section has to be considered. In the very
dilute regime considered in this work, the scatterers can
still be assumed to be pointlike. Their scattering cross
section has an angular dependence, which can be decom-
posed in the usual form

(2.54)

where p, = cos 8 and y (p' and p') denote the direction of
the outgoing (incoming) wave in the laboratory coordi-
nate frame. The notations used throughout this section
have been chosen because they are standard ones, rather
than for their accord with other sections.

The angular factor p is normalized so that

(2.55)

dp
2»(pi P')I(r, P, ')

—1
(2.59)

In the case of isotropic scattering, i.e. , »(p, p') = 1 for
all p and p, ', the quantity defined in Eq. (2.59) reduces to
the diffuse intensity I'(7) introduced in Eq. (2.9). In the
present situation, I'(7, p, ) also depends implicitly on the
direction p of the incident beam. It should, of course,
not be confused with the function 1 s(p~; ~) introduced
in Eq. (2.13).

The quantity r(w, p) satisfies the following generalized
Schwarzschild-Milne integral equation:

where p, characterizes the direction of the incident beam
and R(p') is the intensity reHection coefficient given in
Table I.

We now introduce the intensity r(7, p) scattered at the
depth ~ into the direction p, , namely
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dr'

'd '
»(p -~')e ~ ~'" I'(r' —~')

2p/

+ d7 (2.60)

The source term and the first two integrals on the rhs
of Eq. (2.60) are standard. They represent, respectively,
the intensity which is scattered for the erst time„ the
scattered intensity arriving from lower depths (0 ( r' (
r), and the scattered intensity arising from higher depths
(r ( r' ( b) Th. e last two integrals are novel. They
are due to the mismatch between optical indices, and
more precisely they describe the intensity emitted at an
arbitrary depth in the direction of the interface, refiected
by the interface, and scattered once, namely at the final
depth 7..

A final comment is in order. In solving Eq. (2.57), e.g. ,

numerically, in the general case of anisotropic scattering,
the boundary conditions (2.58), which arise from inter-
nal rejections at the interface, will have to be taken into
account in a self-consistent fashion. Because of the expo-
nential weights exp( r'/p') an—d exp —(2b —r —r')/p',
this procedure only involves a self-consistent solution in
a skin layer, with a thickness of a few mean free paths.

m(s) = M&(r, 0) e' dr (—1 ( Res ( 1), (3.1)

gH(s) = I'H(r) e' dr = Dri(p = —1/s) (Res ( 0).

(3.2)

Eq. (2.12). Since this kernel only depends on the dif-
ference (r —r'), the Milne equation has the structure of
a convolution equation. The problem is still nontrivial,
because of its half-space geometry. This observation sug-
gests nevertheless to utilize the Laplace transformation.

We consider erst the homogeneous Milne equation,
and we recall that we are interested in its solution
I'H(7), which possesses the asymptotic behavior given
by Eq. (2.13).

We define the Laplace transforms of M~(r, 0) and
I'H(r) as follows:

III. EXACT RESULTS IN THE ABSENCE
OF INTERNAL REFLECTIONS

This section is devoted to an elementary and self-
contained presentation of analytic results concerning the
problem of multiple isotropic scattering of scalar waves
by point scatterers, in the case where there are no internal
refiections (ne = ni). This is indeed the only situation
where explicit results can be obtained, and have been ob-
tained, to the best of our knowledge. Most of the results
exposed in Sees. IIIA and IIIB were already known to
the astrophysicists' community [1], owing especially to
the work of Ambartsumian and Chandrasekhar, whereas
some of the results of Secs. III C and III D can be found
in Ref. [20]. We have nevertheless found it worthwhile
to recover all those results in the present context and to
produce elementary derivations for them. We have not
found such a compact exposition in the literature.

In the case of isotropic scattering by pointlike objects,
the expression (2.12) of the Milne kernel leads to

1 1+8
m(s) = —ln

28 1 —8
(3 3)

It turns out that the problem can be solved for any
symmetric Milne kernel. The value m(0) is equal to the
total albedo, which will be assumed to be unity, except
in Sec. III D. The small-s behavior of m(s)

m(s) = 1+Ds + O(s ) (s ~ 0) (3 4)

determines the dimensionless diff'usion constant D, which
reads D = 1/3 for isotropic scattering, in accord with
Eq. (2.17).

The homogeneous Milne integral equation is equivalent
to

A. The homogeneous Milne equation
4(s)~H(s) = dt mtgHt

(—1 ( Re t ( Re s ( 0),
2vri f —8

(3.5)

The starting point of this analysis is the integral
Schwarzschild-Milne equation (2.10) rather than the ra-
diative transfer formalism exposed in Sec. IIG. In the
absence of internal refiections, Eq. (2.10) only contains
the contribution of the bulk kernel M~(r, r'), defined in

with

P(s) = 1 —m(s),

and the asymptotic behavior (2.13) is equivalent to

(3.6)
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s gH(s) = 1 —rps+ O(s ) (s~o) (3.7)

Equation (3.5) can be solved in closed form, for an
arbitrary bulk kernel. Let us consider first the following
"rational case, " where M~(&, 0) is a finite superposition
of N decaying exponentials, namely

polynomial JVp(s). Since there are exactly (N —1) such
values, the solution (3.14) is determined up to a normal-
ization, which can be fixed by using Eq. (3.7). We thus
obtain

(1 —s/p-)
N

M (~, 0) =)
G=l

(3.8)

~ J e

a=1

(1 —s/z )

(3.15)

By comparing with Eq. (3.4), we obtain the normaliza-
tion conditions

) i() = 1,
G=l

N);=D.
a=1 a

(3.1o)

Equation (3.5) can be evaluated by means of residue
calculus. It loses its integral nature and becomes

N

) ~ ~apagH ( Pa)—
2(&, + s)

(3.11)

In order to solve Eq. (3.11), we first write the rational
function P(s) in factorized form, namely

N —1

Z~ —S

4(s) = —s"„='
(p2 —S2)

a=1

J J ~

&=1

a=1

(1 —z2/s2)

(1 —p.'/" )

(3.12)

The (N —1) zeros of P(s)/s in the variable s have
been denoted by z2, with Rez ) 0, for 1 & o. & N —1.
The normalization of Eq. (3.12) has been fixed by using
P(oo) = 1.

An alternative expression for the diffusion constant D
can be derived by letting s go to zero in Eq. (3.12), and
comparing with Eqs. (3.4) and (3.9). We get

with weights i() ) 0 and decay rates (inverse correlation
lengths) p ) 0. We have then

N

P(s) = —s' ), , (3.9)I a

This formula can be recast for Res & 0 as

N N —1

s gss(s) = exp ) ln(1 —s/p, ) —) 1n(1 —s/z ) I
.

a=1 &=1

(3.16)

This result clearly provides the solution of the problem
for an arbitrary bulk Milne kernel.

The thickness wp of the skin layer can be evaluated by
comparing the results (3.15) and (3.17) with the expan-
sion (3.7). We get

N ) N —1

7p
a=1 Xa ZA&=1

+' dz (I/(z)

2+iz Dz
ln

(3.18)

The value for the case of point scattering is obtained
by inserting into Eq. (3.18) the expression of P(z) coming
from Eq. (3.3). By making the change of variable z =
i tan p, we get

The sum over the poles and zeros of the function
P(s)/s2', with positive real parts, can be rewritten as

the following complex integrals:

+' dz g&'(z) 2
s gn(s) = exp —— In(1 —s/z))y(z) z

~
~

+'-
= exp —s . ln

2xs'z(z —s) Dzs )
(3.17)

2Z Qp

D o.=1
N

J e

a=1

The solution of Eq. (3.11) is of the form

P(s)gH(s) = Ap(s)

(3.13)

(3.14)

dP tan2 P
&p = — . 2 ln = 0.710446090.

p sin P 31 — cot

(3.19)

We recover a well-known numerical value [1,10,21].

B. The inhomogeneous Milne equation

J

a=1
(p + s)

with JVp(s) a polynomial of degree (N —1), which can
be determined as follows. Consider the value s = —z:
we have P(—z ) = 0, whereas gH( —z ) is finite. Equa-
tion (3.14) shows therefore that s = —z is a zero of the

We consider now the inhomogeneous Milne equation
(2.10) in the absence of internal reflections. We use the
notation p, for the variable p, a related to the incident
beam and recall that we are interested in the special
solution I's(p;~), which admits a finite limit ~i(p), as
v —g oo, according to Eq. (2.13). We still use the Laplace
formalism exposed in Sec. III A and the notations intro-
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duced there. We obtain

P(s)gs(p, ; s) = + dt m(t)gs(p„. t)
2vri t —s

�

@
2

gs(p;s) = —
(1

+' dz P'(z) 2

2vri P(z) z

(—1 ( Ret ( Res & 0), (3.20)

whereas the asymptotic behavior (2.13) can be recast as

x In((1 —z/z)[1+ I/(Izz)])),

(3.27)

lim [
—sgs(p„s)] = &~(p). (3.21)

P(s)gs(p; s) = + Ag (s)

(p- + s)
a=1

(3.22)

We consider erst the rational Milne kernels, introduced
in Eq. (3.8). In such a case, the solution of Eq. (3.20)
assumes the form

2

Z

x In[1+ I/(Izz)])

p2 dZ= —expD,~ 2vriz(1 + pz)

x ln
4'(z)
DZ2

p2 +' dz P'(z)(P)= D P
2 ~()

(3.28)

where JVj (s) is a polynomial in s with degree (N —1),
yet to be determined. Equation (3.22) implies

(p. — )
2 S a 1

ps N —1

Z~ —S

(3.23)

with

~(s) = (1 —ps)~~(s)+ p (p + s) (324)
a=1

We observe that lV(s) is a polynomial with degree N,
which vanishes for s = 0, in virtue of Eq. (3.21), and
for each of the (N —1) zeros s = —z of the function
P(s)/s2 . Moreover, the value A'(1/p) is known from

Eq. (3.24). The above properties determine JV(s). We
thus get the following result:

p2

s(1 —ps) D

We notice that the result (3.26) could be derived alter-
natively by means of Eqs. (3.2) and (3.15).

In the regime of grazing incidence, wq(»() vanishes lin-

early, according to

~g (p) 1 ~(0) 1

v& (p o) (3.29)

This quantity is maximal at normal incidence (p, = 1),
where it assumes the somewhat simpler form

7i-/2

7 y (1) = v 3 exp —— dP ln(1 —PcotP)
7t 0

in virtue of Eq. (2.19).
For point scattering, we obtain the following result by

setting z = i tan P in the second formula of Eq. (3.28):

p, / ln(1 —P cotP)
~)(»() = @~3 exp —— dP

vr () cos2 p+ p,2sin p

(3.30)

((1 —s/J -) [1 + 1/(». ))) = 5.036475 57. (3.31)

((1 —siz-) [1+1/(pz-)lk

(3.25) Finally, it is worth noticing that Eq. (3.25) also implies
the following remarkable result:

and especially
~~(» -)~~(» ~)~(p, p() = gs(p s = —1/p() =
3(p +p() ) (3.32)

[1+1/(» ))

+)-(l )

[1+1/(pz )]

(3.26)

which is, of course, particular to the situation where there
are no internal rejections.

C. Enhanced backscattering cone

The results (3.25) and (3.26) have the same factor-
ized structure as Eq. (3.15). Their generalization to an
arbitrary kernel can be written immediately as complex
integrals, in analogy with Eqs. (3.17) and (3.18),

Exact results can also be derived concerning the
backscattering cone in the absence of internal reHections
[20]. Consider, for the sake of simplicity, the enhanced
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backscattering of a normally incident beam (p~ = 1).
The Q-dependent Milne equation (2.44) can be solved
by means of the Laplace transformation. We denote by
m(Q; s) and gc(Q; s), respectively, the Laplace trans-
forms of M~(Q; 7', 0) and of Fc(Q; v ), defined in analogy
with Eqs. (3.1) and (3.2).

We start by transforming the integral representation
(2.45) of the Milne kernel into the following one, which
only involves elementary functions:

gc(Q;s) =
~ 4 h

a=1
1 —s N (3.35)

and thus

~ 4 e

0!=1

ent from zero. For those rational kernels, we obtain the
solution

1 8 dX
Mrr(Q;~, 0) =—

2 ~2 2%2
' (3.33)

m(Q;s) = arctan QQ2 —s'
Q' —s

1 ]. + QS2 —Q2
ln

ls2 —Q2 ]. —QS2 —Q2
(3.34)

The Laplace-transformed Q-dependent Milne equation
can be solved along the lines of Sec. IIIB, up to the
following difference. The effective albedo m(Q;0)
(arctanQ)/Q is smaller than unity, so that we have

P(Q;0) P 0 for Q g 0. The rational Q-dependent Milne
kernels have therefore now exactly N zeros (z ) and N
poles (»r ) in the variable s, all of them being differ-

with 2:o = wgl + Q2. We can derive from Eq. (3.33) the
following expressions, which hold for [Res~ ( gl + Q2:

vc(Q) = —exp i22

+' dz P'(Q; z)
1 (1+ ))

1
exp —2

2

dz leg(Q;z)
j27ri 1+ z

(3.37)

In the case of point scattering, we get

~ ~

&=1

This result can be generalized to an arbitrary kernel.
We get the following expression for the backscattering
amplitude:

1 2 ) ( arctan QQ2 + tan P
yc = —exp —— d ln 1—

o ( QQ2+ tarP P )
(3.38)

For small values of the reduced wave vector Q, the re-
sult (3.38) assumes the general form (2.47), correspond-
ing to the triangular shape of the backscattering cone.
The value for Q = 0 reads

I

so far (a = 1).
Let us consider first, for the sake of simplicity, the

amplitude of the normally reflected diffuse intensity, for
a normally incident beam. We have

p(1, 1) = = 4.22768104,[rr (1)] (3.39) p(a;l, l) = I'(a;7.) e d7, (3.41)

in agreement with Eq. (3.32), whereas AQ, defined in
Eq. (2.47), reads

where I'(a; w) is the solution of the following Milne equa-
tion:

1

2
(3.40) F(a;~) = a e +a Mrr (i-, ~') I'(a; ~') dw'. (3.42)

in agreement with Eq. (2.49).

D. Arbitrary albedo and n-scattering events

We conclude this section devoted to exact results by
investigating brieHy the situation where the albedo a of
the scattering process is smaller than unity. In this case,
the light intensity is partially absorbed at each scattering
event. Besides its own interest, the study of this situation
also allows us to determine the contribution of various
scattering events to the physical quantities in the situa-
tion of elastic scattering without absorption, considered

p(a;1, 1) = ) p„a".
n (&x)

(3.43)

Equation (3.42) can also be solved exactly by means
of the approach exposed in Sec. III B. We thus obtain

In this integral equation, which generalizes Eq. (2.10),
the single-scattering albedo a multiplies both the source
term and the kernel.

As a consequence, p(a; 1, 1) can be viewed as the gen-
erating function of the contributions p„of n-scattering
events to the total amplitude p(l, 1) in the case of unit
albedo, namely
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with

p(a;1, 1) = —exp I(a), (3.44) When the number n of scattering processes becomes
large, the integral formula (3.46) for the J„ is dominated
by the vicinity of P = 0. We get the following power law:

7l /2
I(a) = —— dP ln(l —aPcotP) = ) I„a",

- (&1)

3 = 0.977 2O5 02~-3~'
7rn3

(3.48)

. so that

(3.45) and, by using Eq. (3.44),

dP(P cotP)". (3.46)
y„- p(1, 1) = 4.13131115n3

7rn3
(3.49)

I2+—2'

Ii
2'

Ii3 IiI2 I3
p4 —+ +—

12 2 2' (3.47)

The n-scattering contributions p„can therefore be ex-
pressed in terms of the integrals I„, according to

The n s~z exponent of the above laws can be shown [7]
to be intimately related to the triangular shape (2.47) of
the backscattering cone. Both these salient features of
multiply scattering media are already described qualita-
tively by the diffusion approximation.

We end this section be mentioning the expression for
the backscatter cone amplitude for isotropic scattering
by point scatterers with an arbitrary albedo

a 2 ~ ( arctan QQ2 + tanz P )
p~ a; = —exp d ln 1 —a

0 ( QQ~+tan P )

pt.-(1;0)

1+2/Q2+ 3(l —a)
(3.51)

The denominator of this expression is not reproduced
quantitatively by the diffusion approximation [see, e.g. ,
Ref. [16], Eq. (71)], although it pertains to the long-
distance physics of the problem. We also notice that the
prefactor of the square root is nothing but the reciprocal
of the value (3.40) of EQ.

This result shows that the backscattering amplitude
is an analytic function of Q2, as soon as the scattering
albedo a is smaller than unity. This confirms the physical
intuition that the triangular shape of the cone is due
to the existence of arbitrarily long diffusive paths. It is
therefore a characteristic of the problem with unit albedo,
i.e. , with no absorption, in a half-space geometry. When
the reduced wave vector Q and the strength of absorption
(1 —a) are both small, we observe the following scaling
behavior:

scheme, which yields predictions concerning the behav-
ior of physical quantities, in the regime where the optical
indices no and ni are very different from each other, i.e. ,
when their ratio m goes to zero or infinity.

The predictions of this large-index-mismatch approach
will be compared with numerical values in Sec. V. It
turns out that they provide good estimates for most of
the physical quantities over the whole range of values of
the index ratio m. This approach is especially accurate
for m, ) 1, i.e. , in usual experimental situations, where
the refractive index of the random medium (a liquid or a
solid) is larger than that of the outside (air).

Moreover, this approach can be systematically im-
proved in the sense that it amounts to considering only
the leading term in a perturbative expansion. The first
correction term will be derived explicitly in the case of
the effective thickness ro of the skin layer.

A. DifFuse re8ection and transmission

IV. THE REGIME OF LARGE INDEX
MISMATCH

The approach exposed in Sec. III has yielded a coher-
ent derivation of many exact results in the absence of
internal refiections, most of them having been known for
a long time. Unfortunately, for mathematical reasons, it
definitely cannot be extended to the case no g ni where
there are internal reflections. In this general situation, we
have therefore to rely on either approximate or numerical
methods.

In this section, we present a systematic analytical

Mi, (r, 0) = Mgy (r, 0) —N(r, 0), (4.1)

with

In the extreme situations where the ratio m = ne/ni
of both optical indices is strictly zero (infinite), there
is total reflection for any incidence angle for light out-
side the diffusive medium (inside the medium), except
for the strictly normal direction. Both Milne kernels be-
come identical in these limits. Indeed, we have R(p) = 1
for all p, so that Mr, (r, 0) = M~(r, 0).

For finite values of the ratio m, we set
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N(r, 0) = dp
T(~)

2p
(4.2) 2y, T(p) d p, 2p R(p) dp. (4.8)

When m is very small or very large, the difference
N(r, 0) is much smaller than the bulk Milne kernel
M~(r, 0). As a consequence, it is expected that the ac-
tion of the kernel N can be treated somehow perturba-
tively.

The following point, however, makes the analysis more
subtle. Equation (2.14) for the special Green's function
Gs(r, r') can be recast as

Gs(r, r') = 6(r —r')

[Mg(r —1 ) 0) + Mg(r + r ) 0)]

XGs(r", r') dr"

N(r+7.",0) Gs(r", r') dr". (4.3)

For rn = 0 or m = oo, the kernel N(r, 0) vanishes identi-
cally. Only the first integral thus remains in Eq. (4.3). It
is easily realized that this limiting form of Eq. (4.3) only
determines the Green's function up to an additive con-
stant. This constant is determined by the action of the
kernel N, and can thus be expected to diverge as m + 0
or m —+ oo.

We are led by this observation to consider the following
expansion:

These quantities obey the sum rule 7 + 'R = 1 and
depend only on the ratio m, of optical indices. The mean
transmission 2 can be evaluated exactly from the expres-
sion of the transmission amplitude T(p) given in Table
I. We thus obtain

4m(m+ 2)
for m&1

3(m+ l)2
( )4(2m+ 1)

, 3m'(m+ 1)2

This quantity takes, of course, its maximal value 2 = 1
for m = 1, around which it has the shape of an asym-
metric cusp. As expected, it falls off for small and large
m, according to

8m
(m 0),3

8'T —
s (m ~ oo). (4.10)Sm3

"=32' ri(V) = ~
4p,

~(V, Vb) =

The asymptotic behavior, for m + 0 or m —+ oo, of
most quantities of physical interest is immediately ob-
tained by replacing the special Green's function G&(r, r')
of the problem by the constant Cs, given by Eq. (4.7).

As far as reflection and transmission properties are
concerned, we obtain the following expressions:

Gs(r, r') = Cs + Go(7, r') + Gi(r, r'), (4.4) (4.11)
where the constant Cg diverges, whereas Go(r, r') re-
mains finite and Gi(r, r') goes to zero as m —+ 0 or
m~ 00.

By inserting the expansion (4.4) into Eq. (4.3), we ob-
tain for the finite part Go(r, r') of the Green's function
the following equation:

Go(r, r') = 6(r —r')

[Mgg (r —7")0) + Mls (r + r",0)]

xGo(r, r ) dr

N(r + r", 0) d7") (4.5)

together with a consistency condition

d7 dr N(r + r ) 0)Go(r ) r ') = 0, (4.6)

which expresses that the omitted contribution Gi(r, r')
does indeed vanish as m —+ 0 or m ~ oo.

If we integrate Eq. (4.5) with respect to r, the integrals
of the finite part Go cancel out, and the constant Cg is
determined as

4
Cg = —, (4.7)

where we have introduced the mean fiux transmission
coeQcient T and the mean fiux refiection coeQcient 'R,
defined as

As a consequence, our predictions in the m —+ oo limit
are as follows:

A (8, 8b) =

A+(8, 8b)

b+ 27.0

cos I9~ cos Ob,
arm

3m cos 6I~ cos 8b

vr b+ m3

(4.12)

It can be checked that the estimate (4.12) concern-
ing reflection obeys the sum rule (2.27). The outcome
concerning transmission shows an interesting crossover
phenomenon when the optical thickness 6 and the in-
dex ratio m are simultaneously large. Indeed b is to be
compared with the effective thickness of two skin layers,
which grows as 27() ~ m

The predictions (4.11) and (4.12) of the large mis-
match approach will be compared with numerical results
in Sec. V. Let us anticipate that a very satisfactory agree-
ment will be found, for moderate values of the index ratio
m, especially in the range m & 1 of most physical inter-
est.

The above approach can be improved in a systematic
fashion. Indeed, the expansion (4.4) shows that the lead-
ing behavior given in Eq. (4.11), which diverges as 1/'T
when rn —) 0 or m —+ oo, is corrected by finite parts,
given by the contribution of Go(r, r ) to the quantities
under consideration.

Let us illustrate how these corrections can be worked
out, taking for the sake of simplicity the example of
the solution I'~(r) of the homogeneous Milne equation,
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which is related to the Green's function Gs(r, r') by
Eq. (2.16), and yields in particular the effective thickness
rp of the skin layer. We set, in analogy with Eq. (4.4),

4I H(r) = + rp(r)+r, (r).3
(4.13)

The finite part rp(r) has the following behavior for large

rp(r) r + rp p (r —+ oo), (4.14)

so that we have, as a consequence of Eq. (2.13),

&0 + &0,0 (4.15)

in the large-index-mismatch regime.
We aim at an explicit determination of the 6nite part

70 0 of rp. lt turns out that both situations with a large
index mismatch, i.e., m —+ 0 and m —+ oo, have to be
dealt with in a separate way.

m ~ 0. In this first regime, the transmission T(p)
becomes uniformly small, namely T(p) —3'Tp/2, so that
the second integral of the rhs of Eq. (4.3) has a limit
—3Es(r), with the definition

procedure to be exposed in Sec. VA, and obtained in
particular

~0,0 = —1.0357 (4.22)

It is worthwhile to compare the predictions (4.19)
and (4.22) with the results of the diffusion approxima-
tion. This scheme amounts to approximating the func-
tion rp(r) by its asymptotic linear-plus-constant form
(4.14) and determining the constant rp p by means of the
consistency conditions (4.18) and (4.21). For m ~ 0,
the result (4.19) is recovered exactly. For m —+ oo, the
difFusion approximation yields rp p = —1, which difFers
only by a tiny amount from the "exact" numerical value
(4.22).

Another result is worth being mentioned, namely that
the special solution rs (p; r) corresponding to a normally
incident beam (p = 1), has a vanishing finite part in
the case m —+ oo. This can be checked by inserting the
consistency condition (4.6), with N(r) proportional to
exp( —r), into the definition (2.18). As a consequence,
the quantities ri(1) and p(1, pb) have no finite part cor-

rection, so that their leading expressions (4.11) are ex-
pected to be very good as m ~ oo.

Es(r) = @de e (4.16) B. Enhanced backscattering cone

r.(r) = -E,(r)+ [Mg(r —r', 0) + Mg(r+ r', 0)]

xr. ( ') dr', (4.17)

We thus have to solve the equation The amplitude of the backscattering cone at normal
incidence can also be determined analytically, for m —+ 0
or m —+ oo, in the regime where enhanced backscattering
is dominated by long-distance effects, i.e. , for small values
of the reduced wave vector Q. For m « 1 or m )) 1, and
lQl « 1, we are led to look for a solution of the form

with the consistency condition
rc(Q; r) = v~(Q) exp( —IQlr) (4.23)

rp(r)Es(r)dr = 0. (4.18) to the Q-dependent Milne equation (2.44), recast in the
form

Surprisingly enough, it turns out that the solution of
Eq. (4.17) assumes exactly the linear-plus-constant form
(4.14), with

r (Qc;r) = e [M~(Q; r —r", 0)

+M&(Q; r + r", )0] rc( Qr') dr'

&00 = ~

4
(4.19) N(Q;r+ r", 0) rc(Q;r') dr'.

I'p(r) =— [MI3(r —r', 0) + Mg (r + r', 0)]

xl"p(r') dr', (4.20)

with the consistency condition

m —+ oo. In this second case, the transmission T(y, ) is
peaked around p, = 1, so that the second integral of the
rhs of Eq. (4.3) admits the limit form —exp( —r). We
thus have to solve the equation

(4.24)

In analogy with the treatment of Eq. (4.3), we integrate
Eq. (4.24) with respect to r. The integral of the bulk
kernel M~ is obtained by setting s = 0 in Eq. (3.34).
Since Q is small, we expand m(Q; 0) = (arctan Q)/Q—
1 —Q /3, whereas the Q dependency of the kernel R' is
negligible.

We thus predict the following scaling form of the cone
near its top:

(Q —& 0, ? —+ 0). (4.25)
rp(r)e dr = 0. (4.21)

We have solved Eqs. (4.20) and (4.21) by the numerical
The result (4.25) is valid for all values of the scaling

variable Q/? . It admits the following small-Q expansion
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4 16iQ)
vc(Q) —T

—
3T, +

The two coefficients of the result (4.26) can alterna-
tively be obtained by inserting the expressions (4.11) into
Eqs. (2.47) and (2.49).

The above formulas show in particular that the ampli-
tude p&(Q) of the backscattering cone becomes very nar-
row for a large index mismatch, with a reciprocal slope
AQ and a full width at half height AQpwHH vanishing
aeeording to

where the source terms read

1-
Sg(r) = —(1 —r)e +r Eg(r)

Ml, (r, 7') r'dr',

1-
S2(r) = — —e y rEg(r)

with the notation

Ml. (r, r') dr',

BQ=
4 ' (4.27)

Eg(r) = (5.4)

Finally, as a consequence of the last remark of
Sec. IVA, we can assert that the results (4.25)—(4.27)
have no correction of relative order T as m ~ oo.

V. NUMERICAL RESULTS

In this section, we present numerical results concerning
various physical quantities in the situation of isotropic
scattering by pointlike objects in the presence of internal
reflections, i.e. , for arbitrary values of the ratio m of the
optical indices. These predictions have been obtained by
a numerical solution of the integral Milne equations, as
explained below. They will be compared with the results
of Sec. IV, which were established in the large-index-
mismatch regime.

A. DifFuse reBection and transmission

I ~( ) = + rp + FH (r),
I'g(p; r) = r] (p) + Fs (p; r). (5.1)

The new unknown functions FH(r) and Fg(p; r) fall off
very fast as r —+ oo, essentially as exp( —r). This prop-
erty makes them well suited for numerical analysis. They
obey the following integral equations:

FH(r)— M(r, r ) F~(r ) dr = Sy(r) + rp S2(r),

F~(~ r)— M(r, r') Fs (p; r') dr'

(5.2)

+ ri(p) S2(r),

General formulas for the diffuse reflected and transmit-
ted intensity have been derived in Sec. II. These quan-
tities are related, respectively, by Eqs. (2.24) and (2.34)
to the functions I'H(r) and I's(p; r), pertaining to the
half-space geometry and introduced in Sec. II B.

In order to evaluate these functions numerically, it is
absolutely essential to subtract their asymptotic behavior
for large r, given by Eq. (2.13). These explicit subtrac-
tions of the leading diffusive behavior allow for a very ac-
curate numerical treatment of optically thick slabs, with
an arbitrary thickness 6 )) 1, contrarily to previous ap-
proaches [7,16]. Hence we set

The integral equations (5.2), with a given source term
on their rhs, have been solved numerically by discretiz-
ing the functions and the kernels on the lattice of points
(r„=ne) for n = 1, . . . , N, i.e. , 0 ( r ( r~~„—=¹,and
by replacing the integrals by Riemann sums. The prob-
lem is thus reduced to solving a linear system, i.e. , to
a numerical matrix inversion, which has been performed
by using standard routines.

To be more specific, the parameter 7p and the function
FH(r) have been determined by solving the first equa-
tion of (5.2), successively with the source terms Sq(r)
and S2(r). I et Fq(r) and F2(r) be the solutions thus
obtained. ~0 is then determined by the linear condition
that the combination Fq(r) + rpFz(r) falls off at infin-
ity, i.e. , practically vanishes at or near 7. = v. = N~.
A similar procedure works for rq(p) and Fg(p;r). We
used the typical values e = 0.05 and e = 0.025, andr,„=Ne = 10. The numerical results were found to
converge exponentially with respect to ~ „and to admit
a smooth linear extrapolation in c.

Throughout this numerical work, we have considered,
for definiteness, the following typical values of the ratio
of optical indices: m = 1/2, 2/3, 3/4, 1, 4/3, 3/2, and
2. We have evaluated reflection and transmission prop-
erties, for a beam with unit intensity, incident from an
arbitrary direction 8~. For rn = 1, i.e., in the absence
of internal reflections, the numerical analysis reproduces
very accurately the exact analytical results exposed in
Sec. III.

Figures 2 and 3 show plots of the reflected and trans-
mitted intensity, A+ and A for a normally incident
beam (8~ = 0), against the observation angle 8b These.
quantities are maximal at normal incidence and decrease
when going oK the normal direction.

More precisely, for m & 1, the disuse reflection and
transmission vanish identically for sin 8b ) 1/m, since the
incident beam undergoes total refleetion, and thus does
not enter the sample. In the other situation (m ) 1),
these quantities vanish linearly as grazing incidence is
approached (8b —+ vr/2) because of the explicit Fresnel
transmission factor Tb in their expressions (2.24) and
(2.34). Only in the absence of internal reflections do the
reflection and transmission have nonzero limit values for

8b = vr/2, which can be derived from the exact solution
of Sec. III, namely
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FIG. 2. Plot of the diffuse reflected intensity A, for a
l 8 for fivenormally incident beam, against observation ang. e

values of the ratio m of optical indices.

A (0 7r/2) = A (O, m/2) = = 0.23139621~i(1)
4~v 3

(m, = 1). (5.5)

Let us now turn to a detailed comparison between
the outcomes o ef the large mismatch approximation o
Sec. D/' and numerical results. We have plotted in ig.
a ainst the ratio rn of both optical indices, the follow-

ing three quantities: (i) the parameter vi( ),
. ( . 3) d (2.19) characterizing the difFuse trans-

er 11mission at normal incidence; (ii) the parameter p(, ),
d in E . (2.25), characterizing the difFuse refiection

parameter ~q, defined in Eq. (2.13), is a measure of the
eff'ective reduced thickness of the skin layers, and where

2/3--- 3/4--- 1--- 4/3

0
0 0.1 0.2 0.4 0.5

FIG. 3. Plot of the diffuse transmitted intensity A, for a
l e for fivenormally incident beam, against observation ang. e b,

values of the ratio m of optical indices.

FIG. 4. Comparison between numerical results and ana-
lytic pre ic cons od' t' f the large-index-mismatch approximation.
The symbols show numerical values listed in Table II. The
quantities plotted against the ratio m of optical indices,
namely vi(1), p(1, 1), and 7O/D, are respectively proportiona

h d'ff t n mission and reflection at norma inci ence,
and to the effective thickness of the skin layers. The u ine
shows the common leading behavior of the three quantities in
the large-index-mismatch regime, nam yel 4 T where T is the
mean flux transmission coefficient. The dashed lines show the
improved predictions for 7 p/D, involving the finite-part cor-
rections (4.19) and (4.22) to the leading large-index-mismatch
behavior.

D = 1/3 is the value (2.17) of the diffusion coefficient for
isotropic scattering.

According to the results (4.11), the three above quan-
have the same leading behavior in the large-index-

mismatch regime, i.e. , for m ~ 0 or m —+ oo, name y
they iverge asd' 4&7 where is the mean flux transmis-
sion 7 has been evaluated in Eqs. (4.9) and (4.10). T is

in Fi . 4 for allasymptotic law is shown as a full line in ig. o
values of the index ratio m.

Sur risingly enough, the large-mismatch approxima-
tion provides a very satisfactory description o e
pendence of physical quantities against the index ratio
m, even for moderate values of this parameter, and es-
pecially in the range of physical interest (rn & 1). More-
over, it is apparen in,

't ' rent in Fig. 4 that the leading discrepancy
between the plotted data and the full line consists in
roughly constant differences, corresponding to the finite
parts discussed in Sec. IV A.

In the case of ro, we have obtained in Eqs. (4.19) and
(4.22) the numerical values of the finite part ~o o,

'
in both

—+ 0 and m ~ oo. The improved predic-regimes m —+ an
tions thus obtained are shown in Fig. 4 as two as e
lines. Including the finite-part corrections yields a spec-
tacular improvement. This observation strengthens our
confidence in the large-index-mismatch approach.

As far as ri(1) and p(1, 1) are concerned, we have
shown at the very end of Sec. IVA that these quanti-
ties have a vanishing finite-part correction for m —+ oo.
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TABLE II. Numerical values of the quantities plotted on
Figs. 4 and 6 for seven typical values of the ratio m of optical
sndzces.

3/2
4/3

3/4
2/3
1/2

&0

6.08
2.50
1.69

0.710446
0.815
0.881
1.09

~i (1)
21.7
10.8
8.34

5.036 48
5.39
5.60
6.25

~(1 1)
21.5
10.6
7.94

4, 227 68
4.63
4.85
5.55

DQ
0.136
0.269
0.343
1/2

0.479
0.465
0.427

0.6

0,4

0.2

This is nicely confirmed by the fact that all data points
for m & 1 almost lie on top of the full curve which rep-
resents the leading estimate. The data for m, ( 1 are
compatible with very small finite-part corrections, which
have not been evaluated numerically.

The numerical values of the quantities considered
above, as well as the reciprocal slope AQ of the backscat-
tering cone, are listed for completion in Table II,

B. Enhanced backscattering cone

0
0 0.5 1.0 1.5

I

2.0

FIG. 6. Comparison between the large-index-mismatch ap-
proximation and numerical results, concerning the recipro-
cal slope of the enhanced backscattering cone. Symbols
show numerical values plotted against the index ratio m of
optical indices. The full line shows the prediction of the
large-index-mismatch approach.

The numerical procedure described above has been ex-
tended in order to determine the enhanced backscattering
amplitude p~(Q). To do so, we have discretized the Q-
dependent Milne kernels MB(Q;~, r') and M~(Q;7, 7')
and the unknown function I'~(Q;w) on the lattice of
points (~„=ne).

We have considered the same values of the ratio m of
optical indices as in Sec. VA. Figure 5 shows plots of
the quantity

(5.6)

1.0

namely the ratio of the intensity observed in the
backscattering cone to the background diffuse refiected
intensity. The subtracted term 1/2 corresponds to the
contribution of single-scattering events, as explained in
Sec. II E.

In order to make a comparison with the large-index-
mismatch approximation, we have plotted in Fig. 6 the
numerical values of the reciprocal slope AQ of the cone,
defined in Eq. (2.47), together with the asymptotic law
(4.27), shown as a full line. The vanishing of the next-to-
leading correction to AQ, for m ~ oo, is again found in
good agreement with numerical data. Indeed, the points
for m ) 1 are very close to the line showing the leading
estimate.

0.8
VI. DISCUSSION

0.6

0.4

0.2

0—1.5 -1,0 0.5 1.0 1.5

FIG. 5. Plot of the magnitude A (Q) of the enhanced
backscattering cone, normalized with respect to the disuse
reAection, for a normally incident beam, against the reduced
scattering vector Q = kilty = A'olHI„ for five values of the
ratio m of optical indices.

A. Suxnmary

In this paper, we have studied the effects of the skin
layers and especially the role of internal refiections, on
the diffusive transport of light (more precisely, of scalar
waves) through thick slabs of random scattering mate-
rial. This analysis shows that, as long as transport is
diffusive in the bulk of the medium, internal refiections
lead to effects of order unity on transport properties, such
as refiected and transmitted intensity, even in the limit
where the mean free path is very large, as compared to
the wavelength. The simple reason is that the skin layers
act as barriers. The crossover from propagative to diffu-
sive behavior, or vice versa, which takes place in the skin
layers thus overshadows many higher-order interference
effects ("loop diagrams"). Our work provides the basis
for dealing in a systematic way with the effects of internal
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reflections in skin layers. This approach yields a general-
ized Schwarzschild-Milne integral equation, the kernel of
which has an extra contribution in the skin layers.

Among other results, we have shown in Sec. IV that
most physical quantities have a leading behavior in the
large-index-mismatch limit, i.e. , m -+ 0 or m -+ co, that
depends in a simple way on the mean Hux transmission
coefficient 7. We have also explained how finite-part cor-
rections to these leading estimate can be obtained explic-
itly. This outcome explains to some extent the validity of
a simpler approach, initiated by Lagendijk, Vreeker, and
de Vries [9], according to which the effects of internal re-
Hections are studied by means of an improved difFusion
approximation. Although the effects of skin layers are,
essentially by definition, beyond the scope of the diffu-
sion approximation, such an approach works rather well
in the limit of a large index mismatch, as will be dis-
cussed below. The intuitive reason for such an accord is
the following. For m —+ 0 or m —+ oo, the transmission at
the interfaces is very small. As a consequence, because
of charging effects, the effective thickness 7O of the skin
layers becomes very large, so that the behavior of the
intensity is described by a diffusion equation inside most
of the skin layer, apart from a transition region of a few
mean free paths.

When the index mismatch is not large, i.e. , when the
ratio m of both refractive indices inside and outside the
scattering medium is around unity, then skin layers in-
duce a more complex behavior of transport properties,
which is described by the general formalism exposed in
the present paper. Specific results concerning disuse re-
Hection and transmission, and the enhanced backscat-
tering cone, have been obtained, either numerically for
generic values of m (Sec. V) or exactly for m = 1, i.e.,

in the absence of internal reflections (Sec. III), where we
have recovered known exact results due to astrophysi-
cists.

Let us come back in more detail to the large-index-
mismatch regime and to the improved difFusion approxi-
mation. One common step of most studies [9,22—24] con-
sists in introducing a surface reflectivity 'Rg, which rep-
resents the angular average of the ratio of the Hux coming
to the interface from inside the medium, to the Hux re-
Hected into the medium. In some of those works, 1Z,g has
not been given a quantitative definition. In Refs. [22,23],
Freund and Berkovits propose a simple approach, assum-
ing that the efFects of internal reBections can be described
by summing repeated partial reHections of disuse light.
Their results thus have the form of a geometric series.
These cannot be quantitatively correct in the limit of
large index mismatch since important simplifications oc-
cur in the outcomes of the present approach, whereas the
results of these authors still involve the complicated num-
bers and expressions linked to the solution in the absence
of internal rejections.

Some of the works quoted above can be more directly
compared to ours. In Ref. [9], the estimate 70 —1/7 —1
is obtained in the large-index-mismatch regime on the
basis of a one-dimensional analog. This outcome di6'ers
from the correct result (4.11) by a factor of 4/3, to lead-
ing order, which represents the efFect of averaging over

the beam directions. The angular dependence was then
considered [25] and used as an input in numerical simula-
tions concerning the backscattering cone for vector waves
[26]. This work confirmed the narrowing of the enhanced
backscattering due to internal reflections, in reasonable
agreement with the results of Ref. [9].

More recently, the angular dependence has been de-
scribed explicitly by Zhu, Pine, and Weitz [24]. These
authors consider the case of vector waves, which can be
adapted to scalar waves by neglecting the polarization de-
pendence of the reBectivities. Consider first the regime
m —+ oo. They introduce two coefBcients, which can be
estimated as

pR(p)dp, = (1 —7)/2,

(6.1)

p R(p)dp = 1/3 —7/2,

2 1+3C2 4

3 1 —2Ci 37 (6.2)

This estimate compares well with (4.15) and (4.22),
namely the leading term is exact and the finite part co-
incides with the outcome of the diffusion approximation,
which only difFers from the correct numerical value by a
tiny amount. Let us emphasize that the determination
of the constant 700 ———1.0357 requires the evaluation
of the finite part Co of the Green's function: this task
is evidently beyond the scope of difFusion approaches.
Similarly, the expression given in Ref. [24] for the slope
of the backscattering cone agrees, to leading order, with
our prediction (4.27). This accord confirms that the use
of an improved diffusion approximation makes sense to
leading order in the large-index-mismatch regime.

The results of Ref. [24] can also be compared to the
present ones in the m ~ 0 limit. In this regime, C~ is
still given by Eq. (6.1), whereas we have Cz = 1/3 —37/8.
These estimates lead to

4 3
70 37 4' (6.3)

in perfect agreement with (4.15) and (4.19), to the same
order in 7.

B. Outlook

The present framework can be used to evaluate other
quantities concerning the diffusive transport of light, such
as, e.g. , various speckle correlation functions. Correla-
tions are accessible to experiment by dealing with two

where 7 is the mean flux transmission coefficient. In
evaluating Cp we used the fact that p is close to unity in
the m —+ oo limit, unless there is total reQection. Using
the identification (6.1), we find that the quantity Rs of
Ref. [24] coincides with R, defined in Eq. (4.8), to leading
order as m —+ oo. As a consequence, the prediction of
this article reads
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different incident beams, with different angles, and/or
different frequencies. The influence of internal reflections
on the relative fluctuations in the angle-resolved reflected
and transmitted intensities can be evaluated within the
present approach. For thick slabs (6 » ro) and fixed
incident and outgoing directions, the speckle correlation
functions will exhibit the same dependence with respect
to the index ratio m as the average reflection and trans-
mission considered in this work. This matter will be the
subject of a separate publication.

Our approach can be extended to the regime of mod-
erate disorder, where A;ol is not very large. The first step
of that analysis consists in investigating the microscopic
scattering mechanism. This has been done recently in
the case of resonant point scatterers [27]. The next step
is a self-consistent treatment of the transport equation to
first order in the density n of scatterers. In the bulk of
the medium, this procedure will only modify numerical
values, such as, e.g. , that of the diffusion coefficient. In
the skin layers, however, the t matrix and the mean free
path will depend on the spatial position. This new effect
yields a smearing of the mirror charges, which are point-
like in the present work, thus making the analysis more
intricate. The present approach can also be extended to
the case of a stratified medium, where the density n(z)
of scatterers varies continuously near the air-medium in-
terface. If the variations of n(z) are smooth at the scale
of the mean free path, effects similar to the smearing of
mirror charges will take place. It is worth mentioning
that the spatial dependence of the t matrix becomes es-
sential in narrow geometries, such as films or waveguides.

It has been shown recently [28] that drastic interference
effects take place when a new transport channel, i.e., a
new cavity mode, is opened.

The case of vector waves can also be dealt with along
the lines of the present work. In the regime considered
here (kol » 1), the propagation between scatterers will
involve on-shell transversal photons. However, for a mod-
erate disorder, the near-field longitudinal component of
the electromagnetic field will also contribute to trans-
port. This also makes the analysis more difficult. This
effect has been studied in the similar situation of reso-
nant atoms [29]. The methods developed here also apply
to many other domains of physics, as testified by the ex-
ample, treated in Sec. II D, of the boundary resistance of
electrical contacts.
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