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Dynamics and interaction of solitons on an integrable inhomogeneous lattice
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We discuss diferent aspects of one-soliton and multisoliton dynamics governed by the lattice equation
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—2y(t)n tP„=O. We propose reduction of this equation, drastically simpli-

fying its treatment by means of the inverse scattering technique.
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I. INTRODUCTION

The present paper is devoted to the lattice equation

i g„+(g„+,+1(„,)(1+
~ g„~ )

—2y(t)n $„=0,
in which y(t) is an arbitrary function of time and the dot
hereafter stands for the time derivative. If y(t) is identi-
cally equal to zero, this equation becomes the well-known
Ablowitz-Ladik model [1],which attracts much attention
due to both its exact integrability and reduction to the
nonlinear Schrodinger equation in the continuum limit.
For y(t)WO the last term in Eq. (1) is an on-site external
potential linear in space and varying in time. A particu-
lar case y(t)= y=con—st has recently been studied by
Scharf and Bishop [2]. The authors obtained a UV pair
of Eq. (1) and, thus, stated that the model is integrable by
means of the inverse scattering technique. Its one-soliton
solution has been presented. On the basis of the explicit
form of a one-soliton solution and of the detailed numeri-
cal study provided in Ref. [2], very interesting behavior
of solitons in the model (1) with y(t) —=const has been ob-
served. It turns out, in particular, that a soliton can be
"trapped" by the linear external potential in the sense
that its motion becomes periodic and a mean velocity of
the forward motion is equal to zero. Respectively, in a
case of two solitons, their interaction occurs periodically,
while Ablowitz-Ladik solitons move in accordance with
classical rules for solitons.

The model of Scharf and Bishop has an integrable and
well-studied continuum limit [3,4], which is a nonlinear
Schrodinger equation under linear potential. As it has
been stated by Balakrishnan [4], a generalization of this
equation corresponding to time-dependent amplitudes of
a linear potential can be included as well into the scheme
of the inverse scattering technique. One soliton solution
of such a generalization has been found by Besieris [5].
Noting that the last evolution system is nothing but the
continuum limit of Eq. (1), it has been pointed out in [6]
that Eq. (1) can also be treated by the inverse scattering
method. The zero-curvature condition is found by a sim-
ple generalization of the UV pair obtained in Ref. [2].
The explicit form of the one-soliton solution of Eq. (1) is
obtained in Ref. [6].

The purpose of the present study is to outline some
specific points of the inverse scattering scheme associated
with Eq. (1), to represent the multisoliton solution, to
give mathematical stipulations for some effects observed
earlier, and to give a panoramic of soliton dynamics
governed by Eq. (1).

Before getting into details we should list some physical
applications of the model (1). In a general sense, Eq. (1)
describes the evolution of solitons on a lattice affected by
a linear potential with an amplitude varying in time. As
was shown in Ref. [6] in the case of random function
y(t), Eq. (1) can serve as an effective equation for dynam-
ics of more general nonlinear random lattices in which
y(t)n is replaced by a time 5-function-correlated process
y„(t). One more application of the system under discus-
sion is related to soliton motion in a smooth potential.
The last problem for the one-soliton dynamics has been
studied in [2] in the framework of the collective coordi-
nate approach. Now we show that Eq. (1) provides
another approach to the problem. Indeed, let a soliton be
localized on the distance of P ' order (it will be clear
from the consideration below that these arguments make
sense also for some localized multisoliton pulses, to
which application of the collective coordinate approach
is problematic) and u is a soliton velocity. Also let l be a
characteristic scale of the slowly varying external poten-
tial W(n). Then under supposition Pl ))1, the potential
multiplied by P„can be expanded into the Taylor series
around n =UI;:

W(n)g„= W(ut) ut-t) W(n)
Bn

n =Ut

+ t)W(n)
n n

n =Ui

Thus in this approximation after evident phase transfor-
mation the Ablowitz-Ladik model perturbed by the
smooth potential W(n) is reduced to Eq. (1).

The organization of the paper is as follows. In Sec. II
we represent transformation of Eq. (1) allowing one to ob-
tain easily multisoliton solutions with the help of the
knowledge of the Ablowitz-Ladik model. Then, in Sec.
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III, we discuss features of one-soliton dynamics. Section
IV is devoted to interaction of solitons. The results are
summarized in Sec. V.

for the continuous nonlinear Schrodinger equation
affected by the linear potentia1. Therefore, considering
an initial value problem, let us introduce a function

II. GENERAL SOLUTION
q (t) i( 2n+1) r(t)y

where

(2)

Using the UV pair of Ref. [2] it is not diflicult to obtain
the zero-curvature condition for Eq. (1). However, in do-
ing so we come to the direct spectral problem having a
time-dependent spectral parameter (unlike the unper-
turbed Ablowitz-Ladik model, it will move around the
unit circle in the complex plane). Although because of
Refs. [3,4] it is known how to proceed in this case, we
prefer another way of dealing with the conventional spec-
tral problem of the Ablowitz-Ladik model. There are
two facts prompting us how to find this way. The first
one is the rotation of the eigenvalues, which has been
mentioned above and has to be prevented. Another
prompt is the transformation, proposed by Tappert [7],

I

r(t) =I dt y(t) (3)
0

is a real function. An equation for q„(t) follows immedi-
ately from (1),

iq„+(1+~q„L )(q„,e ' +q„+)e '")+y(t)q„=o . (4)

This lattice model is exactly integrable. The zero-
curvature condition

U„+ Un Vn Vn+1Un

for it is given by matrices

U„=
lqn

iq„*
—]

Z
(6)

Z e e
(t)

n n —1

e
—2iI

l q 1 e Zq

V„=i
e

—2i 1

l qn
—e '

Zqn
Z

—2 —2tr, ~ —2tr, )'(t)
z e +q qn, e

(hereafter the asterisk stands for complex conjugation).
Since only the Vn matrix differs from that of the
Ablowitz-Ladik model, we have now to specify only the
time dependence of the scattering data. The method to
obtain it is well known [1]. Omitting some details we
represent the result

g(])—i(2n+1)I'(t) kJ
(13)

Now, using the results of investigation of the inverse
problem, obtained in Ref. [1], we can represent a mul-
tisoliton solution of Eq. (1) in the conventional form

T(z;t) =exp i — (73 T(z, O)
. n(t)+r(t)

where

and

. Q(t)+ r(t)
L

X exp i o.
3

—i [Qk(t)+ r(t) ]
Ck, oe

N

b, k~ =5kj. +4 g Ck (t)C)(t)akiaji,
I=1

2C *, (t)(z *)"

(14)

Here

t2(z) —b *(z)
b (z) (2 *(z) (10)

g(])—
kj

(
—e)n+1. . . (

—e )n+1Z] ' ZN

2C ~(t)(z ' )" (15)

is a transfer matrix associated with the eigenvalue prob-
lem (6),

Z
g ZJ

1 —(z*z )
(16)

Q(t)= J dt co(z), Qk(t)= J dt co(zk),
0 0

z)=z e t +z 2e (12)

0 3 is Pauli matrix, and other designations are from Ref.

and the time dependence of Ck ( t ) from Eq. (9) is taken
into account.

In a particular case of a single eigenvalue of the opera-
tor U„ inside the unit circle, z, =exp( —w+ig), w&0,
we obtain one-soliton solution in the form [6]
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i(o i (t)
sinh(2w)exp ' + —2in [I (t)+8]

2 2

cosh [2nw X—( t) —Xo ]

where functions P( t) and X ( t) are defined by integrals

P(t) =4cosh(2w) J'cos[2[r(t, )+e]]dt, ,
0

X(t)=2sinh(2w) f sin[2[I (to)+0)]dto,
0

and

I C),OI
00 afgC] 0 + Xp ln

2
' ' sinh(2w)

(17)

(18)

(20)

state physics [9]. In the absence of an external electric
field, an electron in a periodic potential moves uniformly.
Due to a constant electric field (or linear potential in our
terms) a quasimomentum of a particle changes and moves
towards the boundary of the Brillouin zone (in the quasi-
momentum space). Being unable to cross the boundary, a
particle undergoes Bragg reAection. Thus oscillations of
the electron in the quasimomentum space appear and re-
sult in oscillations in a usual space (this effect is called
Bloch oscillations).

We have similar effect in our case. Indeed, in the ab-
sence of perturbation a soliton moves evenly. The exter-
nal field y ( t ) results in a changing of the momentum P,
which now evolves in accordance with the law

P = 2y(t)E—, E =2y(t)P (24)
III. SIMPLE DYNAMICS OF A SINGLE SOLITON

E =&(4.4.* i+0:4. i)—. — (22)

They can be treated as a momentum and an energy of the
pulse. In our case these quantities become dependent on
time. An infinite number of integrals exist for the prob-
lem we are dealing with and can be restored with the help
of integrals of the Ablowitz-Ladik model [1,8]. It follows
from the fact that these quantities are determined by the
associated spectral problem. The linear spectral problem
associated with the equation for q„(t) coincides with that
of the Ablowitz-Ladik model which gives the conserva-
tive quantities of Eq. (4). In order to write down the in-
tegrals of Eq. (1) in terms of g„(t) we should use the an-
satz (2). However, we concentrate now on functions E (t)
and P(t). Using the above facts one immediately arrives
at the "dispersion relation"

E+P =C (23)

where C is a positive constant defined by initial condi-
tions. In the one-soliton case C =4sinh(2w) (see [2] for
the idea of calculations).

Thus in the phase space (E,P) the trajectory of a soli-
ton is a circle of a constant radius C. This allows us hold-
ing the sense of E and P to find a curious qualitative anal-

ogy between a lattice soliton and a particle in a periodic
potential.

To this end we recall well-known facts of the solid-

Two particular cases of y(t)—:const and y(t) being a
white noise have been considered in Refs. [2,6]. In both
cases the behavior of a discrete soliton essentially differs
from its continuous analogue. Generally speaking, the
evolution of a single soliton depends on the function I (t),
which is a constant for the Ablowitz-Ladik model and is
proportional to t in the case of a constant linear potential.
Now we show that there exists a representation giving a
quite simple picture of one-soliton dynamics in a generic
case.

The Ablowitz-Ladik lattice, as an integrable system,
possesses an infinite number of conservation laws. The
first ones (usually they are combined into one complex in-
tegral) can be written as follows (see, e.g., [1]):

(21)

[this formula is obtained directly from (21) and (22) and is
valid for any pulse rather than only for a single soliton].
If y =const, then P increases (or decreases) with the time.
As follows from (23) the absolute value of the pulse
momentum cannot be larger than C (in our treatment this
quantity plays a part of the boundary of "Brillouin zone, "
in which energy E is equal to zero). Hence, after the ab-
solute value of P(t) having reached 4sinh(2w), it de-
creases. Thus the "Bloch oscillations" of a soliton appear
[10]. It is these oscillations that have been observed un-
der linear potential in a number of numerical experiments
of Ref. [2] (see Figs. 1 and 5 there). Comparing the out-
comes with those in the continuum limit we come to the
conclusion that the discreteness affects a soliton like a
periodic field affects a particle.

Another manifestation of the oscillations under discus-
sion is a "localization" by the linear potential (under this
term we refer to a localized perturbation of the lattice
which does not move in space). Indeed, let the parame-
ters of a soliton satisfy the requirement

[sin(20) +cos(219) ] ~ 1,
2r

(25)

P(t)=P cos[I (t)]—E sin[I (t)],
E(t) =Posin[l (t)]+Eocos[I'(t)],

(26)

where P0 and Ep are initial values of the momentum and
the energy, and I (t) is defined by (3).

As it follows from Eqs. (17)—(19) the velocity of the
soliton is determined by the behavior of the functions

&c(t), cos'= f dr ' I[2r(r)] (27)

Now we briefly describe the cases of periodic and random
y(t).

If the amplitude of the linear potential is a periodic
function, say

which means in fact that the soliton width is greater than
the amplitude of the oscillations. Then, the solution of
Eq. (1) will look like a localized in space excitation (see
Fig. 1), which has zero velocity of the forward motion.

In a generic case the system (24) is trivially solved giv-
ing
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t=20.0

tions of y(t). Asymptotically, when T ))t„[t, being a
correlation radius of y(t) in time], a (t) grows and, con-
sequently, averaged quantities tend to zero [unlike the
case of periodic y(t)]. Meantime, as it is easy to show,
both (P ) and (,E ) go to (Po+Eo) /2. One can formu-
late a more general statement about statistics of E and P:
all odd momenta tend to zero with time, while the abso-
lute value of each even momentum of the order of 2k (k
being integer) goes to 2-k(POO+E02)k (note that the result
is valid for any pulse rather than for a single soliton
only). This means that the distribution of E and P goes
to a stationary one.

IV. ON MULTISOLITON SOLUTION

&=0.0
I I

)
I I

)
I I

)
I I

)
I I

)
I I

)
I

16 31 46 61 76 91

FICx. 1. Dynamics of a single soliton localized by linear po-
tential with y =0.8 ( w=0. 1, 0=0.0, and Xo = 10.0).

Passing to the discussion of the multisoliton dynamics
we should point out that the main information has al-
ready been obtained [see Eqs. (13)—(16), (26), and some
results of the preceding section]. Nevertheless, now we
want to discuss in more details some qualitative features
of multisoliton pulses of Eq. (1).

Recalling the numerical results of Ref. [2] on two soli-
ton interactions we can state that the period of the pro-
cesses observed there is to be nothing else but the period
of the functions f,„i.e., m ly. Moreover, in the constant
external field, any motion will be periodic [it follows from
Eqs. (11) and (12)].

Then it may be found that the localized pulses may
also be multisoliton pulses. As an example, we will con-
sider a two-soliton solution, which can be represented in
the following form:

y(t) =sin(cot), (28)
2l —2nI ( t) X1/2 —2nw

1 X2/2 —2nw&
g„(t)=—e " v, e +v&e

the oscillations are accompanied by the motion in the for-
ward direction (again analogously to a particle in a
periodic potential). Recalling the one-soliton solution
(17) we find a temporary average velocity of the forward
motion where

X1+X2/2—2n (2w1+ 2+p]2e

&2 +&( /2 —2n (2wq+ w( )

+p2)e 7 (32)

CO
U

4 m
X t+ X(t)—2m

—2i 0,. n + i ( P,. /2)

4IC I

~„— +(P/)
I I'J )', 0 j,oe

(33)

sinh(2w) . 2 2
sin 28+—

W CO CO

(29) X A Ji+CX i; O,';,Mji

42 I il(22)+Z2
)fc2122

(34)

where Po( ) is the Bessel function. Therefore, the direc-
tion of motion depends on the frequency co of the external
force. Note that there exists a set of frequencies co at
which U„=O.

The representation (26) allows one to make some gen-
eral statements about soliton dynamics in the case of ran-
dom y(t). In particular, if y(t) is a Gaussian process,
I (t) has a normal distribution, and one immediately cal-
culates by direct averaging

( &= '"
& )= (30)

where

(7 (t)=2f dr, f dr2(y(r, )y(r~)), (31)
0 0

and angular brackets stand for averaging over all realiza-

X1+X2—4(w
1
+ w2 )n6= 1+pe

(X,. +X.)/2 —2(w,. +w. )n+ ~;ie
I,J

i ( P,.
—

(t . ) /2 —2i ( 9,.—0 . ) n

5ij i, o j,o+ ij

0= 161&),ol Ic~,ol [(z(((zp2 (z(2tzpi]

(35)

(36)

(37)

and the parameters X,. and P; are determined by Eqs. (18)
and (19) with respective subindices, and the free parame-
ters wk and O„are introduced as zz =exp( w), +i8k). —
One can estimate the region of parameters giving locali-
zation. Figure 2 shows two evident pictures of difFerent
qualitative behavior of the two-soliton solution in the
constant on-site potential (in addition to that demonstrat-
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V. CONCLUDING REMARKS
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