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Elastic scattering and energy theorerns for a doubly periodic planar array of elastic obstacles
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Mixed vector-dyadic equations derived earlier [V. Twersky, J. Math. Phys. 16, 633 (1975)] for multiple

scattering of elastic waves are applied to a doubly periodic planar array of elastic obstacles. Different
approximations for the multiple-scattering wave and amplitudes are given. Three groups of four energy
theorems are discussed. Results for identical rigid elastic scatterers are derived.

PACS number(s): 03.40.Kf, 03.80.+r, 11.80.La

I. INTRODUCTION

We consider the multiple scattering of elastic waves by
a doubly periodic planar array of bounded elastic obsta-
cles and follow the procedure of the work of Twersky in
Ref. [1] for the doubly periodic planar array of bounded
acoustical objects.

In Ref. [1],Twersky based his treatment on plane-wave
integral forms of the scattered field and of the multiple-
scattering amplitude. He showed that they lead directly
to the array-mode functional representation in terms of
the single-scattering amplitude, and to single approxima-
tions for the array resonance.

Here, we extend the results of Twersky into elasticity
by exploiting the derivations and the mixed vector-dyadic
formalism of Refs. [2—4]. We preserve, whenever possi-
ble, the notation, the terminology, and the equational
forms of Ref. [1]. We modify and transform the ap-
propriate operators to reAect and support the tensorial
nature of the present elastic problem.

From general reciprocity relations of Refs. [5] and [6],
we establish three groups of four energy theorems adapt-
ed to the geometry of the array for multiple-scattering
amplitudes separately, multiple- and single-scattering am-
plitudes together, and single-scattering amplitudes alone.
The first group relates the outside multiple fields of the
array, the second represents energy-conservation require-
ments involving the multiple field and the net outside
field of the single scatterer, and the third regulates the
single-scattered fields in the array for two arbitrary direc-
tions of incidence at the surface of the central scatterer.

The second group of energy theorems, the mixed
multiple-field —single-field interactions, is important to in-
verse elastic scattering as in Ref. [7] where a generalized
optical theorem for elastodynamics derived from the
Newton-Marchenko equation is presented. The second
group of energy theorems provides a way of predicting
single-scattering results from the knowledge of the
multiple-scattering field. Therefore, it is useful to model-
ing and simulation activities especially when dealing with
inhomogeneous layers of very near-identical or nonidenti-
cal scatterers (Ref. [8]).

In addition to the leading term approximation of the
multiple-scattering amplitudes and of the energy
theorems, we study the case of Rayleigh scattering for

identical rigid elastic spheres. The results are given in
forms ready for application which contain only the
known single-scattering amplitudes of the single object in
isolation. Needed formalism and required structure for
the energy theorems in the Rayleigh regime are estab-
lished. Specific Rayleigh results are obtained for multiple
elastic theorems in the forward direction of scattering
corresponding to two arbitrary longitudinal directions of
incidence.

The results presented in this paper are crucial to the
study of the low-frequency coupling of the elastic double
lattice. They will play a significant role in atmospheric
optics (Ref. [9]) and in the application of scattering
theory to planetary atmospheric studies (Ref. [10]). They
will certainly contribute to the still-open question of sta-
bility in elastodynamic (Ref. [11])and to ultrasonic detec-
tion and characterization of Aaws in metals and ceramics
(Ref. [12]). Other applications of this problem (with its
relativistic complement) can be found in galactic scatter-
ing by comet dust particle (Ref. [13]).

Due to the difficult nature of the governing elastic
equations for this problem, the coupled stress transition
conditions at the surface of the scatterers, and the com-
plicated nature of the resulting elastic lattice from the
doubly periodic planar array, the special functions repre-
sentation of the multiple mixed-vector dyadic scattering
amplitudes and the analysis of boundary dependent low-
frequency coupling effects are left for a separate study.

Because of mode conversion at the boundary of each
scatterer, transverse or s waves and longitudinal or p
waves always appear together. We use g and g to in-
dicate sums that arise over p and s. A subscript x, y or a,
P, and v on the left-hand side of any quantity means that
both pairs of longitudinal and transverse forms of the
quantity exist and satisfy the relevant equation. Four
different equations can be obtained by replacing x and y
by either p and/or s.

In order to avoid repetition, we cite key equations of
Refs. [3,4,6, 14]. In general, we work with spherical obs-
tacles which can be either perfectly elastic, rigid, or
Quid-filled cavities. We use bold face or regular vector
notation when it is appropriate. The hat on the top of a
vector indicates a vector of unit magnitude. The tilde on
the top of a letter denotes a dyadic (second-rank tensor).
For brevity, we use Eq. ([5]-2) for Eq. (2) of Ref. [5], etc.
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II. GENERAL CONSIDERATIONS

We consider the scattering of an incident plane har-
monic elastic wave P propagating in a direction k by a
doubly periodic planar distribution of identical elastic
obstacles. As in Ref. [1], we locate the center of the
smallest sphere (of radius a) circumscribing a scatterer at
the lattice site b, =b( t„tz ) = t, b, x+ t zbzy with
t; =0,+1,+2, . . . in the plane z=0.

The problem is to determine the total scattered field

Hz due to the incident wave denoted as an x =(p, s) in-

cident wave and given by Pz. We suppress the time har-
monic dependence e ' ' and define the x incident wave
as

ik kr ik, k.r
Pz=ke ', ,Pz=e, e

r(8;y)=Q(qr)sin8+z cos8,

Q(y) =x cosqr+y sing&,

with k=r(8o, po) =ko, 0 (z.k ~ 1, k F., =0, and e, the po-
larization of the transverse wave.

In the lossless volume external to the scatterers, we
work with the total field

where

I =rr, I, =(I—rr), I=rr+88+yy,

and the brace operator of (5) is defined as in Eq. ([3]-6)by

If,g]—:—(1/4n. )f [f.T, g —g.T,, f]dS(r') .
S

Here

T,=2pn V, +AnV, .=pnX(V, X )

is the elastic stress tensor, n is the exterior unit normal
on the surface S, and r and r' denote the observation
point and a point on S or in the volume V of the bounded
scatterer, respectively. The coefficient in (5),
(ik~/4vrpc )=(ik /4mpco ), gives either the longitudinal
or the transverse scale factor needed in the brace opera-
tor definition of the single-scattering amplitudes g and
xgy-

From Eq. ([4]-32) and the single dyadic scattered wave
u specified by (6 e=u), the single dyadic scattering am-
plitudes are

gy(r, k)=(i'/4irpc ) tP ( —r), „u-„(r,k') I,
„4=„Pq+„1II, , (2)

P=P +P, —:kke ~ +(I—kk)e
satisfying (Ref. [15]), in the absence of bodily forces, the
time-independent linearized equation of dynamic elastici-
ty

[c~V(V )
—c, VX(VX )+co ] %=0,

and

g (r, k)= g (r, k) &„.
Asymptotically, for rt ~~, we can write

(10)

CO
—

Cp kp
—

Cs ks

p p

(3)

U(r, )- g h (ky r, ~)( G ),

subject to the usual elastic boundary or transition condi-
tions f=%, T,g= T2+, with TJ =2@ n V
+A,J.V.+pzn X V X at the surface of the scatterer. Here
A, and p are the Lame constants of the embedding medi-
um and p is constant density. Similar to Twersky Eq.
([l]-4), the corresponding elastic scattered wave of the
doubly periodic planar array may be represented by

where

Gy = G (r„'k) . (12)

Here h(k r, ) is the spherical Hankel's function of the
first kind, and G and „G, are the longitudinal and
transverse multiple vector scattering amplitudes due to
the incoming x wave and are defined by

„M~= Q, H~ = g g„U (r, )e
y y t

(4)
„G = G(r, ;r)

=(ik~/4mpc~ ) I I~e ', ,U(r, +r')] . (13)

t t = —oot
1 2

with r, =r —b, .
The multiple-scattered wave „U(r, ) =„U~ + U, of one

scatterer is determined as in Ref. [3] by its single elastic-
scattering analog and the geometry of the array. In the
present context, the multiple-scattered wave U will be
specified by its corresponding multiple-scattering ampli-
tude G which is given in terms of the known scattering
amplitudes g and „g of the single object in isolation.

From Eqs. ([3]-12) and ([3]-13), the single-scattering
amplitudes are

gy(r, k)=(i'/4m'pc )II e +, u(r )], (5)

The spectral representation of the multiple-scattered
wave „U analog to Eq. ([3]-35)is

U(r, )= g U (r, )= g f Ie ' ' ' G, ],
where G, = G (r, ), and

(15)

The unit vector r, in (14) is

r, =r, (8„g,) =Q(&p, )sin8, +z cos8, ,
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g g 8 &e
' " „G (r,&, ko) for z )a

y l
g&x

py�gmy/e

' " Gy(r,'/, ko) for z &a .
y l

(17)

(18)

Here

where c is the Sommerfeld's path of Refs. [14,16] and
dQ, is the differential solid around the unit vector r, .
The integration in (15) is over all angles of observation as-
sociated with r, .

Substituting Eq. (11) into (4), and using the method of
stationary phase as in Eqs. ([1]-59)—([1]-60),we obtain

277
yl

y 1 2 cl

X=XX (19)
l l l 12

I;=0,+1,+2, . . . ,

and r,'i=r, I( —z). For the treatment of the limiting case
with Cyi~ ~ and the study of resonance for moderate
values of the parameter kb;, we refer the reader to the
work of Twersky in Refs. [17—20,22].

From Eqs. ([3]-46), ([3]-47) adapted to the doubly elas-
tic periodic array, and Eq. ([1]-12),we obtain the mixed
vector-dyadic representation of the unknown multiple-
scattering amplitudes „Gy of Eq. (11) in terms of the
known scattering amplitudes g or g of the single
scatterer in isolation,

Gy(r, ko)=„gy(r, ko) ay+ g &'e' ' f [e
' ' '[ g (r, r, )] „G (r„ko)],

u t
(20)

where k =k ko, k, =k r„e (( g, e, ((,g„and
Equations (17)—(20) determine the

multiple vector scattering amplitudes of one scatterer in
terms of its response and these of its neighbors to an in-
coming incident elastic wave

III. KNKRGY CONSIDERATIONS

In this section, we restrict discussion only to lossless
scatterers and follow the procedure of Phanord-Berger of
Ref. [6], Sec. 5. We establish elastic energy theorems for
multiple-scattering amplitudes separately, multiple- and
single-scattering amplitudes together, and single-
scattering amplitudes alone. Because of the four different
multiple reciprocity relations of Ref. [6], we expect four
different energy theorems from each group mentioned
above. To provide continuity of thoughts and facilitate
the understanding of the present work, we sketch briefly
the derivations for p-p and p-s incident waves based on
Ref. [6], and use them to obtain energy theorems for s-p
and s-s cases.

In the context of elastic scattering, when the concept of
"energy" is mentioned, it is understood to be the "total
energy" as the incident wave interacts with the scatterer
or scatterers in the medium of propagation. The effect or
response of the scatterers on the propagation of the in-
cident wave is measured, as in Refs. [14—20], by the
amount of energy that they receive from the incident

[p+g & p+j ]m [p+1» p+2]m (21)

where m is the surface of the central scatterer and 4,. is
the total outside multiple field due to P;. Here, the as-
terisk denotes complex conjugation and the brace opera-
tor [ fi, f2] of (21) is the regular Betti's surface integral
of dynamic elasticity of Ref. [15] defined by Eq. (7). Sub-
stituting (2) into (21) and applying brace algebra of Eq.
([3]-39)lead to

[ply pH2]
—

[p4'2 pHi]* = —
[ Hpi Hp12

where [pp;, pp2] =0 since p, and pp2 are two different
nonsingular solutions of (3).

Using Eqs. ([6]-47) and ([6]-52), we reduce (22) to

P [k, pGp(k„k2)+k2 G'(k2, k, )]=[ H*, , 112]m . (23)

The right-hand side of (23), with (17) and (18), give

wave as it gets reradiated in all directions. But, as men-
tioned in Sec. II, the multiple-scattered wave U, which
is the response of the scatterers to the incident wave, is
specified by its corresponding multiple-scattering ampli-
tude G. Therefore, the energy theorerns of this section
will be expressed or given in terms of the scattering am-
plitudes.

From general reciprocity of Ref. $5], for two arbitrary
longitudinal directions of incidence k, and k2, we have

[pHi pH2]m= —Q g ~xi [ [e " ",Gx(r, i ki)+e " ",G.(r,'i ki )] pH2]m
x l

Applying Eqs. ([6]-33)and ([6]-48) to (24) yields

(24)

[ H;, H2] = —g p„g C &[ G,'(r, &, k, ) G„(r,*&,k2)+ G*(r',I,k, ). G„(r,'I', k2)],
x l

(25)

where P„=[(4mic /k )p] and g& = g& gl . Combining Eq. (22) with Eqs. (23) and (25) leads to the multiple p-p ener-
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gy theorem for the doubly periodic planar array.

~p [kl pGp(kl k2)+k2 pGp (k2 kl )] rr~x 2 ~xl [ pGX(rcl kl ) pGx(rcl k2)+pG (r I kl ) pG (rcl k2)]
x I

(26)

In the forward direction, assuming that the directions of longitudinal and transverse waves coincide, we obtain the
multiple p-p "forward energy theorem"

—2PpRe[k. pGp(k, k)]= P P„g 8 1[[pG (r,*l,k)lz+ IpG. (r,*I',k)I2],
x 1

where Re denotes the real part. From (26), we deduce the multiple s-s "energy theorem"

(27)

—P, [&,I,G, «1 kz)+&sZ sGs*(kz k1)]= gP» g &xl[sGx(rcl k1),Gx(r,'I kz)+, Gx(r', I k1),Gx(r,*l kz)l
x I

which in the forward direction becomes

—2P, Re[@,.,G, (k, k)]= gP„g C I[~,G (r,*l,k)~ + ~,G (r I,k)~ ] .

(28)

(29)

For p-s incident waves, we recast (22) into

[,41,&zI —[,4z, 1111*= —[,&1,&z]

Therefore (23) gives

[Ppkl sGp( k)1k)z+P +szspGs (kz&k1) l Ip~l & s~zIm

and (25) yields

~1 ~2I gP g~ I[ G ( I kl) G ( I k2)+ G ( I kl) G (rl k2)l
x I

Combining (31) and (32) leads to the multiple p-s energy theorem

(30)

(31)

(32)

—[P k, ,G (k„kz)+P, e, z G,*(kz,k, )]=gP„g C„I[ G,*(r«,k, ),G„(r,*l,kz)+ G„*(r,'l, k, ),G (r,*l', kz)] . (33)
x I

Hence the multiple s-p energy theorem obtained from (33) is

—[P,e„G,(k„kz)+P kz, G*(kz, k, )]=gP„g C„I[,G'(r«, k, ) G (r,*,, kz)+, G„'(r„',k, ) G (r,*,', kz)] . (34)
x I

u1]* = —[,u1, ,112]

Similarly to (23), Eq. (36) gives

(k1 k2) 2'„g ( 2 1)] I u1 II2]

(36)

In the forward direction, (33) and (34) are identically
zero since all mixed vector scattering amplitudes must
vanish (Ref. [21], pp. 1610, 1748—1750). Equations (26),
(28), (33), and (34) are the four diFerent multiple-
scattering energy theorems for the doubly periodic planar
array of elastic scatterers. They relate the multiple vec-
tor scattering amplitudes or the multiple-scattered fields
for two arbitrary directions of incidence at the surface of
the central scatterer. Equations (26) and (28) are the elas-
tic analogs of Eqs. ([1]-18) and ([22]-32), respectively.
Equations (27) and (29) correspond to the usual theorems
on conservation of energy in the forward direction of
scattering.

Now, consider

[pg1, p+2] =0, (35)
where p@;=pP;+pu; is the total outside single solution
for the central scatterer located at m due to P, . Work-
ing with Eq. (35), we obtain, as in (22),

I

In the right-hand side of (37), we use the spectral repre-
sentation Eq. ([3]-19) of u1, complex conjugation, and
Eq. ([6]-48) to write

[,ul 112] = X~ f [pG (" kz)'pg

+ G (r,",k, ) pg,*(r,', k, )I .

Working similarly as in Eq. (17) and (18), and introducing
as in Eq. ([1]-7)or ([5]-10)the continuous variables 11 and

lz, we transform (38) into

[pu1 p 112]m

= —yn. f &.IlpG (r*l kz) pg*(r
1

+„G„(r,*l', kz). g*(r'„k,)], (39)

where f I
= f dl1 f dlz and the limits on (11,lz ) as in Ref.

[1] are over the propagating range of I which depends on
Eq. (16) or more precisely on cos8«=[1 —sin (8«)]'
with sin (8«) ( l.

Combining (37) with (39) leads to the mixed p-p energy
theorem
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Pp [k 1 p Gp ( k 1 k 2 }+k 2 p gp ( k 2 k 1 }1
= —g P.f &.I [p g.' (r,I, k I ) p G. (r,*l,k2 ) +p g ( r I k 1 } p G (r I k 2 }] (40)

For p-s incident waves, we use (37) and (39) to obtain

Ppkl sGp(kl~k2)+Ps s2 pgs (k2~kl) tpul ~ s~2]m

and

(41)

[ ul, , lI2j = —yP f e I[,G (r,*l,k2} g,*(r,l, kl}+,G (r,*l', k2) ~ g'(r,'I, kl)] .
I

(42)

Hence Eqs. (41) and (42) give the mixed p -s energy theorem

kl G (klk2)+P~2 g (k2kl} XP f ~![ g ( I kl} G ( I k2}+ g ( I kl} G (rl k2}l
I

(43)

The remaining two cases corresponding to s-s and s-p incident waves are deduced from (40) and (43). Therefore, the
mixed s-s energy theorem is

P, [&sl.sGs(kl, k2)+&s2 sgs*(kl, kl)]= —QP~ f ~«[sg~(r„,k, ) sG„(r,*l,k2)+sg~(r,'I, k, ),G (r,*I',k2)],
I

(44)

and for the mixed s-p energy theorem, we have

Ps~sl pGs(kl~k2}+Ppk2 sgp(kl~kl) gP f C I[ g (r I, kl )'pG' (r I,k2)+ g (r I,kl). G (r I,k2)]
l

(45)

Equations (40) and (43)—(45) are energy-conservation requirements involving the total multiple field of the doubly
periodic planar array and the net outside field of an individual scatterer at its surface.

In Eq. (35), we replace %2 by „f2= $2+pu2 and rewrite (36) as

[pal & pu2j m [p P2 & pul j m {pul ~ pu2] m

Proceeding similarly to (37) and (39), the p-p energy theorem for a single scatterer in the array is

(46)

Ikl g (kl k2}+k2 pg (k2 kl}) gP f ~!I. g ( I kl} g ( I k2}+ g I kl} g ( I k2}l
I

(47)

which, in forward direction, gives

2P, «[k.,g,—(k, k }]= Q P.f ~.1 [ lpg. (r,*l,k) I'+ I,g. (r,*I',k }I'] . (48)

The s-s energy theorem for single-scattering amplitudes analog to (47) is

P, [~,l,g, (kl k2)+~,2,g,*(k2 kl}]=—XP.f ~.1 [,g.'(r, l kl}.,g.(r,'I k»+, g.*(r,'I kl},g. (r,'I' k2}]
It

(49)

which, in the forward direction, becomes as in (48),

—2P, «[&, .,g, (k, k)] = y P.f ~.I [l,g. (r,'I, k) I'+,g.(r,*I',k) I'] (50)

For p-s incident waves, we use Eq. (30) and (46) to write

[pal & su2]m [s P2& pul jm [pul & su2jm

Following Eq. (43) and using (51) yields the p-s energy theorem for the isolated scatterer,

(51)

Ppkl g (kl k2}+P ~2 pg (k2 kl}= gP f ~ I[pg*(r I kl }'.g (r*I k2)+pg*(r I kl }' g (r*I' k2}]
1

(52)

Finally, we obtain from (52) the s-p energy theorem for the individual scatterer in the doubly periodic array,

P, &, 1 pg, (kl, k2)+Ppk2 sgp(k2 kl}= &P f & I[,g*(r,I kl},g. (r:I k2}+.g (rsI kl)'pg„(r, , k2)] .
1

(53)
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Equations (47), (49), (52), and (53) relate the single vec-
tor scattering amplitudes or the single-scattered fields for
two arbitrary directions of incidence at the surface of the
central scatterer. They can be further specialized by us-
ing either Dassios's reciprocity relations of Ref. [23] or
Varatharajulu's of Ref. [24] for single-scattering ampli-
tudes to replace g*.

IV. LEADING TERM APPROXIMATION
AND RAYLEIGH SCATTERING

FOR SMALL ELASTIC RIGID SCATTERERS

The purpose of this section is to recast the complicated
theorems of Sec. III into forms ready for apphcations.
To accomplish this goal, we will employ the leading term
approximation used by Twersky in Refs. [1,4,25] for the

multiple- and single-scattering amplitudes. The
multiple-scattering amplitudes represent the response at
large distance (the radiation zone) of the doubly periodic
planar array of elastic obstacles to the incident wave.
The leading term approximation is most valid in the radi-
ation or far zone and it is also known as the Born approx-
imation (for more details, see Ref. [26]). As an applica-
tion of the simplified forms of the theorems, we will look
at Rayleigh scattering for elastic rigid scatterers since
their size parameter ka is small as compared to wave-
length (Ref. [26]).

To simplify the notation and facilitate subsequent de-
velopments, we introduce as in Eqs. ([4]-78) and ([25]-
128) the dyadic multiple-scattering amplitude G such
that „G = G e, an. d we transform Eq. (20) into a com-
pact form by dropping the e,

G»(r, ko)= g»(r, ko)+ gg'e ' f [e ' '[ g (r, r, )]. G (r„ko)] .
a t

(54)

Now, using Eq. ([4]-88) or ([25]-55) and keeping k b,
large, we reduce Eq. (54) to

„G (r, ko)=„g (r, ko)

since g, (r, r)=,g»(r r)=0 (Ref. [21], pp. 1610, 1748,
and 1750). When x =p or s and y =p, we obtain from
(58) the longitudinal forms

+ gg' g, g (r, b, ) „G (b„ko),
a t

(55)

~G»(r, ko) =%», ~g~(r, ko) e»,

,G (r, ko)=%, ,g (r, ko) e
(59)

h(tk b, )e
— 'Z (tk b, ;2)),

in which

respectively. For x =s or p and y =s, we have the trans-
verse analog of (59},

E (tk b, l;2))=I+
2tkab,

,G, (r, ko) =A„,g, (r, ko).e, ,

»G, (r, ko) =%„~g,(r, ko) e, .
(60)

l

2tk b,

2
1

2) (2)—1 2I)+
2

(56)

To obtain specific results, we let the identical scatterers
by rigid spheres of radius a and rewrite the single dyadic
scattering amplitudes g„(r,r) and, g, (r, r) in the for-
ward direction of scattering as

is the dyadic operator of Eq. ([25]-50) with
2)—:r {V X V —VV J. The spherical-polar coordinates
representation of 2) is given by Eq. ([25]-44), and the
differentiations are with respect to the angles associated
to the unit vector b, .

For application purposes, we approximate all operators
of (55) by their leading terms and retain only contribu-
tions up to the second order of scattering. Consequently,
(55) is transformed into

G (r, ko)=„g (r, ko)+ g g'4', g»(r, b, ) „g (b„ko)
(57)

~g»(r, r) =»g»(r, r)rr, ,g, (r, r) =,g, (r, r)I„, (61)

A, =I++'h (tk b, )e ' ' '
[»g»(r, r)]

t

=I+&»(ko, r)»g»(r, r),
where the scalar factor

(62)

where, as in Eq. ([3]-14) or Eq. (6), I=rr+I„and
I, =I—rr=08+qpy. Next, we use the second part of
(57) to reduce the second part of (58) to

&, :—h(tk b, )e 'I,
which becomes for r=b„dot-multiplication from the
right by e, and cz=y,

„G»(r,ko) =%», g»(r, ko}.e»,
(58)

&»(ko, r)—:g'h (tk b, )e
t

=(ik )

itk b (1—k r)
y t. 0

tb,
(63)

%,=[I++'&,.„I (r, r)], which is convergent Eqs. ([5]-39), ([5]-40) except for the
integral values of V, = (k b, /2m. )(1—ko r).

l t
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Combining (62) with (61) leads to

A, =I+[& (ko, r) g (r, r)jrr,
A„=[1+&,(ko, r),g, (r, r) jI

—[&,(ko, r),g, (r, r) jrr .

(64)

Using the results of Ref. [14], Sec. 2 for the forward sca-
lar single-scattering amplitudes g (r, r) and, g, (r, r) with
small k a in (64) yields

k

k,

k
X 1+ik a 1+

2k,

V(ko, r ) —= 1+& (ko, r } —a

nal forms,

G (r, ko)= [ V(ko, r)j g (r, ko) g

k
1+

2k,

k
1+

2k

(67)

3A, =I+ & (ko, r) —a
,G (r, ko)= [ V(ko, r) j,g (r, ko), g (68)

k
1+

2k

k
1+ik,a 1+

2k,

k
—1

X 1+
2k

(65)

,G, (r, ko) = [,V(ko, r) j,g, (r, ko), g, ,

,V(ko, r)—:1+&,(ko, r) —a
k

1+
2k

(69)

For the transverse forms, we combine Eq. (60) with (66)
to obtain

and

k
—1

=I+& (k, r) —a 1+St S 0&
2kS and

k
X 1 —ik a 1+

2k,

k
1+

2k

k
X 1 —iksa 1+

2k,

k
X 1+

2k
[I—rrj . (66)

Substituting Eq. (65) into (59) gives, for the longitudi-

~G, (r, ko) = [,V(ko, r) j g, (r, ko) g, . (70)

Using Ref. [27], Appendix B and Ref. [28] in Eqs.
(67)—(70) yields the desired Rayleigh's approximation of
the four-vector multiple-scattering ainplitudes G~(r, ko)
when x =p, s, and y =p, s for the identical rigid elastic
spheres. Hence working with (67) and (69) we have

oo k
~G~(r, ko) = g A„, [P„(cos8)j V(r, ko)r,

n=0 l

,G, (r, ko)= g .%„. P„(c so8)c sop
—y [P„(cos8)jsiny2n+1 8

i n n+1 " sin8

(71)

and with (68) and (70) we obtain

+C„8cosy [P„'(cos8)j
— . sing&[P„'(cos8) j

. V(r, ko),
ao sinO S

a)

~G, (r, ko)= g A„, [P„(cos8)j,V(r, ko)8,
n=1 l

,G (r, ko)= g B„ ik [P„(cos8)cosy&j V(r, ko)r,"n n+1

(72)

where A„and A„are given by Ref. [27], Appendix B, Eq. (9). The remaining scattering coefficients X„,C „,and B„can
be found in Ref. [28].

The results of (71) and (72) for the small rigid elastic spheres are modulated as in Ref. [2] by the geometry of the dou-
bly periodic planar array and contain the symmetry preserving factor &~(ko, r) with y =p, s. They also show that the
leading contribution of the Rayleigh s approximation for ~G~(r, ko) is a monopole term while, G, (r, ko), G, (r, ko), and

,G (r, ko }have a dipole term.
Equations (71) and (72) can be used to obtain the Rayleigh s approximation of the energy theorems of Sec. III. As an

example, we look at the multiple energy theorems in the forward direction of scattering of Eq. (27). Keeping only the
first nonvanishing terms of the multiple vector scattering amplitudes of Eqs. (71) and (72), we obtain from (27)
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2P, «I~o(r)ik, [,V«k)]] =~ 2 &,tk,'I: I l~o(r,'t ) I', &("r,*t k) l'+ ll~ o("r,"t') I', V( r,*t' k) I']
I

—P, QC„(k sin8) [) ~A, (r,*, )~, V(r,*„k)] + [~A,(r,*,')~, V(r,*,', k)[ ] .
I

(73)

Equation (73), an elastic version of the optical theorem, is
the Rayleigh's results for the identical elastic rigid
scatterers corresponding to longitudinal incidences. The
complex factors ~9'(ko, r) and, V(ko, r) are defined explic-
itly in (67) and (69), respectively. The remaining energy
theorems and the cases for either the fluid-filled cavity or
the perfect elastic sphere can be treated similarly.
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