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Space-charge divergence of an intense, unneutralized rectangular ion beam
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Space-charge effects are explored theoretically as an intense {beam current density ~ 1 mA/cm ), posi-

tively charged ion beam emerges from an aperture displaying a well-defined aspect ratio and enters into

an electron-free region of space. In the absence of space-charge neutralization, the beam diverges under

the inhuence of the mutual Coulomb repulsion of the ions. Under the assumption of a collisionless

beam, the mass, the energy, and the phase-space density are conserved to generate a single, three-
dimensional partial differential equation. This equation is then combined with Poisson's equation and

solved analytically to provide the beam ion density and potential at any point in space. Applying the re-

sulting expression to beams of varying energies and current densities, it is found that irrespective of the
initial aspect ratio, intense beams of all energies and currents continuously diverge and ultimately relax
into near-gaussian profiles.

PACS number{s): 41.75.—i

I. INTRODUCTION

The ever increasing use of medium- to high-current
(Ib ) l mA) ion beams in the microelectronics industry
has elevated the importance of developing a rigorous un-
derstanding of the fundamental principles of beam forma-
tion, neutralization, and propagation. Recent theoretical
and experimental work has demonstrated that intense ion
beams, such as those used in ion implantation during
semiconductor processing, are capable of entrapping and
transporting particulate contamination over long dis-
tances [1—3]. Should transported particles reach the tar-
get wafer, a loss of yield may result. A thorough under-
standing of the mechanisms by which a space-charge-
neutralized beam maintains a steady-state charge distri-
bution is essential if the beam's ability to entrap particles
is to, .be eliminated or reduced. However, before a neu-
tralized beam can be fully analyzed, the initial charge
density of the unneutralized beam must be known. Previ-
ous studies have postulated a priori a beam of Gaussian
cross section [4—7]. However, theoretical justification for
this assumption has remained absent from the literature.

Figure 1 displays a schematic representation of the
beam under consideration. As shown, the beam system is
comprised of four distinct segments: the p/asma source,
drift region, beam plasma, and the sheath at the beam-
target interface. The beam itself is comprised of positive,
nonrelativistic ion s extracted continuously from the
source, and provides a steady current to the target.

Ions in the source are extracted and accelerated by the
large potential di6'erence between the source and the
beam line. Electrons emerging with the beam are
reflected back into the source plasma by the electron
suppression electrode, which also serves to confine neu-
tralizing electrons to the beam plasma and maintain an
electron-free drift region. Passing through this electrode,
the ions are shaped into a narrow charge configuration of
nearly uniform density and well-defined aspect ratio.
Upon entering the drift region, the beam begins to ex-

pand as the ions respond to their mutual Coulomb repul-
sion.

In this work, the beam is studied as it emerges from the
source and propagates through the drift region. The
physics of the expanding beam is explored. Charge densi-
ties and potentials are calculated. In the drift region, the
cross-sectional profile of the unneutralized beam is found
as a function of position relative to the emission aperture.
No a priori assumptions are made regarding the charge
density or potential; however, the chamber enclosing the
beam is taken to be rectangular. Energy, mass, phase-
space volume, and electric fiux (Poisson's equation) are
all conserved to find self-consistent analytic expressions
for the potential and space-charge density.

In the subsequent calculations, the initial ion density is
assumed to be uniform across the electron suppression
aperture. However, the techniques developed here apply
equally well to arbitrary initial charge distributions.
Upon conclusion of the analysis, it is found that irrespec-
tive of the initial aspect ratio, intense beams of all ener-
gies and currents eventually relax into similar, near-
Gaussian profiles.
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FIG. 1. Schematic illustration of the beam under study. Pos-
itively charged ions are extracted from the source, which is
maintained at a high potential (-50—500 kV) with respect to
the grounded beam line. In the drift region, the beam expands
due to the ions' mutual Coulomb repulsion. Expansion is
arrested in the beam line by screening effects of the plasma elec-
trons.
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II. THE DRIFTING, COLLISIONLESS BEAM

Properly designed extraction systems accelerate ions
from the plasma source, launching them through the
aperture in the electron suppression electrode and into
the drift region with a nearly uniform cross-sectional den-
sity profile. Near the entrance to the drift region, the
density has its largest value, typically on the order of
10' —10' m . At these densities, the mean free path for
hard collisions (contact scattering) is 100 m. Within
the ion distribution, the potential of the ensemble varies,
but is typically on the order of 1 —100 V. Comparing spa-
tial variations in the beam potential to the electric field of
a two-particle Coulomb interaction, it is found that two
ions would need to be less than 1 nm apart before the
single-particle force approached that of the collective
field. Therefore, it is reasonable to assume that scattering
effects are negligible and that the trajectory of an indi-
vidual ion is in direct response to a time constant, but
spatially varying collective electric field.

Figure 2 depicts the situation to be studied. Ions
emerge from an aperture of height h and width m located
in the plane z=0. At this point, the density is assumed
uniform; however, as the ions traverse the drift region,
the beam broadens and the density is diminished, causing
the potential to vary along the z as well as the x and y
axes. The collective potential of the ensemble is defined
to be zero at the origin, (0,0,0), and reaches its minimum
relative value at the grounded conducting walls of a rec-
tangular chamber.

Space-charge effects become important when the ion
density is sufficiently large such that the expansion due to
e1ectrostatic forces is comparable to the thermal expan-
sion of the beam. To obtain an estimate of the minimum
ion density required to induce significant space-charge
expansion, consider a uniform cylindrical beam of radius
a and density nbo, comprised of singly charged positive
ions of mass mb. In the plasma source, these ions possess
a temperature, T (eV), that will be assumed to character-
ize the ions throughout the expanding beam. If q is the
elementary unit of charge and U, is the extraction poten-
tial, the ions will display a transverse thermal velocity,
v,„=+2qT/m& and a longitudinal velocity

u&=+2qU, /m&. Given velocities in m/s, the charac-
teristic time for the beam to propagate 1 m is
t =Qm„ /2q U, . During this time, the thermally induced

2 2
q nbOar=
260mb 7

Since it is of interest to obtain an estimate of nbo when
the Coulomb expansion is comparable to the thermal ex-
pansion, it is permissible to employ the approximation
r =-v,ht, which is correct within a prefactor of order unity
for this restricted case. Equation (1) may then be in-
tegrated to yield

2 2
q nboa

~ =vtht+
260mb v th

(lnt —1)+a . (2)

For beam ions ranging in mass from 1 —100 amu
(1.66 X 10 —1.66 X 10 kg), with energies ranging be-
tween 10 and 100 keV, the characteristic propagation
time is on the order of t —10 s. Using this value of t,
and setting r =v,ht, it is found that the minimum density
for significant space-charge effects scales as

1010
&bO a

where the density is per cubic meter, and a is in meters.
Thus a 2-cm-diam cylindrical ion beam will begin to

display significant space-charge expansion when
nbo-10 m . For ions with a beam velocity vb —10

12 —3 6

m/s, this volume density corresponds to a current density
Jb -20 pA/cm .

III. ENERGY CONSERVATION

radial expansion of the beam is on the order of
v,„t=+T/U, . For a 10-eV source and a 100-keV beam,
this corresponds to a characteristic expansion length,
dth —1 cm.

From Gauss's law, the electric field external to the
charge distribution is E(r)=qn&pa /26pr. An ion along
the periphery of the beam experiences an acceleration

(x,,y, ,O)

y(x, ,y, ,O)

In the limit of a collisionless beam, each ion can be as-
sumed to travel a well-defined, deterministic trajectory.
Thus, an unknown but physically determined trajectory
is assumed. Following this single-particle trajectory (Fig.
2), an ion emerges from the aperture at some point
(xp, yp, 0), and arrives sometime later at the point ( y,xz).
The change in the kinetic energy of an ion with mass mb,
and charge q, is related to the potential by

FIG. 2. Ions emerging from an aperture of width w and
height h follow well-defined, energy-conserving trajectories.
The potential is de6ned to be zero at the origin and attains its
minimum at the walls of a rectangular chamber.

,'ml, [(v+4v)' —v']= q[P(x,—y, z) P(xp, y—p, o)] . —(4)

Expanding the velocity products and canceling terms, Eq.
(4) becomes
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—,'[(Qv )2+(bv )2+(bu, ) +2u, ohv„+2u obv~+2u, obu, ]=— [p(x,y, z) —p(xo, yo, 0)] .
mb

Formally, the change in velocity, Av, is the time integral of the acceleration. However, the time of flight is neither
known, nor of interest. Therefore, the time shall be expressed in terms of the axial position, parametrized through the z
component of velocity. Noting that, for a conservative field, the acceleration is proportional to the gradient of the po-
tential, and setting dt =dz/u„ the changes in velocity along each coordinate axis are given by

f & BP dz q y. BP dz q ~. BP dz

mb o Bx v,
'

mb o By v,
' '

mb o Bz v,

Thus the energy conservation relation becomes

1 q ~ BP dz q ~ B

2 mb o Bx u, mb o B

2
dz

Vz

q yz Bt)t dz q f ~ BP dz
~

mb o By u,
'

mb o Bz v,
[P(x,y, z) —P(x,y, 0)] .

mb

q y~ BP dz q y~ BP dz

mb 0 Bz v,
"

mb o Bx v

(6)

Equation (6) is a nonlinear integral relation. It can, however, be brought into tractable form by partially
differentiating with respect to z. Care must be exercised when differentiating the right-hand side. In the development
of Eq. (6), a deterministic trajectory was assumed. When the expression is partially differentiated along the z axis, x and
y are held fixed. The trajectory then determines the initial point (xo,yo, 0). In this way, xo and yo are not constants,
but rather are functions of z. Differentiation thus yields

BP BP . q BP dz BP BP . q BP dz BP BP . q BP dz
""Bx Bx o m Bx U, By By o m„By U. +"'Bz Bz o m Bz

By By Bxo By By.
Bz Bx, Bz By, Bz

Recognizing the left-hand side as the inner product of
the velocity and the gradient of the potential, conserva-
tion of energy can be expressed in the compact form:

Bp Bp Bxo Bp Byo
v VP(x, y, z)=u,

Bz Bx, Bz By, Bz
(8)

IV. CONSERVATION OF PHASE-SPACE DENSITY

Classically, the equation governing the time-dependent
phase-space evolution of a particle system is the
Boltzmann equation [8]

+v V„f+ F.V„f= g (g,+. —
g, ),

mb
(9)

where f=f(x,v, t) is the distribution function, X is the
total number of particles in the ensemble, t is the time, F
is a conservative force acting on particles at x, and (x, v)
are the phase-space coordinates. The quantities g; and

are, respectively, the rates at which collisions send
particles into or out of a given phase-space volume. In
thermal equilibrium, or in a collisionless gas, these last
two quantities are equal and the right-hand side of Eq. (9)
vanishes.

As discussed in Sec. II, the ions' mean free path is large
and the dimension for scattering small; thus, to a very
good approximation, the beam is collisionless. Setting
the right-hand side to zero, and expressing the force F in

terms of the collective electric field of the ions, phase-

space density conservation for the beam is expressed by
the requirement

B

Bt mb
+v V„f— VQ.V„f=0 . (10)

A stationary solution to Eq. (10) is the well-known
Maxwell-Boltzmann distribution function. For a system
of particles with mass m, at temperature T, this distribu-
tion is given by

f(x v) —n(x y z)e (m/2k&)v. v—

where n is the number density of the ensemble and k is
the Boltzmann constant.

However, the situation in the beam is not truly time in-
dependent, nor is the distribution stationary. An ob-
server in the x-y plane traveling with the beam along the
z axis will witness a time-varying particle density. More-
over, in the laboratory frame, conditions of thermal equi-
librium clearly do not prevail and the concept of a tem-
perature, T, becomes somewhat nebulous. To circumvent
these difticulties, two observations are made. First, dur-
ing expansion in the drift region, no external fields act
against the motion of the ions, and the ions do no work.
Therefore, in the absence of collisions with other particle
species (e.g., residual gas molecules) there is no mecha-
nism for cooling and the width of the Gaussian velocity

distribution, QkT/mb, does not change. Further, if the
extraction field is assumed to accelerate each ion uni-
formly in the z direction, there is no heating in the ex-
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traction gap prior to the drift region, and the beam tem-
perature can be taken to be the temperature of the ions in
the source plasma. (The condition of no heating will be
rigorously true along the axis, but may lose some validity
near the ensemble's periphery during extraction. )

Second, if the shape of the velocity-space distribution
function is constant, then the observer moving with the
beam will detect a state of thermal quasiequilibrium
characterized by a time-varying density of particles with
a kinetic energy shifted by the beam velocity,
(mb/2)[u +u~+(u, —ub) ], where v, is the beam veloci-

ty in the laboratory reference frame and ub is the velocity
added during extraction from the source. In view of
these arguments, a shifted Maxwellian velocity distribu-
tion can be assumed,

—(mb/2kT)[v„+u +(v —
ub ) ]

x, v, t =nb x, t e

This is the distribution function in the beam's reference
frame. The velocity distribution is stationary, but the
particle density varies in time. To translate this function
back into the laboratory frame, the time t is again
parametrized in terms of the axial position z. Applying
the chain rule to the time derivative of f, the first term of
Eq. (10) can be written as

r)f df Bz df
Bt Bz Bt ' Bz

Employing Eq. (11), and denoting the shifted velocity by
v'= v —vbe„phase-space density conservation may be ex-
pressed as

Bnb +v' Vnb+ Vp nbv'=0 .' cjz kT

Expanding this equation, it is possible to relate the diver-
gence of the velocity to the gradient of the density,

1V'v = v'Vnb
nb

(13)

VI. DERIVATION OF THE DRIFT EQUATION

Again parametrizing the time t in terms of z, the con-
servation laws of the preceding sections may be combined
into a single homogeneous partial difterential equation.

From Eqs. (12) and (13), the divergence of the velocity
is related to the gradient of the potential by

V v= v' VP.kT
(14)

Recalling that v'=v —ube„ the right-hand side of this
last expression may be written as

kT kT b az
v' VP= v VP —v„

axo az Byo az

(15)

Thus, the energy-conserving relation, Eq. (8), can be com-
bined with (14) to yield

The coefficients of the partial derivative of nb with

respect to z can be combined,

~nb ~nb ~nb
U~ +(Ui Vb ) (2vi Vb )' az Bz Bz

Parametrizing the time in terms of the z coordinate,
the velocity is related to the potential through the in-

tegral relations:

Now, u, is the sum of the extraction and thermal veloci-
ties. In any practical ion beam, the extraction velocity,
ub, is orders of magnitude greater than the thermal veloc-

ity in the plasma source. So, to a very good level of ap-
proximation, it is possible to write 2v, —

ub =u, (because

u, =ub+ 5, ~5/ub ~

&& 1), and conservation of phase-space
density can be represented as

Z

U =Ux x0
0 mb

v
——v-

o m0 mb

v ——u-
z zo

0 mb

BP dz

Bx v

ay dz

By U

()(It dz

Bz u

vVn = v'V(t.b kT

V. CONSERVATION OF MASS

(12)
Thus the divergence of the velocity can also be written in
terms of the potential,

q Bgdz f q Bgdz q BP
0 mb Qx v 0 mb Qy u mb Bz

In a collisionless beam, there is no random-scattering
di6'usion, and no creation or annihilation of particles.
Mass conservation is thus characterized by the vanishing
divergence of the particle current,

V (nbv)=0 .

With this result, Eq. (15) can be fully expressed in terms
of the potential and the z component of velocity. Recall
that the terms in Eq. (15) containing xo and yo are evalu-
ated in the plane z =0. Then, noting that u, varies weak-

ly along the z axis, so that Bu, /BZ=O, substituting Eq.
(17) into Eq. (15) and partially diff'erentiating with respect
to z produces
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FIG. 15. Potential at z =25 cm for a 100-keV beam emitted
from a 1.5X0.5 cm aperture. -20 -5
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10

for an initially thin beam, Fig. 7, is essentially identical to
that of an initially square beam, Fig. 8. Potential surfaces
for these two cases are displayed in Figs. 9 andnd 10.

Calculating cross sections along the x axis (Figs. 11
and 12) suggests that between the points of half max-
irnum, the density profile is very well approximated by a
Gaussian curve, with the Gaussian decaying much faster
near the edges than the curve calculated from Eq. (2 ).
C rison of the three-dimensional Gaussian plot inomparison
Fig. 13 to the predicted surface in Fig. 6 illustrates e
high degree to which the beam may be expected to ap-
proach the Gaussian shape.

P t tials arising from the above cha ghar e distributionso en
'

1 hi hl syrnrnetric. The potential off the 1.5are aso ig y s
14. Des iteX0.5 cm beam at z=0 is shown in Fig. . p'crn . cm

the well-defined rectangular shape of the beabeam in this
lane the otential displays a remarkable degree of cylin-

ished in magnitude, the potential at z=, 'g.=25 crn Fi . 15,
differs insignificantly from the z =0 surfaurface. As indicated
in Fig. 16, the curvature of the potential is well fit by an
exponential function, but is not well approximated by a
parabolic curve.

FIG. 16. For 50- and 500-keV beams, at points between half
maximum, the potential is well approximated by an exponentia
function, but is not well described by a quadratic relation.

IX CONCLUSION

10' mFor beams with axial ion densities, n&o

space-charge effects become important. If the beam is
collisionless, conservation relations for mass, energy, an

hase-'space density can be corn ine with Poisson's
equation to obtain an analytic three-dimensional expres-
sion describing the beam ion density and the potential o
the ensemble. Applying these relations to 50-, 100-, an
500-keV beams, it is concluded that intense beams of all
energies and currents ultimately relax into symmetric,

-G ussian profiles. This is consistent with t e as-
sumptions in previous work [4—7]. Moreover, e ig y
symmetric charge densities give rise to symmetric poten-
tial and electric fields in accordance with experimental
observations [3].
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