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Space-charge effects are explored theoretically as an intense (beam current density 2 1 mA/cm?), posi-
tively charged ion beam emerges from an aperture displaying a well-defined aspect ratio and enters into
an electron-free region of space. In the absence of space-charge neutralization, the beam diverges under
the influence of the mutual Coulomb repulsion of the ions. Under the assumption of a collisionless
beam, the mass, the energy, and the phase-space density are conserved to generate a single, three-
dimensional partial differential equation. This equation is then combined with Poisson’s equation and
solved analytically to provide the beam ion density and potential at any point in space. Applying the re-
sulting expression to beams of varying energies and current densities, it is found that irrespective of the
initial aspect ratio, intense beams of all energies and currents continuously diverge and ultimately relax

into near-Gaussian profiles.

PACS number(s): 41.75.—1

I. INTRODUCTION

The ever increasing use of medium- to high-current
(I, 1 mA) ion beams in the microelectronics industry
has elevated the importance of developing a rigorous un-
derstanding of the fundamental principles of beam forma-
tion, neutralization, and propagation. Recent theoretical
and experimental work has demonstrated that intense ion
beams, such as those used in ion implantation during
semiconductor processing, are capable of entrapping and
transporting particulate contamination over long dis-
tances [1-3]. Should transported particles reach the tar-
get wafer, a loss of yield may result. A thorough under-
standing of the mechanisms by which a space-charge-
neutralized beam maintains a steady-state charge distri-
bution is essential if the beam’s ability to entrap particles
is to be eliminated or reduced. However, before a neu-
tralized beam can be fully analyzed, the initial charge
density of the unneutralized beam must be known. Previ-
ous studies have postulated a priori a beam of Gaussian
cross section [4—7]. However, theoretical justification for
this assumption has remained absent from the literature.

Figure 1 displays a schematic representation of the
beam under consideration. As shown, the beam system is
comprised of four distinct segments: the plasma source,
drift region, beam plasma, and the sheath at the beam-
target interface. The beam itself is comprised of positive,
nonrelativistic ions extracted continuously from the
source, and provides a steady current to the target.

Ions in the source are extracted and accelerated by the
large potential difference between the source and the
beam line. Electrons emerging with the beam are
reflected back into the source plasma by the electron
suppression electrode, which also serves to confine neu-
tralizing electrons to the beam plasma and maintain an
electron-free drift region. Passing through this electrode,
the ions are shaped into a narrow charge configuration of
nearly uniform density and well-defined aspect ratio.
Upon entering the drift region, the beam begins to ex-
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pand as the ions respond to their mutual Coulomb repul-
sion.

In this work, the beam is studied as it emerges from the
source and propagates through the drift region. The
physics of the expanding beam is explored. Charge densi-
ties and potentials are calculated. In the drift region, the
cross-sectional profile of the unneutralized beam is found
as a function of position relative to the emission aperture.
No a priori assumptions are made regarding the charge
density or potential; however, the chamber enclosing the
beam is taken to be rectangular. Energy, mass, phase-
space volume, and electric flux (Poisson’s equation) are
all conserved to find self-consistent analytic expressions
for the potential and space-charge density.

In the subsequent calculations, the initial ion density is
assumed to be uniform across the electron suppression
aperture. However, the techniques developed here apply
equally well to arbitrary initial charge distributions.
Upon conclusion of the analysis, it is found that irrespec-
tive of the initial aspect ratio, intense beams of all ener-
gies and currents eventually relax into similar, near-
Gaussian profiles.
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FIG. 1. Schematic illustration of the beam under study. Pos-
itively charged ions are extracted from the source, which is
maintained at a high potential (~50-500 kV) with respect to
the grounded beam line. In the drift region, the beam expands
due to the ions’ mutual Coulomb repulsion. Expansion is
arrested in the beam line by screening effects of the plasma elec-
trons.
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II. THE DRIFTING, COLLISIONLESS BEAM

Properly designed extraction systems accelerate ions
from the plasma source, launching them through the
aperture in the electron suppression electrode and into
the drift region with a nearly uniform cross-sectional den-
sity profile. Near the entrance to the drift region, the
density has its largest value, typically on the order of
10"*-10"®¥ m 3. At these densities, the mean free path for
hard collisions (contact scattering) is R 100 m. Within
the ion distribution, the potential of the ensemble varies,
but is typically on the order of 1-100 V. Comparing spa-
tial variations in the beam potential to the electric field of
a two-particle Coulomb interaction, it is found that two
ions would need to be less than 1 nm apart before the
single-particle force approached that of the collective
field. Therefore, it is reasonable to assume that scattering
effects are negligible and that the trajectory of an indi-
vidual ion is in direct response to a time constant, but
spatially varying collective electric field.

Figure 2 depicts the situation to be studied. Ions
emerge from an aperture of height # and width w located
in the plane z=0. At this point, the density is assumed
uniform; however, as the ions traverse the drift region,
the beam broadens and the density is diminished, causing
the potential to vary along the z as well as the x and y
axes. The collective potential of the ensemble is defined
to be zero at the origin, (0,0,0), and reaches its minimum
relative value at the grounded conducting walls of a rec-
tangular chamber.

Space-charge effects become important when the ion
density is sufficiently large such that the expansion due to
electrostatic forces is comparable to the thermal expan-
sion of the beam. To obtain an estimate of the minimum
ion density required to induce significant space-charge
expansion, consider a uniform cylindrical beam of radius
a and density n,,, comprised of singly charged positive
ions of mass m,. In the plasma source, these ions possess
a temperature, T (eV), that will be assumed to character-
ize the ions throughout the expanding beam. If ¢ is the
elementary unit of charge and U, is the extraction poten-
tial, the ions will display a transverse thermal velocity,
v =1/29T /m, and a longitudinal  velocity

v, =1v/2qU,/m,. Given velocities in m/s, the charac-
teristic time for the beam to propagate 1 m is
t=1/m, /2qU,. During this time, the thermally induced

(XY52)

(%53Y,50)
B PGE,Y,0)

e(x,y2)

-X

FIG. 2. Ions emerging from an aperture of width w and
height % follow well-defined, energy-conserving trajectories.
The potential is defined to be zero at the origin and attains its
minimum at the walls of a rectangular chamber.

radial expansion of the beam is on the order of

vt =V T/U,. For a 10-eV source and a 100-keV beam,
this corresponds to a characteristic expansion length,
dy,=1cm.

From Gauss’s law, the electric field external to the
charge distribution is E(r)=gn,qa?/2€,r. An ion along
the periphery of the beam experiences an acceleration

2 2
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Since it is of interest to obtain an estimate of n,, when
the Coulomb expansion is comparable to the thermal ex-
pansion, it is permissible to employ the approximation
r =v,t, which is correct within a prefactor of order unity
for this restricted case. Equation (1) may then be in-
tegrated to yield
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For beam ions ranging in mass from 1-100 amu
(1.66 X 10727~1.66 X 10~ ?* kg), with energies ranging be-
tween 10 and 100 keV, the characteristic propagation
time is on the order of t ~107%s. Using this value of ¢,
and setting r =v,;f, it is found that the minimum density
for significant space-charge effects scales as

10
Ny~ 12 5 (3)

where the density is per cubic meter, and a is in meters.

Thus a 2-cm-diam cylindrical ion beam will begin to
display _significant space-charge expansion when
np~10"> m™3. For ions with a beam velocity v, ~10°
m/s, this volume density corresponds to a current density
J,~20 uA/cm?,

III. ENERGY CONSERVATION

In the limit of a collisionless beam, each ion can be as-
sumed to travel a well-defined, deterministic trajectory.
Thus, an unknown but physically determined trajectory
is assumed. Following this single-particle trajectory (Fig.
2), an ion emerges from the aperture at some point
(x0,¥9,0), and arrives sometime later at the point (x,y,z).
The change in the kinetic energy of an ion with mass m,,
and charge g, is related to the potential by

%mb[(v—i—Av)z—vz]: —q[¢(X,y,Z)‘“¢(xo,YO,O)] . (4)

Expanding the velocity products and canceling terms, Eq.
(4) becomes
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1[(Av, +(Av, P+(Av, )2+2vx0Avx+2vyOAvy+21)zosz]=——n%b—[tﬁ(x,y,z)—tﬁ(xo,yo,O)] : (5)

Formally, the change in velocity, Av, is the time integral of the acceleration. However, the time of flight is neither
known, nor of interest. Therefore, the time shall be expressed in terms of the axial position, parametrized through the z

component of velocity. Noting that, for a conservative field, the acceleration is proportional to the gradient of the po-
tential, and setting dt =dz /v,, the changes in velocity along each coordinate axis are given by

__q_ az -4 [z __q_ _0¢ |dz
Avy f ax v, ’ Avy m, fo ’ f 9z | v,
Thus the energy conservation relation becomes
2
11l g r=|_9¢ 9 _q_ _9¢ |dz 9 [*|_9¢ |dz
2 my Yo ox my, f f oz +20x0 my fo ox | v,
z ¢ |dz _0¢ |dz q
+ _Q .._g_ _— = — —_ .
200 S = 1o T2 Sy |7 |, o, B2 =¢x0.50,0] . ()

Equation (6) is a nonlinear integral relation. It can, however, be brought into tractable form by partially
differentiating with respect to z. Care must be exercised when differentiating the right-hand side. In the development
of Eq. (6), a deterministic trajectory was assumed. When the expression is partially differentiated along the z axis, x and
y are held fixed. The trajectory then determines the initial point (xy,y,,0). In this way, x, and y, are not constants,

but rather are functions of z. Differentiation thus yields

_Q_qu_édz 9 3¢ rz_gq
0 my *o

Px0gy ax 3y 3y Jom, |3y

Recognizing the left-hand side as the inner product of
the velocity and the gradient of the potential, conserva-
tion of energy can be expressed in the compact form:

3 _ 28p B0 _ 3p Mo ®

.V P,Z)= ,
ViV | T Ak, Bz By, B2

IV. CONSERVATION OF PHASE-SPACE DENSITY

Classically, the equation governing the time-dependent

phase-space evolution of a particle system is the
Boltzmann equation [8]
af
+v fo+———FV,,f 2(§, =&, )

i=1

where f=f(x,v,t) is the distribution function, N is the
total number of particles in the ensemble, ¢ is the time, F
is a conservative force acting on particles at x, and (x,v)
are the phase-space coordinates. The quantities £ and
& are, respectively, the rates at which collisions send
particles into or out of a given phase-space volume. In
thermal equilibrium, or in a collisionless gas, these last
two quantities are equal and the right-hand side of Eq. (9)
vanishes.

As discussed in Sec. II, the ions’ mean free path is large
and the dimension for scattering small; thus, to a very
good approximation, the beam is collisionless. Setting
the right-hand side to zero, and expressing the force F in
terms of the collective electric field of the ions, phase-

98¢ |dz

9 _ _ﬂf 9¢ |dz
02073, 0 my, |3z |v,
a 9
_, [0 26 3 ap |
dz 0Oxy 0z Qdyy Oz

f

space density conservation for the beam is expressed by
the requirement

O v 9 s e
o TV m,,v"’v"f 0. (10)

A stationary solution to Eq. (10) is the well-known
Maxwell-Boltzmann distribution function. For a system
of particles with mass m, at temperature T, this distribu-
tion is given by

fx,v)=n(x

where n is the number density of the ensemble and k is
the Boltzmann constant.

However, the situation in the beam is not truly time in-
dependent, nor is the distribution stationary. An ob-
server in the x-y plane traveling with the beam along the
z axis will witness a time-varying particle density. More-
over, in the laboratory frame, conditions of thermal equi-
librium clearly do not prevail and the concept of a tem-
perature, T, becomes somewhat nebulous. To circumvent
these difficulties, two observations are made. First, dur-
ing expansion in the drift region, no external fields act
against the motion of the ions, and the ions do no work.
Therefore, in the absence of collisions with other particle
species (e.g., residual gas molecules) there is no mecha-
nism for cooling and the width of the Gaussian velocity

distribution, \/kT/m,,, does not change. Further, if the
extraction field is assumed to accelerate each ion uni-
formly in the z direction, there is no heating in the ex-

,y,z)e —(m /2kT)v-v ,
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traction gap prior to the drift region, and the beam tem-
perature can be taken to be the temperature of the ions in
the source plasma. (The condition of no heating will be
rigorously true along the axis, but may lose some validity
near the ensemble’s periphery during extraction.)
Second, if the shape of the velocity-space distribution
function is constant, then the observer moving with the
beam will detect a state of thermal quasiequilibrium
characterized by a time-varying density of particles with
a kinetic energy shifted by the beam velocity,
(my, /2)[v}+v}+ (v, —v,)*], where v, is the beam veloci-
ty in the laboratory reference frame and v, is the velocity
added during extraction from the source. In view of
these arguments, a shifted Maxwellian velocity distribu-
tion can be assumed,

—(mb/sz)[uj+uy2+(vz—vb 2]

f(x,v,t)=n,(x,t)e (11)

This is the distribution function in the beam’s reference
frame. The velocity distribution is stationary, but the
particle density varies in time. To translate this function
back into the laboratory frame, the time ¢ is again
parametrized in terms of the axial position z. Applying
the chain rule to the time derivative of f, the first term of
Eq. (10) can be written as

of _ of oz = of

o ez e

Employing Eq. (11), and denoting the shifted velocity by
v'=v—u,e,, phase-space density conservation may be ex-
pressed as

an,
Y273z

The coefficients of the partial derivative of n, with
respect to z can be combined,

anb +( )anb (2 )anb

—— +(v,—vy ) ——=2v,— v )——
29z 7 P 2 b 3z
Now, v, is the sum of the extraction and thermal veloci-
ties. In any practical ion beam, the extraction velocity,
v,, is orders of magnitude greater than the thermal veloc-
ity in the plasma source. So, to a very good level of ap-
proximation, it is possible to write 2v, —v, =v, (because
v,~v,+8, |8/v,] << 1), and conservation of phase-space
density can be represented as

+v'-Vn, +f]:V¢-nbv’=O .

v

L S A
nvanl7 prahd vé . (12)

V. CONSERVATION OF MASS

In a collisionless beam, there is no random-scattering
diffusion, and no creation or annihilation of particles.
Mass conservation is thus characterized by the vanishing
divergence of the particle current,

V-(n,v)=0.

Expanding this equation, it is possible to relate the diver-
gence of the velocity to the gradient of the density,

V-v=—Lv-an . (13)
np

VI. DERIVATION OF THE DRIFT EQUATION

Again parametrizing the time ¢ in terms of z, the con-
servation laws of the preceding sections may be combined
into a single homogeneous partial differential equation.

From Egs. (12) and (13), the divergence of the velocity
is related to the gradient of the potential by

—_— q !
V.v=—v'-Vo . 14
kT ¢ 14

Recalling that v'=v—u,e,, the right-hand side of this
last expression may be written as

v-Vo—v i)

4 yyp=-91
\4 V¢ b 3z

kT kT

Thus, the energy-conserving relation, Eq. (8), can be com-
bined with (14) to yield

)‘QQ—U

3¢ %0 3¢ Wo
oz z

dx, 0z  Qdy, 0Oz

vov=-9L

T (v,—v,

(15)

Parametrizing the time in terms of the z coordinate,
the velocity is related to the potential through the in-
tegral relations:

Uy =Uxo— f2_4_2¢__d_2

0 my 0x v,

—y _ [*-9_0¢ dz
Oy T 0yo fo m, dy v, (16

_ g 3 dz
0:=V0" ) T as b
0o my 0z v,
Thus the divergence of the velocity can also be written in
terms of the potential,

:q 3% iz_faq_a_zzé_ﬁ__q_éﬂ _

0 my dx? v, o my, dp? v, my 0z

Vv=—

(17)

With this result, Eq. (15) can be fully expressed in terms
of the potential and the z component of velocity. Recall
that the terms in Eq. (15) containing x, and y, are evalu-
ated in the plane z=0. Then, noting that v, varies weak-
ly along the z axis, so that dv, /3z =0, substituting Eq.
(17) into Eq. (15) and partially differentiating with respect
to z produces
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Equation (18) can be simplified by analyzing the deriva-
tives. It is expected that ions along the periphery of the
beam will experience the largest acceleration and display
the trajectories of greatest curvature. Near the plane
z =0, components of the electric field along the beam’s
periphery are essentially uniform. The ions’ velocities in-
crease at an approximately linear rate, and the time
scales as t ~z /v,. The transverse position varies roughly
as (z/v,)%. A typical beam velocities, the contribution
from terms containing (z /v,)* will be small relative to a
peripheral ion’s transverse coordinate and the ion trajec-
tory will therefore possess very little curvature. Restated,
in the region about which x, and y, are computed, the
ion trajectories of greatest curvature are anticipated to be
nearly linear. Consequently, the initial positions, x,(z)
and y,(z), do not vary strongly with z, and, in particular,
display little curvature; so |d%x,/3dz%|~|9%,/dz2| =0.
Moreover, the aperture and total beam divergence are
small compared to the characteristic length of the beam
(~1 m); so, the initial points can display only a weak
linear dependence on z, and the terms involving products

of  derivatives, v,(3x,/8z)*~v,(dy,/0z)*~v,(dxo/
9z)(9dy,/0z) <<(v,—v,), are also negligible. Thus,
Eq. (18) is reducible to
m 2
2= — 0 — ) 98
Vo kTvz(vZ v,,)az2 . (19)

As stated earlier, the quantity (v, —v,) is simply the z
component of the thermal velocity possessed by the ion
when it was in the source. After extraction, (v, —v,) is
always positive; for a particle accelerated by a conserva-
tive field to an ultimate velocity with a component that is
parallel to, and in the same direction as, the acting force
cannot possess a kinetic energy less than the accelerating
potential. That is, if qU, is the extraction energy, then
the minimum longitudinal velocity of a beam ion is
v,=1/2qU, /m,,. Taking the value of the thermal veloci-
ty to be the most probable velocity of the Maxwell-
Boltzmann distribution, V/ 2kT /m,, and rearranging
terms, Eq. (19) becomes

12
2 2 m 2
VI S R £ R T
x dy kT 9z?

Observing that the quantity in parentheses is never less
than unity, it_is permissible to define a new parameter,
7*=(1+v,V2m, /kT)>0. The equation to be solved
thereby assumes a simple form:

g%%+g—2%+n2g—2‘§—=o. (20)
x y

Equation (20) is the drift equation. It incorporates en-
ergy, mass, and phase-space density conservation to de-
scribe the expansion of a collisionless positive ion beam in
an electron-free region of space.

VII. SOLUTION TO THE DRIFT EQUATION

Equation (20) is solvable by the method of separation
of variables. For a rectangular chamber, two classes of
solution emerge: sinusoids and exponentials. The ap-
propriate choice of functions within each class derives
from the geometric symmetry of the beam. Boundary
conditions for the potential then impose requirements on
the combinations of functions utilized in the construction
of the final solution.

Clearly, the density must have similar functional
dependence in both the x and y directions, and must
display even parity with respect to these coordinates.
The ion concentration must also possess a smooth, well-
defined maximum at any point along the beam’s axis. A
cusp in the particle density would not represent a physi-
cal situation. Exponential functions cannot satisfy these
criteria; so, the solution in the x-y plane is a combination
of sinusoids. Of this class of solution, parity considera-
tions demand the use of cosines, and preclude the appear-
ance of the sine function.

Equation (20) is a three-dimensional elliptic partial
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FIG. 3. Uniform density profile in the plane z=0. Due to
the energy independence of the distribution in this plane, this
profile applies to all beams emerging from an aperture 1.5 cm
high and 0.5 cm wide.
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FIG. 4. Cross section of the potential at z=0 for the 3:1
aperture of Fig. 3. The potential across the y axis follows the
uppermost curve, with the x-axis potential lying just under-

neath.

differential equation; thus, the selection of two sinusoidal
functions in the x and y directions forces the solution in z
A7
57
4

to be exponential. Since no particles are created outside
. . . . s I
the source, the axial density cannot increase, and the ion sy
. [ =777

concentation along the beam’s axis must decay exponen-

tially with increasing z.

In fulfilling these physical requirements, the solution to
Eq. (20) becomes an exponentially decaying two-
dimensional Fourier series:

FIG. 7. Initial aspect ratios do not affect the ultimate beam
shape. At 25 cm, a thin beam with an initial aspect ratio of 10:1
(1.0 cmX0.1 cm) has assumed a shape essentially identical to
beams originating from wider, shorter apertures.

Density (arbitrary ypjsg )

N\

Density (arbitrary units)
Density (arbitrary units)

777 NS

/
/A N\

Y )5 “ A\
7 O S

FIG. 8. An initially square beam presents a shape indistin-
FIG. 5. At 10 cm from a 1.5X0.5 cm? emission aperture, a guishable from that of an initially thin beam. The magnitude of
100-keV beam displays significant broadening, but still retains a the axial density is, however, considerably higher as much less
ion movement is required for a square beam to attain this shape.

recognizable aspect ratio.
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100 keV Square Beam
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FIG. 10. Potential at z=25 cm for a 100-keV beam with an

FIG. 9. Potential at z=25 cm for a 100-keV beam with an in-
itial 10:1 aspect ratio. (1.0 cm X 0.1 cm). initial 1:1 aspect ratio.

. kil —(ynm )z boundary requirement of constant potential.
$(x.3,2)=—¢ot 3 ap,cos(a,x)cos(B,,y)e ) The solution is constrained by the requirement that the
potential satisfy Poisson’s equation, which in Systeme In-

m,n =0
a. = Q2n +1)m ternational units is given by
" 2L, ’ , g
21 =
— 2m + 1) 21 V¢('x’y’z) Eon(x’y’z) .
Pn=""51,
’ 2 2112 From Eq. (20), the Laplacian of the potential can be ex-
_m | |2n+1 4 2m +1 pressed in terms of the second partial derivative with
YVm = 2 L, L, ’ respect to z,
2
Vioey,2)=(1-n") 2% .
4

where ¢, is the value of the sum at the origin, and L, and
L, are the distances along each coordinate axis from the
center of the beam to the conducting wall. The
coefficients a, and fB,, are constructed such that the
series vanishes at the chamber wall, thereby enforcing the

Using the solution for ¢ [Eq. (21)], and combining this
last result with Poisson’s equation yields the following ex-

pression for the density:

6 (o]
n(x,y,z)= 1—% =2 S @, YEimcos(a,x)cos(B,,y e Yrm/mz (22)
n 9 mn=0

Assuming an initially uniform density, the ion density in the plane z=0 is n,, when |x| <w /2 and |y| <h /2, and
zero elsewhere. Evaluation of the coefficients, a,,,, over this region is straightforward, and yields

. h|. w
6 sin B’"E sin |at, =
G =My p am+1 P, [2m+1 ) >
° T an+vem+1 | |22 + [
L, L,

Equations (21) and (22) with coefficients (23) complete- beams ultimately relaxed into a near-Gaussian profile,
ly describe the density and potential of the positive ion  with the higher-energy beams relaxing after traversing
distribution at every point in the drift region. greater longitudinal distances. This latter behavior arises

from the energy dependence of 7 in the exponential term.
With v, =v, =1/2qU, /m,, the defining relation for 7 be-
comes n=(1+21/qU,/kT )/2. Thus, at higher beam
energies, ¥ ,,, /7 becomes smaller and z must be larger to
induce the same density profile. The altering of the basic

VIII. DENSITIES AND POTENTIALS
IN THE DRIFT REGION

Equations (21) and (22) were evaluated for 50-, 100-,
and 500-keV ion beams. It was found that each of these
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FIG. 11. The 50-keV beam, 10 cm from the emission aper-
ture. Curve-fitting a Gaussian along a single coordinate axis
produces very good agreement between the points of half max-

imum.

beam shape to a profile of greater symmetry is anticipat-
ed, as the system is expected to evolve into a
configuration of minimum potential energy.

In the figures, the densities and potentials have been
normalized to unity at the origin of coordinates. Relative
volumes confined by the three-dimensional density sur-
faces are constant, and the number of particles conserved.

Figure 3 displays the uniform density at the entrance
to the drift region. The aperture has a height of 1.5 cm,

x (cm)

FIG. 12. The 100-keV beam, 10 cm from the emission aper-
ture. Even at twice the energy, the Gaussian curve provides a

good fit in the region about the maximum of the distribution.
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FIG. 13. Three-dimensional Gaussian approximation to the

density profile of a 100-keV beam 25 cm from the emission aper-
ture. Compare to Fig. 6.

and a width of 0.5 cm for a 3:1 aspect ratio. In the plane
z=0, the density is energy independent; so Fig. 3 applies
to all beams emerging from extraction systems with this
geometry. The corresponding potential appears in Figs. 4
and 14.

Figures 5 and 6 illustrate the evolution of a 100-keV
beam as it progresses towards the beam line. At 10 cm,
the profile still presents a recognizable aspect ratio, but
the cross-sectional dimensions of the beam have increased
nearly fourfold. At 25 cm, the beam has assumed a high-
ly symmetric profile, and all traces of the original 3:1 as-
pect ratio have disappeared.

The tendency of a beam to relax into a particular shape
is quite strong. In fact, the initial aspect ratio appears to
have little effect on the beam’s ultimate configuration.
After traveling 25 cm, the topology of the density surface

Potentia] (arbitraly units)

FIG. 14. Potential of a 1.5X0.5 cm? beam of arbitrary ener-
gy as it emerges from the aperture. Although the beam is rec-
tangular, the resulting potential is remarkably symmetric.
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Potentia] (arbitrary units)

FIG. 15. Potential at z=25 cm for a 100-keV beam emitted
from a 1.5X0.5 cm? aperture.

for an initially thin beam, Fig. 7, is essentially identical to
that of an initially square beam, Fig. 8. Potential surfaces
for these two cases are displayed in Figs. 9 and 10.

Calculating cross sections along the x axis (Figs. 11
and 12) suggests that between the points of half max-
imum, the density profile is very well approximated by a
Gaussian curve, with the Gaussian decaying much faster
near the edges than the curve calculated from Eq. (22).
Comparison of the three-dimensional Gaussian plot in
Fig. 13 to the predicted surface in Fig. 6 illustrates the
high degree to which the beam may be expected to ap-
proach the Gaussian shape.

Potentials arising from the above charge distributions
are also highly symmetric. The potential of the 1.5
cm X 0.5 cm beam at z=0 is shown in Fig. 14. Despite
the well-defined rectangular shape of the beam in this
plane, the potential displays a remarkable degree of cylin-
drical symmetry. Moreover, although slightly dimin-
ished in magnitude, the potential at z=25 cm, Fig. 15,
differs insignificantly from the z =0 surface. As indicated
in Fig. 16, the curvature of the potential is well fit by an
exponential function, but is not well approximated by a

parabolic curve.
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FIG. 16. For 50- and 500-keV beams, at points between half
maximum, the potential is well approximated by an exponential
function, but is not well described by a quadratic relation.

IX. CONCLUSION

For beams with axial ion densities, n,,2 10> m™3

space-charge effects become important. If the beam is
collisionless, conservation relations for mass, energy, and
phase-space density can be combined with Poisson’s
equation to obtain an analytic three-dimensional expres-
sion describing the beam ion density and the potential of
the ensemble. Applying these relations to 50-, 100-, and
500-keV beams, it is concluded that intense beams of all
energies and currents ultimately relax into symmetric,
near-Gaussian profiles. This is consistent with the as-
sumptions in previous work [4—7]. Moreover, the highly
symmetric charge densities give rise to symmetric poten-
tial and electric fields in accordance with experimental

observations [3].

[1] D. Brown, P. Sferlazzo, and J. O’Hanlon, Nucl. Instrum.
Methods Phys. Res. Sect. B 55, 348 (1991).

[2] D. Brown, P. Sferlazzo, and J. O’Hanlon, J. Am. Vacuum
Soc. A9, 2808 (1991).

[3] D. Brown, P. Sferlazzo, S. Beck, and J. O’Hanlon, J. Appl.
Phys. 71, 2937 (1992).

[4] A.J. T. Holmes, Phys. Rev. A 19, 389 (1979).

[5] C. C. Cutler and M. E. Hines, Proc. IRE, 307 (1955).

[6] P. T. Kirstein, IEEE Trans. Electron Dev. 1, 69 (1963).

[7] P. T. Kirstein, J. Appl. Phys. 34, 3479 (1963).

[8] Earle H. Kennard, Kinetic Theory of Gases (McGraw-Hill,
New York, 1938).



