
PHYSICAL REVIEW E VOLUME 48, NUMBER 1 JULY 1993

Contributions of strong collisions in the theory of spectral lines
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Contributions of strong electron-atom collisions to shift and width of spectral lines are treated via par-
tial summation of the three-particle T matrix. Therefore, besides the width, the shift of spectral lines

may be calculated also, avoiding an often-used cutoff procedure for strong collisions. As an example,
shift and width of the hydrogen Lyman-a line have been calculated.

PACS number(s): 52.25.Rv, 32.70.Jz

I. INTRODUCTION

The aim of this paper is to include strong electron-
atom collisions in a recently developed many-particle ap-
proach to spectral line shapes [1—10]. Within this
theory, as in many approaches to shift and broadening of
spectral lines, a low-order perturbation treatment has
been used for the interaction between the radiator and
the perturbing electrons. However, such a treatment is
a11owed for weak collisions only. Dealing with strong
collisions, a 1ow-order perturbative expansion for the in-
teraction should be avoided. This problem especially is
important for the strong ion-atom interaction, but it has
been shown that a perturbative treatment even for the
electron-atom interaction leads to an overestimation of
strong-collision contributions.

Within a semiclassical treatment of the electron-
radiator collisions, a low-order perturbative expansion
produces even divergent integrals for shift and width.
Although it is possible to overcome these divergencies
within a full quantum theory, contributions of strong
electron-atom collisions will be overestimated further on
[9,10]. Therefore, in earlier papers [9,10] a simple cutoff
procedure as proposed by Griem [11,12] has been applied
for strong collisions. However, such a cutoff procedure is
theoretically not well founded. Furthermore, the more or
less unsteady choice of a cutoff parameter remains unsa-
tisfactory. Whereas for linewidth calculations such a
cutoff procedure has been proved to be successful, for the
line shift a cutoff' procedure is problematic [13]. Further,
it remains an open question whether there are strong-
collision contributions to the line shift at all. In Ref. [14]
these contributions have been estimated to be about 20%
of the weak-collision contributions. However, such an es-
timation could not be established yet.

Of course, within the unified theories [15—18] strong-
collision contributions which do not overlap in time have
been included. Unfortunately, due to the used no-
quenching approximation, no line shifts could be calcu-
lated within this theory.

Another way to deal with strong collisions is to make
use of the well-known relation between shift and width of
the line and the scattering phase shifts given by Baranger
[19]. Thus the problem is transformed into the calcula-
tion of phase shifts for the electron scattering at excited

atomic states. In treating this problem, usually many
atomic states must be included into the following close-
coupling equations [20]. That is why it is hard to carry
out such phase-shift calculations, especially for highly ex-
cited atomic states. Nevertheless, a few phase-shift cal-
culations for determining shift and width, e.g. , for the
first hydrogen lines [21,22], have been carried out using
asymptotic S-matrix elements.

As already shown in previous papers, a Green's-
function approach is well suited to deal with spectral line
shapes. Using the advantages of the diagram technique,
one can find easily a complete set of contributing terms
within a definite frame of approximations.

A first attempt to introduce strong-collision contribu-
tions within a Green s-function approach has been given
by Dharma-wardana [23] via an "all-order" mass opera-
tor. However, within this one-particle Green's-function
approach, instead of line shifts and linewidths only level
shifts and widths have been treated. Here a two-particle
Green's-function approach is applied to get tractable ex-
pressions for shift and width of spectral lines including
strong-collision contributions. In Sec. II, via partial sum-
mation, a mass operator will be derived within a ladder
approximation. It will be used in Sec. III to calculate
shift and width for the hydrogen I.-n line. A comparison
with other theoretical results will be given.

II. THEORY

Based on a Green's-function technique, a systematic
approach to spectral line shapes in dense plasmas has
been developed (for a short introduction see Refs.
[1—10]). As a starting point, the relationship between op-
tical properties and the dielectric function has been
chosen [3,4,6]. A diagram technique has been used to
select the relevant terms within the perturbative expan-
sion. It has been shown [8] that the Green's-function ap-
proach corresponds, in principle, to the kinetic theory
approach, and that the semiclassical impact approxima-
tion [11] comes out as a special approximation [6]. On
the basis of this approach, shifts and widths of various
spectral lines have been calculated and compared with
experimental results [2,10]. Moreover, attempts have
been made to describe the nonlinearity effects with
respect to the density dependence of shift and broadening
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of lines in dense plasmas [2,10]. So, a general quantum-
statistical approach to spectral line shapes is available.
However, in previous papers [1—10] only weak electron-
atom collisions have been considered. The objective of
this paper is to include strong electron-atom collisions
into the developed theory.

For the small plasma parameters considered here, it is
allowable to decouple the ion and electron subsystems by
treating the ion-electron correlation within a microfield
distribution. As has been shown [1—10], the electron
shift and broadening result from self-energy and vertex
contributions. These can be treated in the frame of a per-
turbative expansion. Using a Green's-function approach
it is possible to carry out this perturbation expansion in a
very systematic manner. Relevant parameters for such a
perturbation approach are the perturber density and the
atom-perturber interaction. Due to the fact that our
main concern is directed to weakly nonideal plasmas, it is
reasonable to restrict the theory to modifications in the
line shape which are linear in the density of the perturb-
ing electrons.

Solving the corresponding Bethe-Salpeter equation one
finds a shift of the two-particle energy compared to that
of an isolated atom. It has been shown [5,7] that shifts
arising from phase-space occupation due to statistical
correlations and exchange are negligible. Further, shifts
appear from the dynamic self-energy and a dynamically
screened e6'ective potential. Within a first-order pertur-
bative expansion with respect to the electron-atom in-
teraction, these terms compensate each other up to

GO
(2.1)

where the electron-atom interaction is the dynamically
random-phase approximation (RPA) screened Coulomb
potential

=iV'(k, z) =iV(k)
e(k, z)

(2.2)

In Eq. (2.1) G2 denotes the free two-particle propaga-
tor and

M„' '(q)=ie f 3'„*(p)j+(p) —+ (p+q)]dp (2.3)

=iV(q)+iV(q)II" (q, z) V'(q, z),
(2.4)

the self-energy in Eq. (2.1) may be split into a Hartree-
Fock and a correlation term

(2.5)

As already mentioned above, the Hartree-Fock self-
energy is negligible compared to the correlation term.
Therefore, only the latter will be considered further on.

In order to deal with strong collisions, in this section a
ladder summation for the self-energy will be derived,
avoiding a first-order Born approximation with respect to
the dynamically screened interaction. For that, instead
of the one static interaction line in Eq. (2.5) a three-
particle T matrix T3 will be considered:

the isolated vertex function. (4 is the wave function of
the isolated atom U, and e is the elementary charge. ) Us-
ing the well-known relation for the screened potential (see
Ref. [1])

I I I

I I I

1 ig y 1 1 Te,b

3 (2.6)

Here a special scattering channel of the three-particle T matrix has been introduced. The T matrix T3 describes the
full interaction between a two-particle bound state and a perturber. For this T matrix, a Dyson equation may be writ-
ten

iT3

p
I

Geb
3

P J'
I

Vq
)c'

P
I

k.q —q
AII

s'

Geb (2.7)

Unfortunately, it is not possible to find the exact solu-
tion of Eq. (2.7). Indeed, that would correspond to an ex-
act solution of the three-particle scattering problem.

One can find an approximative solution if only diago-
nal elements of the three-particle Green's function 63

I

are taken into account. That means setting q =q' in Eq.
(2.7). For isolated lines, from q=q' it immediately fol-
lows that a=a' holds. For hydrogen lines, the same is
valid if one applies a spherical wave-function representa-
tion.
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From an iteration of Eq. (2.7) it becomes obvious that
this approximation is correct up to the second order with
respect to the interaction potential V. This means that
weak collisions are treated as before [see Eq. (2.1)]
whereas the infinite sum of the selected diagrams includes
strong-collision contributions. Now T3' can be deter-

mined directly from Eq. (2.7)

M„".'( —q) V(q)
e I+iA(n, p, q, Q~, z, )

with

(2.8)

M' '
( —q")M'-' (q"—q) V(q")V(q" —q)

P 'q A

(2 )3 q M( )( q) V(q) 0&+z —Ep q-
—E- (2.9)

Here some approximations have been applied, which were introduced already, dealing with weak collisions [1—10].
Thus, only contributions arising from charged perturbers will be taken into account, i.e., no neutral particle and no
Doppler effects will be considered.

The mass operator including strong-collision contributions according to Eqs. (2.5), (2.6), and (2.9) is given by

M„' '( —q) V(q)M' „'(q) i [f, (E~ ) —f, (Ez q ) ]
I+iA(n Q E ) (

—'P) ~e (2m) i npq, ~E i— E +co„—E
(2.10)

(For details see the Appendix. } If one neglects dynamic
screening effects due to the electron-electron correlation
(see Ref. [7—10]), the dynamic screened potential approx-
imately may be replaced by the static Coulomb potential

V'(q, —co„)=V(q) . (2.11)

X(Q&)= — g J dqf dp V (q)f, (E~)
e (2m. )

~M„(q)

X[1+iA(n, p, q, Q)„E)]

Considering further the low-density limit, where for
the Fermi distribution function f, «1 holds, the self-
energy is given by

Equation (2.12) has the same structure as the self-
energy within a second-order Born approximation given
in Refs. [1—10]. The only difference is the correction fac-
tor [1+iA (n, p, q, Q&, E~ )] ', which depends on both the
momentum p and the transition momentum q. That is
why the p integration may not be carried out analytically
as it could be done within the Born approximation.
Whereas for weak collisions (small momentum transfers
q) the correction term i A (n, p, q, Q&, E~) is small com-
pared to unity, a remarkable correction of the Born ap-
proximation results for the case of strong collisions.

4.5

3.5

(2.12)
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FIG. 1. q integrand for the width of the central Ly-a com-
ponent (211~100). ———,second-order Born approxima-tion;, this paper, including strong collision contributions.

~ x(A)
FIG. 2. Theoretical profiles of the hydrogen L-a line for

n, =2X 10' cm, T=13200 K. The ions are treated as static
perturbers using Hooper's microfield [25]. , this paper, in-
cluding strong-collision contributions; . -,unified theory, in-
cluding time ordering [24]; MAL, profile resulting within a
second-order Born approximation; ———,Cxriem [11].
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TABLE I. Electronic contribution to the shift of the hydrogen Ly-a line at an electron density of
10' cm and a temperature of 13200 K.

This paper
Griem [14]

An&0 transitions

4.68
4.75

Shifts (mA)
hn =0 transitions

1.65
2.20

Total shift
(mA)

6.33
6.95

III. RESULTS

5x10

4x10

3x1O '

1-(Ry)
2x1O '

After deriving a mass operator including strong-
collision contributions in Sec. II, the shift and width of
spectral lines have to be calculated now. As an example,
the hydrogen Lyman-n line is chosen here because this
line is much easier to calculate than all other hydrogen
lines. Of course, the developed theory is not restricted to
that line and may be applied also to nonhydrogen lines.
The shift and width of the hydrogen Ly-0. line have to be
calculated according to Eq. (2.12). It has been shown
that strong collisions produce a correction term to the
well-known self-energy in a second-order Born approxi-
mation. Therefore, in order to investigate strong-
collision contributions, the q integrand for the shift and
width according to Eq. (2.12) will be compared with that
resulting in a second-order Born approximation. In Fig.
1, the q integrand for the width of the central L-a com-
ponent (211~100)is to be seen. It becomes evident that
the Born approximation works well for small values of q,
which means for weak electron-atom collisions.

In Fig. 2, the resulting L-a profile is compared with
that given within the Born approximation and with other
theoretical profiles in which the ions are treated as static
perturbers. The calculated line profile agrees excellently
with the profile resulting within the unified theory includ-
ing time ordering [24]. Keeping in mind that this profile
should be considered as the more or less correct result for
static ions, it has been shown that the theory presented is
well suited to deal with strong-collision contributions to
line broadening.

Now the shift of the L-e line should be investigated.
In Fig. 3, the q integrand for the shift of the central L-n
component (hn =1 transitions) is compared with that re-
sulting within a second-order Born approximation. It be-
comes evident that a cutoff procedure for the shift is
much more problematic than for the width. Little
changes in the cutoff parameter lead to large changes in
the resulting shifts. In Table I, the calculated shift for an
electron density and at a temperature of 13 200 K is com-
pared with that given by Griem. The calculated shift due
to b, n WO interactions is nearly the same as Griem's re-
sult. However, the shift due to hn =0 interactions is
smaller than the corresponding shift given by Griem [14].

IV. CONCLUSION

Strong electron-atom collisions have been included into
an earlier-developed many-particle theory to spectral line
shapes. Omitting a low-order perturbative treatment for
the perturber-atom interaction, a mass operator has been
derived via partial summation of the three-particle T ma-
trix.

%"hereas strong-collision contributions to the width of
spectral lines have already been included within the
unified theory, in this paper strong-collision contributions
to the line shift have also been investigated. Thus the
often used cutoff procedure for strong-collision contribu-
tions introduced by Griem [11,12] could be replaced by
an approach treating strong-collision contributions in a
consequent manner. In order to test the developed
theory, as an example, the shape of the hydrogen
Lyman-a line has been calculated. The resulting line
profile agrees excellently with the unified theory results
[24]. The calculated shift of the L aline is somewhat, -

smaller than it has been given by Griem [14].

Ox1O'
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APPENDIX

FIG. 3. q integrand for the shift of the central I.-a com-
ponent (211~100). ———,second-order Born approxima-tion;, this paper, including strong-collision contributions.

According to Eqs. (2.5) and (2.6), the mass operator
which includes strong collisions is given by
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X(Q&)= — g g fdqf dpG, (p, z„)G,(p —q, z +co )
1 1 I

e (
—i P) „(2m)

1 & v 1 & v p

M„' '( —q) V(q)M' „'(q)V'(q, —co„)
XG2(a, Qi —co ) 1+iA (n, p, q, Q&, z )

(A 1)

In order to evaluate this mass operator, first one has to carry out the v summation. The correction term A in Eq. (Al)
given in Eq. (2.9) takes the form

A (n, p, q, Q&,z, ) ——g fdq" f dQ
e „(2~)3 q Qi+z E — E-— (A2)

with

M„'( —q")M~ „~ (q"—q) V(q~~)V'(qt —q)F(n, a",q, q")=
M„".'( —q) V(q)

With Eq. (A2) it is possible to find a power-series expansion for the term

(A3)

1+iA (n, p, q, Q&,z„) .
& k i e „(2&)3Qi+z, E„—E„—=1+r(-I) n -'Xf '",

g=1
(A4)

Now, the v summation

1 1„gG, (p,z„)G, (p —q, z, +co„)
1 1 1 1

iP —z„Ez,+—co„E 1+—i A (n, p, q, Q&, z

(A5)

may be carried out. One arrives at

1 1 1 1

i13 „z—Ez z„+co„—Ez q
1+iA (n—, p, q, Q&, z )

f (E ) f (E ) ~—
, J

&
dqk' F(nak'qqk') f (E )' '+ i(—1)'n —r k» k e p

Ep+coq Ep q
' i k i e (2~) Qi+E E E i E +co EJ= p —

qk ak P P P q

i dqk— X(-I) rr -'rf
(2~)

ak

F(n, a'„',q, q'„') f, (Ep q)
Qg+Ep —co„—E „—E „E+co —E

p —
qk ak P P P q

II II II

+ i(-I) i -'rf '",
(2m) E „+E„E„E„——

ak ql I P-qk k

f, (E „+E„—Qi)

E „+E„—Qg —E E „+E„+co„—Qg —E (A6)

where f, is the electron Fermi distribution function. Carrying out the p summation now, one finds that the last two
sumrnands in Eq. (A6) result partly in terms which are proportional to the density of bound states. These terms are
negligible here because only contributions due to charged perturbers are to be taken into account in this paper.
Neglecting in Eq. (A6) all terms for which the p summation results in contributions proportional to the bound state
density, one arrives at
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—ip z, E—z, +co„E— 1+iA (n, p, q, Q~, zv)

f (E )
—f (E ),1; dq'„' F(n, cz'„',q, qk)

(A7)

Using Eq. (A3) now, one finds that the v summation in Eq. (2.12) results in

1 1 f, (E~)—f(Ep q) 1
—tp

' ' ' " 1+iA (n, p, q, Q&, z ) Ez+co„Ez q
—1+iA (n, p, q, Q&, E~)

g G, (p, z )G, (p —q, z, +co„) (AS)
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