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Catalysis at single-crystal Pt(110) surfaces: Global coupling and standing waves
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Recently various types of spatiotemporal concentration patterns have been observed in experimental
studies of catalysis on single-crystal surfaces. One of the most interesting phenomena among these is the
standing-wave pattern which has been seen in CO+02~CO2 on Pt(110). A kinetic model involving sur-
face reconstruction has been proposed for this system by Eiswirth, Krischer, and Ertl [Appl. Phys. A 51,
79 (1990)]. Here, we add spatial-coupling terms due both to CO diffusion and to global gas-phase fluc-
tuations and we study the possible wave patterns in this set of reaction-diffusion equations. W'e argue
that the standing waves may be due to a self-induced parametric driving mechanism. Our analytical re-
sults as well as our numerical simulations are qualitatively consistent with the experimental findings.

PACS number(s): 05.70.Ln, 82.20.Mj, 82.65.—i, 47.20.Ky

I. INTRODUCTION

The study of chemical spatiotemporal patterns has at-
tracted considerable interest during the past several
years. Typically, these far-from-equilibrium processes
are described by nonlinear reaction-diffusion differential
equations. Some striking examples include the Belusov-
Zhabotinskii (BZ) reaction [1],CO oxidation over single-
crystal [2] and polycrystalline [3] catalysts, and Dic-
tyoselium aggregation [4]. Much experimental and
theoretical effort has been devoted to the study of travel-
ing waves and rotating spirals in the BZ reaction [5,6].
There has also been some work devoted towards under-
standing trigger waves in catalytic oxidation [7—9]. In
both of these cases, the mathematical analysis has been
based on the assumptions that there exist one slowly
reacting species and one or more rapidly reacting species;
calculations are carried out by using singular perturba-
tion theory in the comoving frame of reference.

Recently, Ertl and co-workers have observed a large
variety of new spatiotemporal patterns associated with
the oscillatory oxidation of CO on a Pt(110) surface; this
work was accomplished by employing the technique of
the photoemission electron microscopy (PEEM) [10—13]
to obtain the necessary spatial resolution. In addition to
the expected traveling waves and rotating spirals, stand-

ing waves and even solitons are obtained under certain
experimental conditions. For the latter two spatial pat-
terns one cannot transform the partial differential equa-
tions into ordinary differential equations by introducing a
comoving frame. We must instead resort to an alterna-
tive methodology.

The purpose of this paper is to make a step towards
understanding standing-wave patterns in the aforemen-
tioned problem. We shall start by reviewing the results
of the Ertl et al. experiments. Next, we introduce CO
diffusion as well as global-coupling terms to the three-
variable reaction kinetics scheme of Eiswirth, Krischer,
and Ertl [14,15] (EKE) so as to model spatiotemporal

patterns. The global coupling is motivated by some
specific experimental observations concerning CO
partial-pressure oscillations. Next, we use standard
bifurcation-theory methods to derive coupled small-
amplitude equations valid near the Hopf bifurcation of
the reaction-diffusion system. The solutions of these cou-
pled complex Ginzburg-Landau equations can be in the
form of standing-wave patterns. Finally, in order to
check the analytical results, we will describe some limited
simulation studies of our model. Some of our results
have appeared in preliminary form elsewhere [16].

One interesting result which emerges from our analysis
relates to the possible existence of a codimension-two
point at which q =0 and q%0 simultaneously undergo
Hopf bifurcations with similar frequencies. Mathemati-
cally this is possible only in the presence of certain types
of global coupling. The coupled set of amplitude equa-
tions near this point predicts the presence of standing
waves modulated by an overall (global) oscillation. En

fact, one does observe these modulated waves even
without global coupling due to the presence of strong-
mode interactions. This will be demonstrated by direct
simulation of our model.

II. EXPERIMENTAL RESULTS AND THEORETICAL
MODEL

As mentioned above, several experimental studies of
CO oxidation on Pt(110) have been performed by Ertl's
group using the PEEM technique [10]. They observed
that at high-enough temperature, rapid regular oscilla-
tions are associated with standing waves. These waves
reAect rapidly varying (in time) surface concentrations of
the reacting species with additional spatial modulations.
These spatial structures are actually quite complex due to
the presence of dislocations which destroy the one-
dimensional nature of the wave; as the system evolves in
time, these dislocations may increase in density, and may
even exhibit varying orientations so that they eventually

1063-651X/93/48(1)/50(15)/$06. 00 50 Qc1993 The American Physical Society



48 CATALYSIS AT SINGLE-CRYSTAL Pt(110) SURFACES: 51

intersect each other. One result of this is the formation
of rhombic-shaped spatiotemporal patterns. In this pa-
per, however, we will restrict ourselves to the strictly
one-dimensional case as a first step towards understand-
ing these phenomena.

According to earlier experimental results [17], the
mechanism underlying the occurrence of kinetic oscilla-
tions is as follows. First, the clean Pt(110) surface exhib-
its a 1 X 2 missing-row reconstruction from a 1 X 1-
structure [13]. This leads to the existence of two
branches of the reaction rate as a function of the CO and
0 coverages. The high-reaction-rate branch is associated
with the oxygen-covered 1X2 surface, while the low one
belongs to a CO-covered 1X 1 surface. Successive transi-
tions between the two branches lead to the kinetic oscilla-
tions. The temperature at which oscillations are detected
in the 10 and 10 Torr pressure regime ranges from
440 to 600 K.

It is worth noting that the width in parameter space
over which oscillations exist is rather narrow. This is in
contrast to the same reaction over Pt(100) where Pco can
be varied over a wide region for a given temperature and
given Po without leaving the oscillatory region. The

2

narrowness of this region leads to an observed high sensi-
tivity of the reactions on Pt(110) towards partial-pressure
variations. This in turn leads [18] to the importance of
feedback effects through the gas phase as the pressure is
modulated by the reaction. Because of rapid mixing of
the gas, this gas-phase coupling is global in nature. This
might be expected to be important for possible rnacro-
scopic spatial patterns and could lead, for example, to
synchronized behavior of the whole surface. One indica-
tion that this may be occurring is the lack of
propagating-wave phenomena at high-enough tempera-
tures.

In addition, material can diffuse on the surface. Ac-
cording to Ref. [2], the diffusion constant of CO on
Pt(110) D —10 mm s ', while the oxygen surface
diffusion is very small and can therefore be ignored.

In summary, two dominant factors should account for
the standing-wave patterns on Pt(110) at high tempera-
tures. The phase transition between the reconstructed
(1X2) phase and the bulk (1X 1) phase gives rise to the
kinetic oscillations and the spatial coupling due to both
CO diffusion and especially the aforementioned gas-phase
coupling are responsible for the patterns. We need to
mention that the inffuence of the facet formation has
been ignored here since no noticeable facets can be ob-
served at high temperatures.

Based on this set of experiments, Eiswirth, Krischer,
and Ertl have suggested a mathematical reaction model
incorporating the proposed surface-reconstruction model
[14,15],

c =f, (c,o, a),
o =f2(c,o, a),
a =f3(c,o, a),

where

cfi=k, s, 1—
S

cf =ks 1 ———
2 0 0

S

3

os

'2

k4c k3co

k3co

—k5a if c ~c,
3

f3= k, gr, c' a —if c, &c &c2
i=0

k~(1 —a) if c ~cz.

o =F2(c,o, a),
a =F3(c,o, a)

where

F, =k,Pco(1+a'c —ao)s, 1—
S

3

k4c k3co

(2)

Fz =k2Po (1+P'o Pc )s, 1 ————
S os

k3co

F3=f»
1 -=1c —=— cdx, o=— odx .
L ' I

We have here used the assumption that the partial pres-
sures in the gas phase are proportional to the average
coverages on the surface. This idea is based on the exper-
imentally measured oscillations in the partial pressure to-

Here c and o are the coverages of CO and 0 on the Pt
surface; c, and o, are the respective saturation coverages;
s, and s, are the sticking coefficients; k, and k, are the
rates at which molecules hit the surface; k3 and k4 are,
respectively, the rate constants of the Langrnuir-
Hinshelwood reaction which actually forms the CO2
(which is immediately released) and CO desorption. In
the srna11 temperature range of interest, the rate con-
stants k, and k, are, as expected, found to be indepen-
dent of temperature and thus kc =k i Pco k0 =k2PO

2

k 3 and k4 vary with temperature as k; ( T)
=k; exp( E; /RT). Fi—nally, a is the fraction of the sur-
face with 1 X 1 structure. c, (cz) are the critical CO cov-
erages at which the elimination (completion) of the recon-
struction occurs; for concentrations between these limits,
a four-term polynomial in c was chosen to give a mono-
tonic and differentiable function varying from 0 to 1. We
will take s, =1, but s, =as, +(1—a)s, since the

oxygen-sticking probability is different on the two
different surface phases. All parameters in the above
equations are listed in Table I, taken from Ref. [15].

As mentioned above, we wi11 modify the above equa-
tions by taking into consideration the global gas-phase
coupling as well as the diffusion term. This results in the
following equations:

8 Cc =F, (c,o,a)+D
X
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TABLE I. Parameters for the EKE reaction; here k; =k; e ' for i =3,4, 5.

Quantity

k,
sc

cs

s
1

s
2

Os

Description

Flux
Sticking coefficient
Saturation coverage

Flux
Sticking coefficient on 1X1
Sticking coefficient on rec

Saturation coverage

CO

02

4.18X10' s 'Torr
1

1

7.81X10' s ' Torr
0.6
0.4
0.8

Value

k3
k4
k~
r,

C;

Reaction
CO desorption
Phase transition
Coefficients for
phase transition
Critical coverages
for phase transition

Rates
k3=3X10 s

=2X 10' s
k'=10' s '

r3 = —1/0. 0135
r, =0.3r3
el=0.2

E3 =10 kcal/mol
E4=38 kcal/mol
E4=7 kcal/mol
r2 = —1 ~ 05r3
r0 = —0.026r3
c2 =0.5

gether with the fact that rapid mixing causes instantane-
ous equilibration in the gas phase. That is, the gas pres-
sure at any fixed point reacts to the change in total con-
centration, since horizontal gradients in the gas disappear
on a much faster time scale. Also, the global-coupling
coefficients a, a' are positive and /3, /3' are negative as a
consequence of asymmetric inhibition of adsorption [18].
More specifically, variations of the partial pressures are
in phase with CO coverage and out of phase with 0 cov-
erage because a CO-covered surface blocks the adsorp-
tion of both CO and 02 but not vice versa. An 0-covered
surface blocks the adsorption of 02 but not CO.

In this paper, we will analyze the above system as to
the possible nonlinear states that can exist near the oc-
currence of Hopf bifurcations of the steady-state solution.
Our most interesting results will come about by assuming
that the global-coupling coe%cients have been chosen so
as to allow for the existence of a degenerate codimension
two bifurcation. Near this point, two traveling-wave am-
plitudes (at +q) will couple to a global oscillation. It is
important to realize that the results which emerge from
the amplitude-equation analysis close to the
codimension-two point may actually describe the non-
linear behavior of the system even if the coef5cients a, n',
/3, P' of the actual system do not admit an actual
codimension-two point. In effect, we will argue that the
physical mechanisms underlying the observed standing-
wave behavior is most easily described mathematically by
expanding about a (possibly) unphysical point in parame-
ter space. Numerical evidence for this will be given later.

III. BIFURCATION ANALYSIS

As originally shown in Ref. [14], the reaction kinetic
scheme given by Eqs. (2) exhibits a Hopf bifurcation.
Our first goal will be to extend the calculation of this in-
stability to modes with finite spatial wave vector q. Then,
we will use well-established methods to derive coupled
amplitude equations governing the competition between

traveling waves and standing waves. We will discover
that standing waves are indeed preferred (at sufficiently
large q), in agreement with their experimental oc-
currence. We will perform these calculations first
without the global couplings and then with the fu11 mod-
el; this will serve to explicitly elucidate the role of the
global couplings.

A. Hopf bifurcation

To find the location of the Hopf bifurcation, we must
solve for the steady-state solutions first and then calculate
their stability. Without the global couplings, the steady-
state solutions (co,oo, ao) are given by c =o =a
=t) c jBx =0, viz. ,

f (co oo ao)=0, i = 1,2, 3 (3)

where L,~ =t)f, (YO)IBY'o, D; =1 if i =j =1 or 0 other-
wise.

The Hopf bifurcation occurs at those points on the
Pco Po phase plane w-hen (L—

q D) has a pair of pure
2

imaginary conjugate eigenvalues with all other eigenval-
ues having a nonzero real part. For q =0 case, the
Hopf-bifurcation contour has already been calculated in
Ref. [15],namely, the contour of region 7 in Fig. 1 of that
paper. %'hen q is increased, the Hopf-bifurcation con-
tour will shrink and wi11 finally disappear for a maximum
value of q. This nested structure is illustrated in Fig. 1.

Define vectors Y—:(c,o, a) and Yo:—(co,oo, ao). Then
define the concentration deviation u= Y—Yo. If the spa-
tial dependence of the perturbation has a sinusoidal form
cos(qx), the linear approximation to the system near an
equilibrium state is therefore

dU =Lu —
q Du,

dt
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55.0

50.0

(5), we write symbolically

M=Mo+@ AM)+

N=No+e yN, + (9)

O

45.0
C)

To obtain the lowest-order consistency condition in (5),
we introduce a scaled time w via ~=a t and regard u as
depending both on t and r. The time difFerentiation in (5)
is transformed to

40.0

35.0
20.0

I

21.0
I

22.0
1

23.0
Pco {10 Torr}

I

24.0

q=0---- q-50

I

25.0 26.0

Let us first consider the q =0 case, viz. , the leading
term in u is spatially uniform. Then substituting into (5)
gives

FIG. 1. Contours of the Hopf bifurcation without any global
couplings. Temperature is always chosen to be 540 K in this pa-
per.

B. Amplitude equations without global coupling

za — —2

t g~ o+& —L —& XL — . . (eu +e2u + )1 2

=e Mou&ui+e (2Mou)u2+Nou)u)u))+0(E ) .

Next we will consider expanding the concentration
fields near the Hopf-bifurcation point. Again, we will
first not take into account the global coupling. By ex-
panding the dynamic equation (2) in a Taylor series in u,
we obtain [19,20]

U =DO u+LU+Muu+Nuuu+ .

We note in passing that if we were to also consider spa-
tially varying amplitudes, it would be appropriate to
characterize the slow space dependence of U by a scaled
coordinate X, defined by X =ex.

Equating the coefticients of different powers of e in
(11),we have a set of equations in the form

Here the abbreviations Muu and Nuuu, etc. indicate vec-
tors whose ith components are given by

1 a'j", (Y,)

Oj +Ok

Bf(Y)

—Lo u =8, v=1,2, 3, . . . .
Bt

The first few B 's are

Bi=0,
82 =Mou)U&

(12)

and higher-order terms in u may be expressed similarly.
We shall later use quantities Muv and Nuvw for different
vectors U, v, and w, and their definitions may be under-
stood as an obvious extension of the above. For simplici-
ty, we will fix Po and only consider changes in Pc& to

2

move us away from the bifurcation point.
Assume therefore that (Pcoo, Po o) is on the Hopf-

2

bifurcation line. Then near criticality, the matrix L may
be expanded in powers of 4 co

L=LO+EPcoL&+(bPco) L2+

It is convenient to define a small positive parameter e by
F. X=6,Pco, where X=sgn(b, Pco);e is considered to be a
measure of the amplitude to lowest order, so that one
may assume the expansion

u=6'u +E' U +2
1 2

B =—
3

—XL, u, +2Mou, u2+Nou, u, u, .
Or'

In general, the 8 's are functions of the lower-order
quantities u .'s ( v' (v).

When v=1, (12) is a homogeneous equation, which
simply corresponds to the Hopf bifurcation mentioned
above. The solution is in the form

u, =ed (&,X)e' '+c.c. ,

B ~ B(1} il a)t
v ~ v

Then the solvability condition will be

where iso and e are the eigenvalue and the corresponding
eigenvector of the linear problem Loe=ioje A(r, X) is.
some complex amplitude yet to be specified.

In order to solve linear inhomogeneous equations (12)
with v & 2, we decompose B into various harmonics,

The expression in (6) now becomes
e (&)— (15)

L=Lo+e yL)+e L~+ .

Similarly, for the higher-order expansion coe%cients in
where eL is the left eigenvector of Lo corresponding to ei-
genvalue i co, that is, eL Lo=icueL. To remove the indeter-
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A 2e2imt+V A e2e 2iut+— V
I
A I2 (16)

By substituting this into (12) for v=2, we can obtain
quantities V+ p as follows:

V+ =V = —(Lo—2ico) 'Moee,

Vp= —2Lp 'Mpee

Substitution into (13) yields

8',"=— —yL, Ae3 a~

(17)

minacy, we can add a supplementary condition that u2 be
orthogonal to Uq, etc.

It is easy to prove that this solvability condition (15) is
trivially satisfied for v=2. So, the equation obeyed by A
is given by the solvability condition to third order. 83"
contains not only U& but also u2 which we must first
determine. Upon inspection, U2 has the form

—DB„—Lp u =8, v=1,2, 3, . . . .a
Bl"

(19)

The first few 8 's are
8)=0,

d =eLDe. Now, if Reg &0, this equation predicts a su-
percritical bifurcation with new solutions existing when-
ever gRek&0; for negative Reg, the bifurcation is sub-
critical and gReA, must be negative.

This amplitude equation represents the spatially uni-
form mode and thus is not connected to any standing-
wave structure. Since in the absence of global coupling
the q =0 mode is the most unstable (see Fig. 1), one
might expect that the uniform state will be the selected
structure. Nevertheless, let us continue and study the
analogous amplitude equation for spatially nontrivial
modes. To do this, we introduce an explicit spatial
dependence in U&. Repeating the calculations, we have

+(2MoeVo+2Moe'V++3Noeee*)IAI A .
82 —MPUiU I (20)

Finally, the solvability condition (15) for v=3 takes
the form of the Landau equation

8 =—
3

a
gL) U) +2MpU)U2+ NpU)U)Q)

where

=xxA —gAI Al',
B7

X=e
X=eLL,e,
g = 2e~ (M—,eVo. +Moe*V+) 3e, N—oeee*. ,

For v= 1, the homogeneous equation has the solution

with e the eigenvector of (Lo—Dq ) corresponding to
the eigenvalue iraq. One can easily check that when

I Az I

=
I AI I, this will give a standing-wave pattern. If

Aii&0, AL =0 or Az =0, AI WO, traveling waves will
arise.

Now 8 is decomposed as

and Vo, V+ are given by (17). Li can be calculated from
its definition Li=dLoldPco. So the elements in L, are
given by

8;(Yo) t) Fok BL;i

t, =i dI'o, dI'oi ~Pco ~Pco
'

Note that had we kept the spatial dependence, there
would have been a diffusion term Bx A with coeKcient

1=—oo m = —oo

B(l,m)( X) q imqx

and solvability may be expressed as

e B"—"(q. X)=0 .qL v (21)

Again, we find that only the third-order solvability
condition gives nontrivial results. Since u2 is involved in
B3, we have to solve uz from Eq. (19) for v=2 first, with a
form

2i(co t —qx) 2i(m t+qx) e2
—2i (co t —qx) 2 2i (co t+qx) 2i co

2 +R R +L AL +V R AR e +V LAL e +V+ AR ALe

+V t Aii AI'e
' "+V „Az AL*e ' + V+„Az AI e 'q'+VoR

I Aii I +VoL, I Al. l (22)

By substituting Eq. (22) into (20) and the solvability
condition for v=3, we obtain

BAR 2 2N =xx Aii —gi Aii I Aii I

—
gq Aii I AL I

q =eqL.eq,

q qL 1 q

gi = 2eqL '(Moeqvoz+Moeqv+z )

BAL 2 2
Nq =xi. AL

—g, AL I AL I

—
g2 AL I A~ I~ a

where

(23)

g&= —2e«(M, e,V„+M,e,V+. +Moe,'V+, )

6eqL'Npe e e*
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Here V+&, Vp~, V+, and V+, can be calculated from
Eq. (19) as mentioned above and their values are given
below,

V~g: (Lo 4Dq 2ico) 'Moeqeq,

Vpg = 2Lp Mpeqeq,

V+„=—2(LO —4Dq ) 'Moe e*,
V+, = —2(Lo —2ico) 'Moeqeq .

Again, were we to include spatial modulation we would
get the group-velocity term —d BzAz or +d B+AL in
the two parts of Eq. (23), with

dq =2iqeq&oeq .

Now, the relevant system consists of two-coupled am-
plitude equations. Each amplitude equation is similar to
Eq. (18) but with an additional cross-coupling term
g2A+~Az ~

(or g2Az ~A~~ ). It is easy to check that
when q =0, we have g, =g, Xq X kq A, , which implies
consistency between Eq. (18) and Eq. (23). For simplici-
ty, we will suppress the index q in X, A, , and d from later
on.

We have calculated each of the coupling coefBcients in
Eq. (23) for difFerent wave vectors q for some specific pa-
rameter choices (T=540 K, Po =4.7X10 Torr)

which will be maintained throughout this work. The re-
sults are shown in Figs. 2 and 3. We will return to a dis-

cussion of the solutions of this system in Sec. IV, after we
discuss the modifications necessary in the presence of glo-
bal coupling.

C. Amplitude equations with global eouplings

The global-coupling terms which were ignored in the
above calculations are expected to play an important role
in forming standing waves. So the next step is to modify
Eq. (23) by including the global-coupling erat'ect. The ac-
tual values of the global couplings are not precisely
known; we will for simplicity keep only a and P nonzero.
This may not be the most physical assumption (since a' is
probably significant), but will lead to the codimension-
two situation discussed above. Let a bar denote a spatial
average, i.e., u=(1/L) judx. Then obviously YO=YO.
Now the evolution functions F; (i =1,2, 3) depend not
only on fields Y=(c,o, a) but also on their averages
Y=(c,o, a). So the dynamical Eq. (2) can be rewritten as

=DO', Y+F(Y,Y) .
i3t

(24)

Note that Ii is a linear function of the Y. Again expand-
ing about the Hopf-bifurcation point yields

Bu =DO u+Lu+L'u+M'"uu+2M' 'uu
Bt

+N" 'uuu+ 3N' 'uuu+
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FIG. 2. Re(g&/N) vs q with or without global couplings.
There are two branch curves in each case, corresponding to
different P«. (a) For larger P«and (b) for smaller Pco.

FIG. 3. Re(g2/2V) vs q with or without global couplings. (a)
For larger PCQ and (b) for smaller PCQ.
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where the new terms (as compared to the previous expan-
sion) are

BF,(Yo)0

3Y0

B~F,(Yo)

, „2' ar„aro„'
8 F;(Yo)

(N' 'uuu); = g—
, „3.aY„aYpkBYOI

Clearly, L; 's are the same in Sec. III B, and
M'"uu=Muu, N'"uuu=Nuuu. Proceeding as before,
we obtain

to see waves instead of uniform oscillations.
We wi11 proceed by considering three cases. First, if

we are not near the codimension-two point, we can con-
sider independently the amplitude equations for the zero
and nonzero wave-vector modes. If we are close to such
a point, we must include both amplitudes leading to a set
of three-coupled amplitude equations. Finally, we con-
sider separately the possibility of a resonance between the
global oscillation and the finite wave-vector modes.

1. Simple waves, u&=0

We use the homogeneous solution

where

B)=0,
B2=Mp U&u& +2Mp U)u)(&) (2)

83=— a
pL] 2DB~ B~ u] +L&ui

7

+2(Mo 'u, u2+ Mo 'u, u2+ Mo 'u2u, )

a —D3„—Lp u —Lpu =B, v= 1,2, 3, . . . (27)
(29)

In this case, the solvability condition is the same as Eq.
(21). By comparing Eq. (28) with Eq. (20), we observe
that the B2's are the same, while B3 is now altered by the
addition of the term 2(Mp uiu2+Mo 'u2u, ). Therefore,
uz has the same form as Eq. (22) and uz is given by

2l N t + + 2I 6) t 2uz=V+, AR AL e ' +V, AR AI'e ' +VpR ~ AR ~

+VpL ~ Al ~

The coefficients in this expression for u2 are modified to
be

+Np Uiu]u j +3Np U(U&U)
(&) (2) (28)

55

50

Let us first focus on the Hopf bifurcation itself, arising
from the locus of points at which the homogeneous solu-
tions of the v= 1 piece of Eq. (27) neither grows nor de-
cays. Because of the global-coupling term L 0, the
behavior of the q =0 mode is qualitatively different than
that at finite q. This is immediately evident in Fig. 4; we
have plotted the Hopf-bifurcation lines in the Pc~-P~

2

plane. We see that there are (two) codimension-two
points at which the q mode and the zero mode go unsta-
ble together. Furthermore, there are regions in the pa-
rameter space for which the only instability is the spatial-
ly nonuniform structures; if we enter the oscillatory re-
gion through this part of the space, we naturally expect

VoR = —2(Lo+Lo) 'Mo"e e*,
V+t = 2(Lo+Lo 2ico) Moi 'e e

(30)

g ~ ~g ~ 2eqL MO eq VOR
(2)

g z ~g2 —2eqI (Mo 'eq VpR +Mp eq V+ ),
and V+ „VoR are modified as given in Eq. (30).

In summary, when the global gas-phase coupling is in-
troduced, the amplitude equations are

BAR
N

X =yA Al +dB~AL —g, AL ~ Al ~

—
g~ Al ~ AR ~

X~AR d~x AR gl AR ~ AR ~ g2 AR ~ AI. ~

(31)

V+R and V+ are unchanged since they are determined
by solving spatially nonuniform equations.

By repeating the derivation of Eq. (23), we find that the
amplitude equations have the same form as Eq. (23) ex-
cept that

O

45
C)

with

0
Q

40

35
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22
I
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{10 Torr)
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q=0---- q=46

I

25 26

gi = 2eqL '(Mp eqVpR +Mp eqV+R +Mo eqVoR

(&)—3e L.NO' e eqeq,

2eql '(Mp eqVpR +Mp 'eqV+ +Mo 'eqV+,

+Mo 1e VoR +Mope* V+, )

FIG. 4. Contours of the Hopf bifurcation with a=0. 1,
= —0.1.

(&)
6eqL 'Np eq eq eq

Obviously, when there is no global coupling, terms like
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Mp 'uv are zero, and we recover the results given previ-
ously.

We have calculated the coupling coefficients in Eq. (31)
for different wave vectors. Graphs of Re(g, /N) and
Re(g2/X) vs q for several difFerent a and P are shown in
Fig. 2 and Fig. 3. Since each q-mode Hopf bifurcation
has two bifurcation points for fixed Po, each curve con-2'
sists of two branches, corresponding to larger and smaller
Pco, respectively. As q approaches its maximum value,
the two branches come together since the two bifurcation
points (Pco, Po ) merge. We will show in the next sec-

2

tion that standing waves cannot exist for the smaller Pc&
branch. Along the top branch, varying a has only a
minor effect as compared to varying P, perhaps account-
ing for the experimental observation that the relevant
gas-phase coupling seems to be due to CO partial-
pressure variations.

2. Modulated waves

The previous calculation looked at the ability of the
system to support pure waves (either standing or travel-
ing) at some spatial periodicity q. We will eventually ar-
gue that the waves seen in the experimental studies are
actually modulated standing waves; by modulated, we
mean that there are components of the concentration
which have zero wave vector which are coupled to the
basic wave at wave vector q. This corresponds in our for-
malism to solutions of Eq. (27) which have nonzero u, .
We now study the limitations on such a solution.

We make the ansatz

u, =eq[AR(r, X)e ' + AI (r,X)e ' j

+eoAo(q. ,X)e '+c.c. (32)

(~o, p)
eoL, 'Bv (r~X)=0 ~

(33)

(co, +q) (~o,p)
where 8 ' (r,X) and 8 ' (r,X) are the coefficients

i(co t+qx} icootof e ' and e ' terms, respectively, and e L and epL
are the left eigenvectors of (Lp —Dq ) and (Lp+Lp), re-
spectively.

From symmetry considerations, we know that ampli-
tude equations for Az and AL should be symmetric.
Also, the coefficient of A~-AL coupling should be the
same as that in Sec. IIIC1. So the only new coupling
that enters can be found by considering the A~-Ap prob-
lem, namely, taking AL =0.

Again, nontrivial results arise only from the solvability
condition (33) to the third order, however also involving
the u2 term. u2 has the form

We now limit our calculation to the specific value of q for
which the codimension-two point occurs at the (fixed)
value of Po we are considering; (actually there are two

such values of q). We note that the only nonzero ele-
ments in Lo are (Lp), 2 and (Lo)i2, with magnitudes much
smaller than the corresponding elements in Lp. Thus,
coo-—co, ep-—e .

q q
Now the new solvability conditions are

2 2i (~ l —q~) e 2
—2i (~ t —q~) 2 2l coof ~ 2 2l coOf 2u2=V+R ARe ' +V R AR e ' +VoR I AR I +V+pA pe '+V pAo e +Vpl Apl

i (coo+co )t —iqx + +
—i (coo+co )t +iqx + i (coo—co )t +iqx i (co —coo)t —iqx

(34)

The unknowns V's in u2 can be determined from Eq. (27) and Eq. (28) with v=2. Then from the solvability conditions
(~q —q) (~0 p)

Eq. (33) with v=3, namely e L 83 ' (q,X)=0, epI 83 ' (&,X)=0, we obtain the following evolution equation for
the amplitudes:

BA~
X~AR d~~AR gl AR I AR I g3 AR I Aol

Br

aA,N' =X(&i+&~)Ap giApl Apl g3Apl AR I',
a7

where

(35)

& =eqL, eq, N'=epL ep, A, =eqL, L&eq, A i
=

eoL, L,ep, k2=eoI L&ep

d =2iqeqL Deq,

g i
= 2eqL '(Mp eq VpR +Mo eq V+R +Mp eqVoR ) 3. eqL Np eqe e'

g3 2eqI (Mp eqVp+ Mp eqV4+ Mp eq Vi +Mp eq Vo+ Mp Viep +Mp V4ep)

—6eqI (Np"eqepep+Np 'e epep+Np 'e epep),

g 'i = —2epI ( Mp"epVp+ Mo"ep V+o+ Mp 'epVp+ Mp 'Vpeo+ Mp 'ep V+p+ Mp V+pep )

(1) 4 (2) 4 (2)—3eoI ( Np' epeoeo +No eoeoep +2Np eoeo eo )

g3 = —2epL (Mp"epVoR+Mp"eqV3+Mp"eqV, +Mp 'epVpR+Mp 'VpRep) 6epL (Np"—eqeqep+No 'eqeqep) .
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Note that the coupling g3 and g3 are not equal, represent-
ing the absence of any symmetry connecting the uniform
mode with the q mode.

As mentioned before, the unknown V's in the above ex-
pressions can be evaluated from Eq. (27) and Eq. (28)
with v=2, i.e.,

V+~ = (—Lp 4—Dq 2—iso ) 'Mp"e e

Vpg = 2(Lp+Lp) Mp e&eq

V+p= (Lp+Lp 2i cop) '(Mp"epep+2Mp ~epep)

p= —2(Lp+Lp) '(Mp 'epep+Mp 'epep+Mp 'epep),

Vi = —2[Lp —Dq —i(rp +cop)]

X(Mp 'e ep+Mp 'e ep),

V3= —2[Lp —Dq —i(rpp —rp )]

X (Mp"e*ep+Mp 'e'ep),

V~= —2[Lp —Dq +i(cop —cp )]

X(Mp"e ep+Mp 'eqep) .

For p= —a, the calculated values of q* (the spatial
wave vector at the codimension-two point), Re(g, /N),

Re(g', /N'), Re(g3/N), and Re(g3/N') vs a are shown in
Figs. 5(a)—5(e). (Note that the codimension-two point
occurs at a fixed wave vector since the only experimenta1
parameter we allow to vary is Pzo. ) Again, each curve
has two branches, corresponding to larger and smaller
Pco with fixed Po . The results show that when P is in-

creased, namely when the global gas-phase coupling is
more important, the real parts of the direct- and cross-
coupling coeKcients in the amplitude equations will in-
crease on the larger PCQ branch. On the smaller PcQ
branch, the coupling coeKcients are always negative.

3. I'requeney degeneracy at the eodimension-taboo point

We now turn to the final possibility for a set of ampli-
tude equations to describe our reaction-diffusion system.
We first note that there is almost a coincidence between
~0 and co, the frequencies of the 0 and q =q* modes, for
wave vectors in the range we are considering here. The
frequency difference bcp=(rp~ —rpp) is O(10 rpp) or less.
The fact that this difference is so small suggests that there
may be a new term in the amplitude equations corre-
sponding to a parametric driving of the q modes by the
global oscillation. Physically, this corresponds to a
transfer of energy from the uniform oscillation to the
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F&G. 5. (Continued).

standing wave via a resonant interaction.
For this situation, Eqs. (35) will be replaced by

BA~
(X~ f+~~) Ag gg Ag I Ag I' —g2 Ag I AL, I'

a7.

g3Ag I Apl g4AL Ap2

=(yA. ENDS)A~ ——g, AL I A~ I

—g, A~ I A„ I'

g3AL, I Apl g4Ag Ao (36)

aAO =X(~ i + ~2 ) A o g I A o I A—o I

'
g3 A o I

A g I

'—
B1

—g3AOI A, I' —g4AO*Az AL,

where the coeScients of the resonance terms g4 and g 4
are given by

g4 = 2e,l (M—p eq V~p+ Mp epV3+ Mp 'e,*V+o

+Mo 'V3eo )

—3eqI ( Np" eq eoeo +2NO 'e*eoeo ),
g 4 2 QL (Mo 0 VRL +Mo eqV4+Mp ep V~I

+Mo 'V~I eo )

2epr ' (2NO 'eo eq eq +3Np 'eq eq eo ),

with U~L, = —2( Lo+ Lo 2i coq )—'Mo 'eqe . Actually Aco

is so small that it wi1 1 be omitted in future calculations.
Again for the special case of a = —P, the values of
Re(g4/E) and Re(g4/X') vs a are given in Figs. 5(f) and
5(g).

In the next section, we turn to the implications of our
variety of amplitude equations. We will propose that the
experimental ly observed standing-wave states are most
closely described by including the parametric driving
term given in the frequency-degenerate case.

IV. SPATIAL PATTERNS

A. Standing versus traveling waves

So far, we have obtained coupled equations governing
small-amplitude osci llations near the Hopf-bifurcation
point. There are two important types of solutions to
these amplitude equations. When A+ %0, Al. =0 or
A~ =0, AL %0, we have traveling waves; when

I A~ I

=
I AI I, the solutions are standing waves. Note,

however, that no traveling waves are seen in the experi-
ments. In this section we calculate the stability of
traveling- and standing-wave solutions so as to determine
which solution is selected. We wi11 not consider pertur-
bations corresponding to small wave-vector shifts of the
underlying pattern (phase perturbuations) and so we will

drop the spatial-derivative terms in the remainder of this
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work.
Let us first focus on the simple amplitude equations

arising from just considering the two traveling waves, Eq.
(31). It is easy to see that the selection of traveling- or
standing-wave patterns is crucially affected by the com-
petition between the direct-coupling term A~ ~ Az ~

(or
Az ~ AI ) and the cross-coupling term AR ~ AL ~

(or
AL ~Az ). First, we will consider the stability of the
standing-wave pattern and set Al = Az. From (31), the

i (Q~~+ p)
solution in this case is AR =ae, where

I /2
yRek

Re(g, +g, )

Im(g, +g2)
Qz =—ylmA. —yRek

Re g, +g2

and the phase P can be set equal to zero by a shift of the
origin on the x axis. Here N has been rescaled to one.
Obviously, if Re(g, +g2) &0, yRel, must be positive, and
this is a supercritical bifurcation. Otherwise, if
Re(g, +g2) (0, yReA, should be negative, and this is a
subcritical bifurcation.

Consider a small perturbation to the standing-wave
os~ ns~

solution, namely, AR =ae +5AR, AL =ae
+5AL. Then we can linearize the amplitude equation
(31),

QT =—elm A,
—yReA, [(lmg, )/(Reg, )], and the phase

can be set to zero by spatial translation. &e introduce
small perturbations 5A& and 5AL. I inearization of Eq.
(31) around this solution gives

B,A~ =yA5A~ g—2b 5A~,

B,AL, =yASAI 2g—, b 5A g, b—e 5AI' .

In these two equations, 5AR and 5AL are decoupled. So
the eigenmodes of 5Az and 5AL can be solved indepen-
dently. From the first equation, the real part of the ei-
genvalue is gRei, I [Re(g& —gz )]/Reg, ], which must thus
be negative for the traveling wave to be stable. From the
second equation, the eigenmode of 5AL is proportional to

( a+ & +T)~+ I ye,with

Img )
sin(2y) = [I+cos(2y)]

Reg )

Regs„

R +A5 AR 2g1Q 5 AR g 1 a '8 5 AR

2iQ—g~a 5A~ —g~a 5AL, —g2a e 5AL, ,

0 5A =yk5A —2g, a 5A —g, a e 5A* —g a 5A

After some calculations, we obtain two eigenmodes
( +'0 ) +'y

5A& =+5AL =+Ae and the corresponding
eigenvalues are

Im(g2+g, )
o.= —yReA, [ 1+cos( 2y ) ] 1+

Re g2+g,

Re(g2 —g, )
cr =yReA, [(1+cos(2y ) ] Re(g2+g, )

Im(g2 —
g~ )

X 1+
Re(g2 —g, )

where y's are given by

Im(g2+g, )
sin(2y)= [I+cos(2y)] .

Re g2+g,

Therefore, yRei, , Re(g, +g2), and Re(g& —g2) must be
positive for the standing wave to exist and be stable. On
the (Reg „Reg2) plane, this is illustrated in Fig. 6(a).

On the other hand, the stability of the traveling-
wave solution can be calculated as follows. Take
Az =0, Al %0 as an example. Then from Eq.
(31), AI =be, where b —= [(y ReA, )/(Reg, )]'

Regy

(b)

FIG. 6. Illustration of the linear stability of wave patterns in

the (Keg&, Reg2) plane: (a) standing waves, with SW {SSW)
denoting (stable) standing waves; {b) traveling waves, with TW
(STW) for (stable) traveling waves.
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and

Img ]o = —yReA, [1+cos(2y)] 1+
Reg,

2

Thus the condition for stable traveling waves is that
gReA, )0, Regt&0, and Re(g, —g2)&0. On the
(Reg t, Reg2) plane, this is illustrated in Fig. 6(b).

Curves of Re(g, —g2) and Re(g&+g2) are given in
Figs. 7 and 8. On the larger Pc& branch, we see that at
large q, standing waves are selected as compared to trav-
eling waves. This leads us to expect that one should ob-
serve standing waves on the upper branch. This predic-
tion is consistent with the experiments [10] in the sense
that the observed standing waves do indeed have small
wavelength. One can also see that Re(g, —g2) will in-
crease as ~P~ increases for large enough q, which implies
that the introduction of the global coupling will enhance
the stability of the standing-wave patterns. However, the
amplitude of the standing wave (gReA, )/[Re(g, +g2)]
will decrease as ~I'~ increases. We have thus demonstrat-
ed that pure q-mode standing waves might be possible for
some range of system parameters. On the lower Pco
branch, stable traveling waves are not possible since
Re(g, —g2) is always positive. Furthermore, Re(g, +g2)
is negative except for relatively large q as compared with
the value expected for the codimension-two wave vector

q *. Since there will be no crossing of the Hopf-
bifurcation contours, the standing wave would immedi-
ately decay to a pure global oscillation.

To recap, we have shown that the nonlinear selected
wave for the q-mode Hopf bifurcation is a standing wave.
The selection seems to be independent of the existence of
the global coupling which only makes a quantitative
difference in the values of the relevant coefficients. We
do wish to stress again that without global coupling, one
would expect that the global oscillation would bifurcate
first and remain stable, quenching any q-mode instability.
With the global coupling, this is not possible, due to the
crossing of the Hopf-bifurcation contours.

However, we feel that a theory based on a pure q-mode
solution is probably not relevant for the actual experi-
mental results upon which our work is based. Such a
theory would predict a predominance of the global oscil-
latory behavior with only a negligibly small region in pa-
rameter space for allowed standing waves; in fact, for
nonzero positive values of a', this region may not exist at
all. Instead, the standing waves seem to be observed in at
least some finite range of parameters. There must be
some additional mechanism for direct destabilization of
globally synchronized behavior as compared to a finite
wave-vector structure. We will now explain how this
happens automatically if we impose the idea of frequency
degeneracy on the codimension-two bifurcation analysis.
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B. Self-induced parametric resonance yRe(g, +p, ) il

Now let us examine the importance of the presence of
the self-induced parametric driving terms in the ampli-
tude equations (36). First of all, these terms disallow
modulated traveling-wave states; this is simply due to the
fact that the global coupling terms couple left-going and
right-going waves. This is of course consistent with the
experimental findings. Second, the parametric resonance
allows for the existence of the modulated standing waves
where the global average coverages and the coverages at
wave vector q synchronously oscillate. To investigate
this possibility, we first consider the stability of a

iOOW
global oscillation Ao =ce ', A~ = AI =0, with
c = [[yRe(A, , +A2)]/Reg', ]', and QO=Im(A, , +A2)—c Img I. Assuming a perturbation 5 AL =5 Az
= Aze ", 5Ao = doe ' ', we find the stability
condition

yReA, —c [Reg3+Reg4cos(2y)+Img~sin(2y)] (0,

All of the relevant coeKcients have been given in Figs.
5; the specific values these take at a= —13=0.1 (for
which case the codimension-two point is at
Pco=2.48X10 Torr), are given in Table II. Evaluat-
ing this expression in the direction of decreasing Pco, we
find that ReA, =Re(A, , +A2) and Imk, =1m(A, , +A, 2), and
the global mode is in fact unstable. This occurs because
the phase y is adjusted to make Re(g4e 'i')(0 and

hence the global oscillation pumps energy into the stand-

ing wave.
Alternatively, one might consider the stability of a

pure standing-wave solution Ao =0, Az = AL =ae S

with a and Qz given in Sec. V A. With the same pertur-
bation form, linearization of equations (37) gives the sta-

bility condition

yRe(A, , +A,z) —a (2Reg 3 +Reg4cos(2y )

+Img4sin(2y)] (0,
where y is found by solving

a [Reg 4 sin( 2y ) —Img 4 cos( 2y ) ]

=ylmA, —elm(A, , +A,z)+a [2Img3 —Im(g, +gz)] .

Again, evaluating near ReA, =Re(A, &+A2), we find that
the pure standing-wave mode is also unstable.

The conditions embodied by the above stability criteria
are shown schematically in Fig. 9; here we have presented

TABLE II. Amplitude equation parameters in sec ' for

Pcs =2.48X10 ' Torr, a= —P=0. 1.

go

g3

(1454.05,—7523.35 )

(3005.38,—14957.24)
(3057.19,—14928.53 )

gq

gl

g2

(2723.57,—7116.96)
(2898.22, —14955.70)
(1469.11,—7461.73 )

(2013.51,—11959.55)

where the phase y is determined by

c [Reg4sin(2y) —Img4cos(2y)]

=elm(A, , +A,2) —ylmA, +c (Img3 —Img', ) .

Standing waves

Steady states Unif orrn oscillations

FIG. 9. Unfolding of the codimension-two bifurcation.

the possible patterns as a function of yReA, and
yRe(A, , +A,z), the two unfolding parameters of the
codimension-two bifurcation. As per the previous discus-
sions, there is a region in the unfolding plane in which
neither uniform oscillations nor a pure-q wave would be
stable. Instead we find a modulated standing wave with
three nonzero amplitudes. Assuming that AL = Az
=pe' 'and Ao=ve' 'e'~, we derive

V. COMPUTER SIMULATIONS

In order to verify the above picture, we have per-
formed direct numerical simulations of the model equa-
tions both with and without global-coupling terms. To
do this we use a simple spatial grid with periodic bound-
ary conditions (in a box of size L) and an explicit time-
stepping scheme with time steps small enough for accu-
rate and stable solutions [21]. We also choose values of q,
Pc& so as to be in a regime where stable standing waves
are expected.

The basic finding for a= —P=0.08 is shown in Fig. 10

g& —(gi+g&)iu —(g, +g4)v'e "r=i 0,
g(~i+&2) —giv' —(2g', +g4, )iM'e 'r=iQ,

which can be directly solved to find p and v . This is the
stable solution in the aforementioned regime.

The modulated standing wave has one crucial charac-
teristic that makes it attractive as a candidate for the ex-
perimentally discovered wave. The existence of this solu-
tion does not require that we carefully dial all the param-
eters so as to make the q-mode growth rate yReA, larger
than the global oscillation growth rate yRe(A, , +A2). In-
stead, the condition is merely that the growth rates and
frequencies are comparable, something which is much
easier to arrange. We will see in the next section that one
can indeed find stable modulated standing waves even for
a set of parameters (for example, no global coupling
whatsoever) for which the former possibility does not
occur. For cases such as this, standard bifurcation
analysis would predict stable global modes and it is only
the parametric coupling which drives the nontrivial spa-
tial structure.
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where we plot the evolution of the CO-concentration field
and the average concentration fields c, o. The initial con-
ditions are chosen by using a fixed q-mode perturbation
on the steady-state concentrations. Clearly, there is both
a standing-wave component (with wavelength A, =L /2,
e.g., L =0.36 mm implies q =2'/A, =34.91 mm ') as
well as an overall, global oscillation (corresponding to
q =0 mode). This type of structure (modulated wave) is
qualitatively similar to the standing-wave pattern ob-
served in the catalysis experiments.

In the previous example, the parameters were motivat-
ed by actually finding the relevant codimension-two point
and the relevant modulated wave region. %'hat is more
surprising is that we can get modulated standing waves
even without global couplings. For instance, in one run
we set Pco =2.41 X 10 Torr and as always,
Po =4.70X10 Torr. The wave vector is fixed by our

2

box to equal 32.33 mm ', close to q
' at the

codimension-two point for a relatively strong global cou-
pling. We start the system with a random set of a, c, and
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FIG. 10. (a) CO concentration profile evolving in time; here
Pco=2.46X10 Torr, q =34.9 mm ', rr=0. 08, P= —0.08.
(b) and (c) Averages of CO and O coverages vs time.

FIG. 11. (a) CO concentration
without global coupling; here
q =32.2 mm '. (b) and (c) Averages
time.

profile evolving in time
P« =2.41 X 10 ' Torr,
of CO and O coverages vs
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o values near the (unstable) steady-state values. The CO
concentration profile at late times and the evolution of c,
0 with time are shown in Fig. 11. Again, there is a wave
having both q =0 and qAO components. Note that the
global oscillation in this case is stronger than that in the
strong gas-phase couplings case, due to the fact that the
linear growth rate of the global mode is larger than that
of the standing-wave piece. In fact, even if we set
a =p=O, and have tz' & 0, p' & 0 (but not too large), we
can still find stable wave states —here the global coupling
is attempting to completely synchronize the surface oscil-
lations, but is "overcome" by the parametric forcing.

Finally, we want to emphasize again the narrowness of
the parameter range for which we expect to see (and do
see in our simulations) standing waves. Although one
could have searched directly via simulation for the
standing-wave regime, the bifurcation analysis explains
why this regime is so narrow and correctly predicts
where to look.

VI. CONCLUSIONS

standing of the complex two-dimensional standing-wave
spatial patterns seen experimentally. We do find stable
(modulated) standing waves which qualitatively match
those seen experimentally. The exact values of the pa-
rameters predicted by our calculations should, however,
not be taken all that seriously since many of the funda-
mental rate constants are not known very precisely.

Several lines of investigation remain open for further
exploration. Extension of our amplitude equations to in-
clude slowly varying spatial modulations might offer ad-
ditional insight into the selection of the spatial wave vec-
tor. Also, extensions which would allow for two-
dimensional effects such as dislocations are clearly neces-
sary. Finally, the general problem of coupled oscillators
with a global coupling is of interest for other systems,
perhaps for interacting neural oscillators [22]. The gen-
eric behavior of such a system near a double Hopf bifur-
cation (q =0 and qXO) is of course dependent only on the
signs and relative magnitudes of the coupling coefficients
and not on anything specific to the catalytic reaction dy-
namics.

In this paper we have studied possible wave patterns in
CO oxidation on a Pt(110) single-crystal surface. In par-
ticular, we have derived amplitude equations which
determine the existence ranges and relative stability for
standing waves and traveling waves; also, for the case of
gas-phase coupling, we have studied the competition be-
tween uniform and spatially nonuniform oscillations.
This was done within the framework of a model obtained
by adding spatial transport to the reaction kinetic scheme
of Eiswirth, Krischer, and Ertl.

Our results provide a first step towards a full under-
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