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Dendritic sidebranching with periodic localized perturbations: Directional
solidification of pivalic acid —coumarin 152 mixtures
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We have studied the response of the sidebranches of pivalic acid dendrites, growing by directional
solidification, to localized periodic thermal perturbations. The perturbations were generated by a
laser beam focused near the tip of a single dendrite growing in a glass capillary, with the pulse
duration, repetition rate, and intensity controlled separately. The perturbation dramatically altered
the sidebranch structure, producing ordered sidebranches of well-defined wavelength, synchronous
with the perturbation, which were strongly correlated on the two sides of the dendrite. The depen-
dences of the sidebranch amplitude on the frequency of the perturbation and on the distance from
the dendrite tip were compared to the predictions of Barber, Barbieri, and Langer [Phys. Rev. A
36, 3340 (1987)] and found to be in qualitative agreement. The value of the selection parameter o.

found from these fits to the theory is compared to a value, obtained from material parameters also
determined in this experiment, and to a value deduced from the initial Mullins-Sekerka instability
of the planar crystal-melt interface.

PACS number(s): 68.70.+w, 61.50.Cj, 81.30.Fb

I. INTRODUCTION

Considerable progress has been achieved during the
past decade in understanding pattern-formation phenom-
ena, since the introduction of the theoretical approach
usually designated as "microscopic solvability" (for re-
views, see [1—3]). One significant aspect of this field,
which has received relatively little attention, is the side-
branching phenomenon which is an integral part of den-
dritic solidification. As noted recently by Langer [4], it
is the evolution of dendritic sidebranches during the so-
lidification of metallic alloys that ultimately determines
the microstructure and resulting mechanical properties
of the solid.

It is generally believed that sidebranches occur on
growing dendrites as a result of selective amplification
of microscopic noise present near the dendrite tip which
is amplified as the perturbations travel down the sides of
the dendrite, away from the tip. A theoretical description
of this noise amplification mechanism, to be discussed be-
low, was developed in a series of papers by Langer and
his co-workers [5, 6].

Three previous experimental studies have provided ev-
idence in support of this noise-amplification mechanism.
Dougherty, Kaplan, and Gollub [7] studied the evolution
of sidebranches on freely growing dendrites in supersatu-
rated aqueous solutions of NH4Br. They found that the
power spectrum of the sidebranch oscillations at a Gxed
distance behind the tip is broad and noisy with little
cross correlation between the two sides, consistent with
theories in which sidebranching results from selective am-
plification of microscopic random noise. Dougherty and
Gollub [8) also studied sidebranch spacing, demonstrat-
ing that the mean wavelength scales with the tip radius,
as predicted by noise-amplification theories.

Qian and Cummins [9] investigated the response of a
succinonitrile-acetone dendrite growing by directional so-
lidification to a single brief localized laser-generated heat
pulse applied near the dendrite tip. The resulting per-
turbation grew as it traveled down the dendrite, with a
functional form in reasonable agreement with noise am-
plification models.

Bouissou et al. [10] studied the growth of dendrites
solidifying from a flowing pivalic acid — (PVA) ethanol
solution when the solution flow velocity was periodically
modulated. This global periodic perturbation was found
to induce ordered dendritic sidebranches coherent with
the flow modulation. The amplitude dependence of the
response function was investigated and was found to be
linear over a considerable range. The frequency depen-
dence was shown to exhibit a maximum, indicating that
the noise amplification mechanism is selective. A re-
lated experiment was reported by Rabaud, Couder, and
Gerard et al. [11] in which anomalous Sa6'man-Taylor
fingers, subjected to periodic modulation of the forcing
pressure, exhibited a sidebranching wave whose ampli-
tude also depended on the forcing frequency.

We have carried out an experimental study of dendritic
sidebranching in pivalic acid containing coumarin 152 as
the solute, in which a focused laser beam produced a peri-
odic localized thermal perturbation near the tip of a den-
drite growing by directional solidification. This pertur-
bation dramatically alters the sidebranch structure of the
dendrite. The perturbed dendrite exhibits highly ordered
sidebranches, coherent on either side of the dendrite, that
appear closer to the tip than the natural sidebranches.
These induced sidebranches are synchronous with the
perturbation, in agreement with the noise-amplification
theory of sidebranching [5] and the experimental results
of Bouissou et al. [10].
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We have studied the variation of the amplitude of the
perturbation-induced sidebranches as a function of the
frequency of the perturbation and obtained a response
curve which we will compare with the predictions of Bar-
ber, Barbieri, and Langer [6]. The results will also be
compared with those of Bouissou et al. [10]. Further-
more, we have studied the variation of the response curve
with growth velocity, distance down the dendrite, and
temperature gradient. We have also studied the increase
in sidebranch amplitude with distance from the dendrite
tip, and compared this result with the predictions of Bar-
ber, Barbieri, and Langer [6]. In fitting our data, the
selection parameter o of microscopic solvability theory
was treated as a free parameter that was varied to fit the
data. We compare the values of o obtained from these
fits with a direct determination of a', calculated using ex-
perimental measurements of the capillary length do, the
chemical diffusion constant D', the tip velocity v, and
the tip radius p (o' = 2doD'/p v), as well as with a pre-
liminary value of cr obtained from an observation of the
initial Mullins-Sekerka instability of the planar crystal-
melt interface.

II. EXPERIMENT

A. Sample preparation and apparatus

Samples were prepared from PVA, purchased from
Aldrich, which was triply distilled and then doped with
0.44 wt. % of eoumarin 152 (C152, a yellow laser dye
purchased from Sigma Chemical Co. , St. Louis) as the
solute. C152 was chosen as the solute in order to enhance
the absorption of the laser light to a level necessary to
create a significant thermal perturbation. Its Quorescence
also provides a convenient means of determining the so-
lute concentration field.

The samples were loaded into 20 cmx50 pmxl mm
rectangular glass capillaries (Vitro Dynamics) and sealed
with epoxy. The sample capillary was attached to a
Velmex Unislide precision motor-driven stage equipped
with a dc motor that can pull the capillary at a constant
speed in the range 0—40 pm/s. Our directional solidifica-
tion apparatus consists of a brass housing equipped with
sapphire windows. The capillary is translated longitudi-
nally within a paraKn-oil-filled channel inside the hous-
ing, located between two temperature-controlled copper
heating or cooling blocks that provide the temperature
gradient. The hot block is elongated to keep the entire
liquid side of the sample molten. This directional solid-
ification apparatus is mounted on the stage of a Nikon
Diaphot inverted microscope equipped with a video cam-
era (MTI-Dage series 68 Nuvieon). We use a 10x long-
working-distance objective and a 1x projection lens in
the video port. The video camera is interfaced to a dig-
ital image processing board (Data Translation "Quick
capture") in a Macintosh II ci computer and provides
images consisting of 640 x 480 pixels at 30 frames/s. One
pixel corresponds to an area of approximately 2 pm x 2
p,m in the sample.

B. Experimental procedure

Dendrites were typically grown in a temperature gra-
dient G of about 25 K/cm at a velocity in the range of
2—4 p, m/s, which produced dendrites of tip radii p 10—
15 p,m. To provide the perturbation, short pulses of laser
light were focused in the melt close to the tip of the grow-
ing dendrite. The light source was a Spectra Physics 165
argon-ion laser operating at 457.9 nm. The laser output
beam, after traversing an electronic shutter, was trans-
mitted through a 7-pm inner-core-diameter optical fiber
to a focusing lens mounted on the microscope stage. This
lens produces a spot approximately 6 p,m in diameter in
the sample. In a typical experiment the laser beam was
chopped to produce a periodic train of pulses of width
1.0 s, with period r„between 10 and 60 s.

At the beginning of an experiment a single dendrite
is grown out of a precisely oriented seed crystal. After
an initial transient stage the dendrite reaches a steady
state and attains a growth speed equal to the capillary
pulling speed. At steady state, the tip of the dendrite
is stationary in the laboratory frame, with sidebranches
propagating down both sides of the dendrite.

The laser spot is positioned in the melt about one tip
radius ahead of the tip, and the periodic perturbation is
turned on. Initially the tip moves back slightly, and the
position of the laser spot is then readjusted. Once the
perturbed tip reaches a new steady state, the position
of the laser spot is kept constant, and data are accumu-
lated. For each period of the pulse train, corresponding
to one point on the response curve, data are recorded for
typically ten minutes.

During a run it is important that the distance between
the tip and the perturbation remains reasonably con-
stant. Several precautions were taken to maintain this
constant distance. The seed must be precisely oriented
(ours are oriented to better than 0.1'), otherwise the tip
will move to the side of the capillary during the run. The
dendrite must also grow into a melt that has a uniform
impurity concentration. To ensure that this was the case,
once our samples had a suitable seed they were left in the
apparatus for several days with the entire liquid side of
the capillary molten; this allows the dye distribution to
equilibrate.

III. THEORY

During the past decade, it was discovered that the
equations governing solidification of low-anisotropy crys-
tals, with the surface tension properly included from the
outset, led to a denumerably infinite set of solutions of
which only one is stable [12, 2]. This "microscopic solv-
ability" result showed that the surface tension and its
(small) anisotropy play a crucial role in determining the
tip radius and growth velocity of a dendrite. However,
the smooth nearly parabolic needle crystals predicted as
stable solutions are not observed in real dendrites which
exhibit sidebranching.

Pieters and Langer first suggested that sidebranches
might be generated by selective amplification of noise
near the locally stable tip [5,2]. They analyzed this mech-
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anism for the two-dimensional boundary layer model, fol-
lowing a method previously employed by Zel'dovich et
al. [13] for flame fronts, which showed that, although
perturbations would die out locally, they could be am-
plified as they traveled down the sides of the dendrite.
The calculation was extended to three dimensions by
Langer [14]. Kessler and Levine [15] studied the symmet-
ric model numerically and predicted that the wavelength
of sidebranches generated by noise amplification should
scale with tip radius, a prediction subsequently verified
by Dougherty and Gollub [8].

Barber, Barbieri, and Langer [6] performed an analytic
study of sidebranching in the two-dimensional symmetric
model using the WKB method. They found that in the
presence of a sinusoidal perturbation the response func-
tion, defined as the sidebranching amplitude divided by
the amplitude of the perturbation, would be given by

W( )
iur(t z /2)/—~a ur[z ~ B(z)]/~o

where B(x) is

B(x) = 8x(1+x')'/'+, ,/, —15s(x)1+x2 i/2

arith
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In Eq. (3.1) [Eq. (3.28) in Ref. [6]], the length unit is

p, the time unit is p/v, and the unit of u is v/(pro)
We also define the dimensionless period 7 = wv/p. The
dimensionless parameter o is given by

FIG. 1. (a) B(z) vs z, and its asymptotic form as x —+ oo,
B(x) = z /2. (b) W(w) vs r for several values of x using the
full form of B(x). (c) W(7 ) vs% for several values of x using

B(*)= *'/2

o = 2dpD/p v (3.2)

where dp is the thermal capillary length, dp = pic/I
(p is the surface tension, T~ is the melting temperature,
c is the specific heat, and L is the latent heat), and D
is the thermal diffusion coefficient. In these units, the
parabolic approximation for the shape of the dendrite is
z = —x /2. Therefore, x is the half-width of the dendrite
at the location of the scan line, which cuts the dendrite
axis at a distance z from the tip.

As x —+ +oo, B(x) ~ 2x2+ O(lnx) and the response
function becomes

W( )
eius(t z /2, )/~o c—u[z ur z /2]/~cr— (3.3)

In Fig. 1(a) we plot B(x) along with its asymptotic ap-
proximation x /2. For our purposes it is more convenient
to fit our data to W(w, x). In Fig. 1(b) we plot W(7, x)
(at o' = 0.05) as a function of 7' for several values of x.
For larger values of x, W(r, x) is qualitatively similar to
@shat ere see in our experiments. However, for lover val-
ues of x, W(r, x) diverges as 7 -+ 0, and thus no longer
resembles our data, which always exhibit a maximum.
This behavior occurs when the function B(x) becomes
negative, thus causing the exponent in Eq. (3.1) to be
positive for all values of u, so the W(u, x) has no maxi-
mum. As our data are taken at values of x close to the
region in which Eq. (3.1) no longer qualitatively describes
the observed growth of the sidebranches we have fitted

our data to Eq. (3.3). In Fig. 1(c) we plot the asymptotic
form W(r, x) [i.e. , taking B(x) = x /2] as a function of
w for several values of x. This form of W(v, x) now qual-
itatively has the appropriate behavior for low values of 7

and x. The choice of using Eq. (3.3) rather than Eq. (3.1)
to fit our data was reinforced after preliminary attempts
to fit data to Eq. (3.1) gave unphysical values of a. (For
a discussion of o see Sec. V.)

The shape of the response curve predicted by Eq. (3.3)
is determined by the factor e"[* * /2&/~, which pre-
dicts that for a given x, W(f ) should have a maximum

at rp ——&67r'a x.
The theoretical analyses discussed in this section were

carried out for free solidification of pure materials. We
are not aware of any theoretical studies of sidebranch
amplification during directional solidification of binary
alloys. Therefore, we will attempt to fit our data to Eq.
(3.3), treating both the scale factors and the selection
parameter o. as adjustable Gtting parameters.

IV. RESULTS AND ANALYSIS

A. Qualitative efFect of the perturbation

Unperturbed dendrites in our experiment displayed
sidebranching characteristics similar to those reported by
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(c)

FIG. 2. Video images of dendrites grown by directional
solidification from a mixture of pivalic acid and 0.44 wt. %%uo

coumarin 152. v=3.7 pm/s. (a) No perturbation; (b) 1-s
laser pulses with a repetition rate of w„=15 s; (c) repetition
rate of v.„=19 s, which is close to the natural period; (d)
repetition rate of w„=26 s.

Dougherty, Kaplan, and Gollub [7], and by Bouissou et
al. [10]. The spontaneous sidebranches were irregular and
only approximately periodic, and there was little corre-
lation between the sidebranches on the two sides of the
dendrite [see Fig. 2(a)]. When the periodic perturbation
was applied, the sidebranches became visible closer to the
tip. These induced sidebranches, generated by the laser
perturbation, then propagated down the sides of the den-
drite. The previously irregular sidebranch structure was
transformed into a regular periodic structure with a well-
defined wavelength, and the patterns on the two sides
of the dendrite became highly correlated. This ordered
region eventually extended down the dendrite over a re-
gion of typically six to twelve sidebranches. There was
then a transient period during which the amplitude of
the sidebranches in the ordered region grew, after which
the sidebranch pattern appeared to be stable. Once this
stable pattern was established, data were recorded. If
the perturbation was interrupted, even if only missing a
single pulse, the subsequent sidebranch structure was di-
minished and only regained its previous amplitude after
several cycles of the perturbation. Typical images of a
stable perturbed dendrite are shown in Figs. 2(b)—2(d).

B. Analysis

To extract the tip radius p, a parabola was fitted
through the tip region of the dendrite. The Btting range
of the parabola was restricted to a region of 4p from
the tip. (This procedure is similar to that reported by
Dougherty and Gollub [8].)

For precision studies of the sidebranching dynamics, a
single video line was recorded repeatedly at four times per
second. Typically, the scan line was chosen to cut across
the dendrite perpendicular to the growth direction 15
tip radii back from the tip. The time-dependent positions
of the two edges of the dendrite were extracted from the

intensity profile along each video line by parabolic inter-
polation. (For a description of this interpolation proce-
dure, see Ref. [16].) A typical time record of the position
of one edge versus time for an unperturbed dendrite is
shown in Fig. 3(a); its Fourier transform is shown in Fig.
3(b). The spectra of both edges exhibit noisy broadband
spectra, peaking near 0.055 Hz, indicating a "natural"
sidebranching period of 7„18s.

In Fig. 4(a), a record of edge position versus time is
shown for a dendrite perturbed with pulses at a funda-
mental period of w„=19 s which is close to the natural
period of the unperturbed dendrite. The corresponding
Fourier spectrum in Fig. 4(b) shows a sharp peak that
is synchronous with the perturbation. Again it is ap-
parent that the periodic perturbation dramatically alters
the sidebranching process, converting a noisy broadband
structure into a nearly monochromatic narrow-band side-
branch spectrum.

C. The response function

To determine how the response of the dendrite varies
with the period of the perturbation, 12 runs of about
8—15 min were recorded, the length of the run being set
to record the passage of about 40 sidebranches. In each
run the dendrite was perturbed at a different period that
varied from about 3/4 of the natural period to about
twice the natural period.

From the Fourier transform of the time record of the
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the dendrite; for smaller values of x the sidebranches are
too small to be well resolved, especially for perturbing
periods far from the peak of the response curve.

In Fig. 8 we show the response curves for x=4.0 and
5.6. In Fig. 9 the values of o extracted from the three fits
are plotted against z, the distance along the dendrite's
axis from the tip, in units of the tip radius. In Fig. 10, we
plot w„against z. The corresponding period in seconds is
indicated on the right-hand axis. The resulting variation
in ~„indicates that there is little change in wavelength
as the train of sidebranches propagates down the den-
drite, at least in the range where the perturbation has
ordered the sidebranches. This result suggests that once
the sidebranches become large enough to be out of the
linear regime, their wavelength becomes locked in by non-
linearities not taken into account in the theory. We will
return to this point in Sec. VI.

We next investigated the variation of the response
curve with growth velocity. In Fig. 11 we plot response
curves for v = 2.2 pmjs and 3.9 pmjs (both taken at
x = 4.7). Again, the range over which it is possible to
record reliable data is limited by experimental consid-
erations. It was not possible to collect data at higher
velocities since additional dendrites would start to grow
alongside the perturbed dendrite, while at slower veloc-
ities the distance between the dendrite tip and the laser
spot is more prone to drift.

In Fig. 12 we plot the o. values found from the above fits
versus the growth velocity v for the three runs. An un-
expected decrease in ~ with increasing v is seen. In Fig.
13 we plot the position of the peak of the response curve
(w„) against v. The corresponding period in seconds is
indicated on the right-hand axis. If one interprets the
position of the peak of the response curve as the "nat-
ural" period or wavelength of an unperturbed dendrite,
one can see that for a large change in the natural period
v.„,from 14 to 30 s, the change in the dimension-
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FIG. 8. Sidebranching response function W of a per-
turbed dendrite plotted against the dimensionless period

= ~v/p. The solid lines are two-parameter fits to W =
X—Gd X 2Ae ~ ~ where x is the width of a parabolic approx-

imation to the dendrite. v = 2.9 pm/s, tip radius p = 13.7
pm, gradient G = 26 K/cm. (a) The cut is taken at x = 4.0.
Fit result: A = 153 + 12 and o = 0.0738 + 0.0027. The
peak of the fitted response curve is at 7.„=4.18 + 0.08. (b)
The cut is taken at x=5.6. Fit result: A = 218 + 17 and
o. = 0.0575 + 0.0016. The peak of the fitted response curve is
at ~„=4.36 + 0.06.
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is relatively small, i.e. , one can almost double the
growth velocity and the wavelength of the sidebranches
remains approximately four times the tip radius, consis-
tent with the prediction that the wavelength of the side-
branches scales with the tip radius. (This result agrees
with the observation of Dougherty and Gollub [8].)

Finally, we determined a response curve at a different
temperature gradient. In Fig. 14 we plot the response
curve for G = 32 K/cm (with v = 2.9 pm/s and x=4.7).
The fit to Eq. (3.3) gives cr = 0.078 + 0.003 and 7„=
4.36 + 0.06. If this is compared to the response curve
taken at the same velocity and 2: but with G=26 K/cm,
we see there is quite a significant shift in w„.This suggests
that the dimensionless i„may be sensitive to changes in
the temperature gradient. Further studies are in process
to investigate this dependence and will be reported in a
later publication.
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496 WILLIAMS, MUSCHOLHOL, QIAN, LOSERT ANND CUMMINS 48

2000—

1500—

L~

c0
O
C

g 500—

0—
I

0 4 6
dim ensionless period)

I

10

FIG. 14. Sidebranchin res
d d' 1 ttd
The solid line is a two-

imensionless period ~ = 7.

ere x ls the width of the
d d it Th

ad' = 137 pm, gradient G = 32 K cmm = 'cm. Fit result:
p

= 4.36 + 0.06.
e tted

E. Growth of tho e sidebranch am
with d'istance

amplitude

We hahave also tested the re '

dL [61 f
tance f

or the growth of sid iit d'—

th o ho 4
ri e tip. A series

wnin i . 4
cans sim-

'g. a) were reco d d
e endrite with

or e at 13 lo-
the period of th

kof th e response curv Fe. or each

scan, thee average positions

t bi riod
t is value of ~

the dendrite
, respectively, for th e oor t e lower ed e of

+ 0.002 and 0.04 + 0.002

a e t with the full functiounction being slightly better

V. MATERIAL CH
AND DETERM

ARACTE RIZATION
MINATION OF o

A. Material cc aracterization

In theoretical modo els of the mor h

y systems the len h
i i ing

m two competin
t e microstructur

e ing mechanisms. The
im u

' ' 'on is characterized b th

ons ant of t
is the che

e solute in th
the dendrite. Thve ocit of

e melt, and

e surface tensio '
he su

'
n is characterized b th

or growth from a dili ute solution d' '
0 is given

do =— Tm

L, (T —T;)(1 —k)

(a)

150—

100-

50—

(b)

250-

200-

150—

100—

50-

0 —;—
2

FIG. 15. Siidebranch am 1'

7 8

i amplitude vs z. Sol'd l'

q (3.1) with the full f
epresents a fit to

ormofB x.
e to the asymptot' f

(x) gi's o = 0.051

g st= . . 2, fittoasypmt t' Wo ic (x)

To calculate do, values f
284 10 7 3

ace tension

re a en from the literature or

and the meltin t fA 'I

t 'K
y

p

a a ow pullin s
an grown for a

'
g speed to establ' h

if y o ato . *
ing speed were c

'
n. e growth

d of the advancing solid'
'fi 1 b

ays. The 1

owe to e uil
ppe .

t e crystal
b (tla ow intensit

vera

) f dt
i o oi

o a spot inside of the
r picked up th fi

er passing through su'
e uorescent light wh'w ich

u ip ier.
s was measured b

The sam les

s e ya

p e stage was moved b
h l'd h 1'r e liquid side of th

uorescent intensity was
s or typically 60 s.s. fter

nsi y, the segregation



48 DENDRITIC SIDEBRANCHING WITH PERIODIC LOCALIZED. . . 497

coefIicient was taken as k = I, i;d/Ii;q„;d. (We verified
that I is proportional to C for concentrations C up to

1 wt. %, and that the fluorescent efIiciency is the same
for the solid and the liquid. ) For 0.44 wt. Fo PVA-C152,
this procedure gave k = 0.06 + 0.01.

(2) The chemical difFusion constant D'. Following the
same initial procedure as in (1), the solid-liquid interface
was equilibrated, the laser beam was positioned on the
solid side of the interface, and the Huorescence intensity
was recorded. The hot block temperature was suddenly
increased, causing the solid-liquid interface to melt back
rapidly. The concentration step which existed in equi-
librium at the solid-liquid interface was then located in
the melt and began to decay immediately as dye difFused
into the low concentration region previously occupied by
the crystal.

We monitored the increase of concentration with time
by following the fluorescence intensity C(z, t) at fixed
position z. C(z, t) is predicted by the standard solution
to the difFusion equation for an initial concentration step
atz=0tobe

Parameter

MWpvA (g)
MWci52(g)
p (J/cm )
L (J/mole)
T (K)
ci;„(J/mole)
p (g/cm )
D (cm'/s)
dp (cm)
k
d() (cm)
D' (cm'/s)

Value

102.13
257.2
2.84 x 10
2267.7
35.970
204.26
35.970
0.7 x 10
3.91 x 10
0.06
2.0 x 10
9.1 x 10

Ref.

[»l

[18]
[»]
[18]
[18]
[18]
[18]
[18]
b
b
b

Sigma Chemical Co.
This work.

TABLE I. Values of physical constants for the PVA-C152
mixture (values refer to PVA except where noted otherwise).
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FIG. 16. Determination of the chemical difFusion con-
stant D' from the fIuorescent intensity vs time, after the
interface was melted back. The data were fit to C(z, t) =
C, + (1/2)(Ci —C,)erfc(z/+4D't) as discussed in the text.
For this measurement the result of the fit was D' = 8.9 x 10
cm s.

C(z, t) = C. + (1/2)(Ci —C, )erfc(z/+4D't) (5.2)

where Ci and C, are the initial dye concentrations in the
liquid and solid, respectively, and erfc is the complernen-
tary error function. The Buorescent intensity record was
fit to Eq. (5.2) (with z and D' as fitting parameters) to
determine D' (see Fig. 16). For our sample, the average
result of two measurements was D' = 9.1 + 0.2 x 10
cm2/s.

(3) The interface temperature T, . The temperature
of the interface was determined by recording the posi-
tion of the tip of the dendrite and then measuring the
temperature profile in the cell. This procedure gave
T, = 33.9 + 0.1 C, We determined the melting temper-
ature of the pure material to be 35.9 + 0.1 C. Thus our
interface was 2.0 + 0.1 C below T

The capillary length d~o calculated from these values is
dc ——2.0j0.2x10 s cm. The diffusion length for atypical
velocity of 2.9 pm/s is f' = 6.2x 10 s cm. Values for the
corresponding thermal parameters are dii = 3.19 x 10
cm and It=4.8 cm. The values of the various material
parameters discussed in this section are summarized in
Table I.

B. The selection parameter cr

The dimensionless parameter cr defined in Eq. (3.2)
first arose in the linear stability analysis of dendrites by
Langer and Muller-Krumbhaar which indicated that for
free growth in three dimensions o should have a constant
value of o.* 0.02. With the subsequent development
of microscopic solvability theory, it was shown that the
selection parameter cr' (the unique value of cr for which
an allowed stable solution of the equations governing den-
dritic growth occurs) is indeed a material constant, but it
depends on several specific material parameters, particu-
larly the anisotropy of the crystal-melt interfacial tension
[1]. For PVA, the anisotropy was recently determined to
be (2.6+0.2)Fa and was found to be unaffected by ad-
dition of ethanol as an impurity up to l%%uo. The corre-
sponding theoretical value for cr* was 0.107+0.007. (For
more details concerning this result and a recent compar-
ison of experimental and theoretical o. values for various
materials, see Ref. [19].)

In our dendritic sidebranching experiments, o was
treated as an adjustable fitting parameter for the side-
branching response curve [Eq. (3.3)] and for the growth
of sidebranches [Eqs. (3.1) and (3.3)]. This gave values of
o between 0.057 and 0.078 for the response curve and be-
tween 0.037 and 0.051 for the growth of the sidebranches,
as indicated in Table II. Using the values of d~& and D'
determined above, we can calculate the value of cr' ap-
propriate for dendritic growth from our binary mixture,
and compare it to the values of o. extracted from the fits.
Thus, defining
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TABLE II. Values of o..

Method of evaluation

Sidebranch response curve [flts to Eq. (3.3)]
Sidebranch amplitude [fits to Eqs. (3.1) and (3.3)]
Direct determination from Eq. (5.3)'
Value estimated from initial instability of planar interface
Theoretical prediction based on measured anisotropy

Value

0.057—0.078
0.037—0.051
0.008 + 0.001
0.04 + 0.02
0.107 + 0.007

'Value calculated for v = 2.9 pm/s and p = 13.7 pm.
From Ref. [19].

0' = 2d()D /p V (5.3)

VI. DISCUSSION AND CONCLUSIONS

We have shown that a localized thermal perturbation
applied to the tip of a growing dendrite can dramatically
alter the sidebranch structure, creating an ordered region
of sidebranches of well-defined wavelength synchronous
with the perturbation. The sidebranching response curve
of the dendrite is qualitatively similar to the envelope of

and inserting the appropriate values, we find o' = 0.008+
0.001. This value is approximately 8 times smaller than
the values of cr obtained from the fits to Eq. (3.3). If cr

had been fixed at this smaller value, the peak of W(i.)
would occur at w& ——1.5, far below the experimental max-
imum at w„4.In the experiment of Bouissou et al.
[10] with modulated flow of PVA-ethanol solution, the
sidebranching response was a maximum for w„7,cor-
responding to o ~ O.ll, while the theoretical response
function peaks at 4, corresponding to cr 0.04. This
discrepancy is qualitatively similar to what we have ob-
served.

We further note that this value of 0' = 0.008 is
smaller than that measured in most other experiments
[19], which led us to look for an independent way to de-
termine o'. Since D' was measured directly, the most
likely problem in calculating o' comes from the determi-
nation of the capillary length do, which depends on all the
parameters in Eq. (5.1). We have therefore made a pre-
liminary attempt to estimate do independently by mea-
suring the wavelength of the initial Mullins-Sekerka [20]
instability of a planar interface. Wollkind and Segel [21]
analyzed the initial instability of a planar interface in a
temperature gradient. Their calculation, which employed
a one-sided model, predicts the initial wavelength of the
instability to be given by A, = (47rD'/v)(vdr'i/4kD') ~ .
Using this prediction to evaluate the capillary length, and
in turn o', gave o' = 0.04 + 0.02. Note that this deter-
mination of di'i is independent of the parameters in Eq.
(5.1) except for k. These measurement are of a prelim-
inary nature and are complicated by the flatness of the
neutral stability curve predicted by linear stability the-
ory (for a discussion of the problems associated with this
measurement see Ref. [22]). This last value of o' does,
however, overlap the range of values obtained by the fits
to Eqs. (3.1) and (3.3). The values of o found in our
experiments are summarized in Table II.

the spectrum of spontaneous sidebranches of the unper-
turbed dendrite. These observations are consistent with
a model in which sidebranches arise as a result of the
amplification of noise at the tip, and are then advected
along the sides of the dendrite.

The theoretical sidebranching response function [Eq.
(3.3) with B(x) = x /2] proposed by Barber, Barbieri,
and Langer for the case of free growth is qualitatively
similar to the response curve we have obtained for direc-
tional solidification of a binary mixture. The value of o.

extracted from the fit is similar to the selected value of
cr for several other systems [19]. However, the variation
of o. with x, and the variation of cr with v does not seem
consistent with the concept of o as a material constant,
as implied by microscopic solvability theory. Also, the
value of o. found from the fits does not agree with the
value of o' obtained by using Eq. (5.3) with the values
of p and v obtained in this experiment.

From the fits of sidebranch amplitude to Eqs. (3.1) and
(3.3), we find reasonable agreement with the prediction
of Barber, Barbieri, and Langer for both the full func-
tion and the asymptotic approximation. However, the
values of a extracted from these fits is again higher than
the value of 0' calculated from Eq. (5.3). In comparing
our data with Eqs. (3.1) and (3.3), one must appreciate
that their derivations include linearizing the equations of
motion for small perturbations around the steady state.
Thus, since our data were taken far from the dendrite tip,
the sidebranches have grown large enough to be well out
of the linear regime in which these equations are strictly
valid.

We note that the quantitative disagreement in o val-
ues and the disagreement concerning the dependence of
the response function on distance down the dendrite may
both result from the neglect of nonlinearities. A more
complete theory which takes account of nonlinear effects
might resolve both of these disagreements.

Other possible sources of error include size effects due
to performing the experiments in capillaries. Our capil-
laries have a width of 1000 p,m and the chemical diffu-
sion length is about 60 pm. Thus the tip is many dif-
fusion lengths away from the capillary wall. However,
further down the dendrite size effects could play a sig-
nificant role in limiting the growth of the sidebranches.
Another source of uncertainty is the possible dependence
on the distance of the laser spot from the dendrite tip,
which has not yet been explored. We note, however, that
our results are qualitatively similar to those of Bouissou
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et al. [10], who employed a global —rather than local—
perturbation. A further possible source of problems is
associated with applying a theory for free growth to di-
rectional solidification of a binary alloy. Although the
selection parameter o has been found to be reasonably
independent of undercooling in free-growth experiments,
there is no evidence that o. will be constant in directional
solidification when the temperature gradient or growth
speed is varied. In fact, a recent study by Trivedi and
Mason [23] of directional solidification of PVA-ethanol in-
dicates that o* determined from the dendrite tip radius
changes systematically with composition and tempera-
ture gradient. Further work on the tip selection problem
and the initial planar instability problem in crystal-dye
systems during directional solidification is underway and
will be presented in a later paper.

Note added. We have learned that in a recent (un-
published) experiment, A. V. Gorbunov (Chernogolovka)
applied cw laser radiation to alkali halide crystals which
produced "dendritic melting. " Periodic modulation of
the laser intensity was found to cause sidebranch order-
ing resembling the eEects reported in this paper.
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