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Transport on the percolation backbone
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We investigated numerically the number of sites visited SN by random walks on the backbone
structure of the percolation cluster at the critical threshold. This quantity can be predicted by
the scaling conjecture in terms of the fractal and the random-walk dimensions (df and d ). Our
results confirm this scaling with time, similar to the critical cluster. The scaling exponent (spectral
dimension) is numerically calculated, and it is found to be d, = 1.23, while the scaling conjecture
predicts a value of 1.19, suggesting that there are uncertainties in the df and d~ values. This
value is also smaller (by about 5%%uo) than d„ the spectral dimension on the full percolation cluster,
suggesting that the walk is less efBcient on the backbone. Previous estimates of the d suggested
that the walk should be more efBcient on the backbone. We investigate this apparent contradiction
by calculating and comparing the full distributions of S~ for the backbone and the full percolating
cluster. We investigated a few higher moments of this quantity and we found that they exhibit
constant-gap scaling, similar to the percolation cluster. The backbone considerations help our un-
derstanding of the difFusion on the percolation cluster, especially the contribution of the dangling
ends and the ramified parts of the structure, which are so characteristic of percolation at criticality.

PACS number(s): 05.40.+j

I. INTRODUCTION

The compactness and ramification of lattice clusters
at the critical percolation threshold have become well
known, especially in the last fifteen years with the re-
newed interest on the fractal character of the structure
and dynamics of such entities [1,2]. A remarkable result
is that diffusion slows down at the critical point, as the
usual properties scale with exponents distinctly differ-
ent than the usual lattices [1,2]. This is, of course, due
to the distinct geometrical character of a ramified struc-
ture, and has been convincingly explained. Additional
insight and information can be acquired by examining
the diffusion properties on the backbone of the percola-
tion cluster [3—12]. As the name suggests, the backbone is
a subset of the percolation cluster formed by removing all
dangling ends, branches, etc. that are not necessary for
maintaining the connectivity of the structure throughout
the lattice. But it spans the whole lattice similarly to
the percolation cluster. It has considerably fewer Quc-
tuations, exactly because fluctuations are mainly due to
those parts of the percolation cluster that are now re-
moved. If the ends of the lattice are placed on a po-
tential difference, the backbone is the set of bonds that
carry current continuously. For this reason, it has been
suggested that the backbone model can be used for Quid
flow in porous media [12]. Additional applications may
include the conductivity of random systems [13,14].

The backbone is a &actal structure. Its fractal dimen-
sion has been calculated in the past for two-dimensional
lattices as d& ——1.60, and it is considerably different
than the &actal dimension of the percolation cluster,
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which is dy = 1.895 [1,2]. This suggests that for in-
creasingly larger lattices the backbone makes up only
a small percentage of the original critical cluster, since
most of it has been removed. Nevertheless, because of its
long-range connectivity it is important to fully explain
its dynamics. From random-walk calculations the walk
dimension has been estimated to be about d = 2.69
[1]. This is also diferent than the well-known value of
d on the percolation cluster, d = 2.87, and it implies
longer end-to-end distances on the backbone. We can
predict the value of the spectral dimension on the back-
bone, d, , by employing the equation connecting the
spectral dimension with the fractal and walk dimensions,
i.e. , d, = 2dg/d, which now becomes dBB = 2dB&s/dB+.

Using the values of d~ ——1.60 and d = 2.69 we get
d, = 1.19. This raises the question of the efFiciency of
the random walk on the backbone. By the term efEciency
we mean the ability of the moving particle to get further
away from the point of origin, and thus visit more sites.
A strict definition of the efficiency e is e = S~/N, and,
thus, one expects that when the end-to-end distance is
longer, this would imply a larger e value. The d+ value
suggests that the walk is more eKcient on the backbone
than on the percolation cluster. The d, value suggests
the opposite, i.e., the walk may be less eKcient. In the
present work we try to clarify this apparent contradiction
by calculating the complete distributions of the moni-
tored quantities, and thus rationalize on this effect. We
first calculate numerically the number of sites visited,
SN, in order to verify the scaling conjecture through the
relation SN ~ N" / . We also compare our calculated
value to the predicted value for d, . Our calculations
give a value of d, = 1.23, which is slightly higher than
predicted.

In the second section we explain the algorithm used
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to construct the backbone, and in the third section we
present the results and conclusions.

II. METHOD OF CALCULATION

The construction of the backbone structure is per-
formed following techniques reported earlier in the lit-
erature [7]. First, the percolation cluster is made at the
critical threshold, p = 0.593 for the two-dimensional
square lattice. Then the largest cluster is isolated using
the cluster multiple-labeling technique [15]. Eventually,
the backbone is isolated from the percolation cluster by
use of the "burning algorithm" [7]. In this method two
endpoints Pi and Pq are chosen, which must be as far
apart as possible in the percolation cluster, on diago-
nally opposite corners. Then three steps are followed.
(a) Starting at point Pi, the cluster "burns" by exam-
ining all its neighbor sites and assigning specific index
values, which increase by +1 at every step, and which
denote the distance of the site from the point of origin
Pi. This technique is well known, and it is used as a
model for describing forest fires, or a model for finding
the nearest-neighbor distance of points in a disordered
medium. This step ends once the opposite point P2 is
found and assigned its index value. (b) In the second
step, burning starts at P2 and only those sites can be
burned which have a smaller index value than the value
of the site burned in the previous time step. This burn-
ing ends once point Pi is found. (c) In the final step, one
burns all the loops that have been formed in the previous
two steps (loops which have been recorded). Again, as
in the second step, a site can only be burned if its index
value is smaller than the value of the site burned in the
previous time step. For a given loop, it becomes part
of the backbone only if the backbone can be reached in
more than one way. If it is reached only via one path
this means that the loop leads to a dangling end, and it
is not included. When reached in more than one way,
all the sites burned are added to the growing backbone.
This last step must be repeated several times until no
more parts can be added to the backbone. Once all three
steps are finished the backbone is isolated and complete.
Cyclic boundary conditions are used at the ends of the
lattice so that if two sites at opposite ends both belong
to the backbone they can communicate.

Random walks are performed on the backbone in the
usual fashion [1], with the restriction now that the parti-
cle remains on the backbone structure. The "blind ant"
model is used for time-keeping purposes. The end-to-end
distance is monitored as a function of time by keeping
track of the particle displacements in the four directions.
The number of sites visited is also monitored as in pre-
vious studies [1]. It is worth noting that for the values
of parameters used in this study most of the computer
time is used to produce the backbone structure, while
production of the percolation cluster and performing the
random walks take up only a small fraction of computer
time.

III. RESULTS AND DISCUSSION

The fractal dimension of the backbone is first calcu-
lated by use of lattices of several difFerent sizes. We use
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FIG. 1. Mean-square displacement, (A ), (q = 1), and
two higher moments vs time for random walks on the back-
bone structure at the critical percolation threshold p = 0.593
for two-dimensional lattices in a log-log. The size of the lat-
tice is 250x250. 10000 realizations were carred out on ten
diferent structures.
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lattices of sizes from 10x10 up to 250x250. By the stan-
dard method of plotting the mass vs linear size in log-log
form we find a fractal dimension of d&

——1.62, which
is in very good agreement with the reported literature
value of d& ——1.60 + 0.05 [1]. We do not include details
or plots of this calculation, since it was performed only to
verify the validity of the algorithm for the construction
of the backbone.

We first investigate the behavior of the end-to-end dis-
tance as given by the mean-square displacement (A2) as
a function of time, in order to recover the proper scal-
ing exponent values. In Fig. 1 we plot in log-log form
the (B ) vs time, as well as two higher moments. The
line for the average value (q = 1) produces a slope of
0.74, leading to a random-walk dimension of d = 2.70,
in reasonable agreement with the most recently reported
value of 2.69 + 0.02 [1]. We also estimate our uncertainty
in this value to be of the same order of 0.02. This value
of 2.70 is about 6% smaller than the d = 2.87 value
for walks on the regular percolation cluster at the critical
point. This reduction signifies the trend that the particle
"goes further" on the backbone than on the percolation
cluster. This is because on the percolation cluster the
particle spends time on the dangling bonds, on branches,
the dead ends, etc. , i.e., on isolated parts of the struc-
ture that consume time and restrict the span of the walk.
On the other hand, on the backbone, by definition these
particular structural patterns do not exist, so that the
particle is free to move on the underbedding structure.

The same calculation is given by the S~ property. Fig-
ure 2 is the counterpart of Fig. 1. The slope of the first
moment, q = 1, gives a value of 0.615 leading to a spec-
tral dimension of d, = 1.23 + 0.02. This value is about
5% smaller than the spectral dimension for walks on the
percolation cluster, which is d, = 1.31 + 0.02. It again
signifies the difFerent character of the motion; since in
the backbone, there are no new sites to visit on the iso-
lated branches, the particle spends more time revisiting
the same sites again and again, eventually leading to the
reduction of the spectral dimension. We see here that
we have two opposite trends, and the natural question to
ask is which one predominates. The results from the end-
to-end distance show that on the backbone the particle
moves further away from the point of origin. This would
allow for more new sites to be visited. But the spectral
dimension data show that this does not happen. The new
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FIG. 2. A plot of the mean number of sites visited, (S~),
(q = 1) and two higher moments vs time, as in Fig. 1.

FIG. 4. The probability distribution of the S~, similarly
performed as in Fig. 3.

sites that are visited by the larger span of the walk are
compensated by the sites that are on the branches that
are now lost, and eventually fewer sites are visited on the
backbone than on the percolation cluster.

A point to make is that the values of the scaling ex-
ponents are good asymptotically at very long times, as
is usually the case. This can be easily seen in Figs. 1
and 2, for the curves q = 1. The above-mentioned values
correspond to the slope at the interval 1000—10 000 steps.
One can see that at earlier times the slope is higher in
Fig. 1 and smaller in Fig. 2, as expected. The same trend
holds for the higher moments.

To probe this question in more detail, we form the com-
plete distribution of B and S~ and compare them to the
equivalent distributions of the percolation cluster. These
are given in Figs. 3 and 4. Figure 3 for the B distribution
clearly shows that for long B, here B ) 30, the backbone
curve is considerably higher than the percolation curve,
leading to a smaller walk dimension. Of course, the max-
imum is lower in order to normalize to the same value.
The spikes close to the maximum value are of no special
significance, as they are due to the fact that the B values
are computed from the square root of B, and in order to
form the distribution (binning), with integer B only, we
round them off to the nearest integer. This loses some
accuracy, especially at low B value, i.e. B ( 30, causing
this spiking.

Figure 4 is the complete distribution of the S~ quan-
tity for the backbone and the full percolation cluster.
The results are equivalent to those of Fig. 3. For small
S~ values the distribution is higher for the percolation
cluster, meaning that for specific small S~ values more
walks are confined at the dangling ends than on the back-
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FIG. 3. The complete probability distribution of the dis-
tance R, the displacement from the origin, for walks on the
percolation cluster at criticality and on the backbone of the
percolation cluster. Calculations were done for 10000 steps,
and one million realizations were used for each case (using ten
different structures).

bone. This is compensated by the lower maximum value,
so that again the two curves normalize to the same quan-
tity.

Figures 3 and 4 unequivocally suggest that the expo-
nents d and d, are different on the backbone than on
the percolation cluster. The difference is small, of the
order of 5—6%, but this is also clearly shown from the
distribution of the measured quantities. The interesting
observation is that one exponent (slope) is higher while
the other one is lower (the R quantity is enhanced while
the S~ quantity is reduced). As stated earlier, the pre-
dicted d, value is 1.19, while our calculated value is
d, = 1.23. The difference is barely within the nominal
uncertainties that these quantities carry, which is esti-
mated at +0.02 for each quantity. This suggests that
there may be a slightly higher uncertainty than sug-
gested by the reported literature values. Some prelim-
inary data [16] from an independent calculation of d,
using density-of-states considerations and solution of the
energy equation, give also a value of d, = 1.23+ 0.02,
in excellent agreement with the present study.

Also of interest is the question of the higher moments
of the B and S~ quantities, which are given in Figs. 1
and 2, q = 2 and q = 3, for the second and third moment,
respectively. From Fig. 1 we get a slope of 1.48 (q = 2)
and 2.21 (q = 3), which are obviously 2 and 3 times
higher, respectively, than the q = 1 slope. Prom Fig. 2 we

get a slope 1.22 (q = 2) and 1.83 (q = 3), again with the
same conclusion. We remark that both these quantities
exhibit constant gap scaling for the backbone structure
rather than multifractal character. The situation is the
same for percolation clusters, and one would not expect
drastically different behavior at this point.

Summarizing, we calculated a critical exponent for the
S~ quantity on the backbone structure, and found a
value of d, = 1.23. This suggests a lower visitation
rate as compared to the percolation cluster at criticality,
and this is due to the absence of the dangling bonds in the
backbone cluster. The comparison with the end-to-end
exponents help once again to elucidate the contribution
of these characteristic structural parts in the percolation
problem.
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