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We study the generalized Korteweg —de Vries (KdV) equations derivable from the Lagrangian
( )'L(l, p) = J [

—y p~ —
&~i& ~~ + o.(&p )"(rp ) ]dx, where the usual fields u(x, t) of the generahzed KdV

equation are defined by u(x, t) = y (x, t). For p an arbitrary continuous parameter 0 ( p ( 2, l =
p+ 2 we find soliton solutions with compact support (compactons) to these equations which have
the feature that their width is independent of the amplitude. This generalizes previous results which
considered p = 1, 2. For the exact compactons we 6nd a relation between the energy, mass, and
velocity of the solitons. We show that this relationship can also be obtained using a variational
method based on the principle of least action.

PACS number(s): 03.40.Kf, 47.20.Ky, 52.35.Sb

Recently, Cooper et al. [1] obtained compacton so-
lutions to a generalized sequence of Korteweg —de Vries
(KdV) equations of the form

ut = u~u + (x[2 zu«u+ 4pu ur, 'Q«

+p(p-1) " '( *)']

where n is an arbitrary continuous, real parameter. We
find that this class of trial wave functions yields the exact
relationship (2) as well as giving an excellent global ap-
proximation to the compacton, except at the end points.

Following I, we consider the traveling wave solution to
Eq. (1) of the form

E = cMj(p+ 2) (2)

for the case where t = p+ 2 and 0 ( p & 2. In particular,
they obtained compacton solutions (i.e. , solitary waves
with compact support) for the cases p = 1, 2. In [1],
hereafter referred to as I, it was shown that the widths of
the compactons were independent of the amplitude and
that all the solutions to these equations obeyed the same
first three conservation laws as found in the KdV case;
namely, area, mass, and energy. In I it was also found
that the energy, mass, and velocity of the compactons
could be simply related for the integer values of p studied.
The purpose of this Brief Report is to extend the work
done in I to noninteger values of p. That is, we show
that for arbitrary continuous values of p, 0 ( p & 2,
there exist compacton solutions to the above equation.
We obtain the explicit expressions for the solitons and
determine their mass (M) and energy (E) and show that

(* t) = f(~) = f(*+ ') .

As shown in I, the function f satisfies for l = p + 2

(4)

C g2
f/2 fz —p

(P + 1)(p + 2)

On using the ansatz

f(() = P cos (7() (6)

(c(p+ 1)(p+ 2)

)
p(

( V~4cr(p+ 1)(p + 2) )
(7)

in Eq. (5), we then obtain the following one-continuous-
parameter family of compacton solutions:

where t- is the velocity of the soliton. We also consider
the class of variational wave functions of the form

u„(x, t) = A(t) exp [
—P(t)~x —q(t)~ "I,

where

p 7r

V 4 (& + 1)(&+ 2)
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Note that for ajl these solutions, the width is indepen-
dent of the velocity c of the compacton. For p = 1, 2 we
immediately recover the solutions obtained in I by choos-
ing n = 1/2, 3, respectively. The mass M and energy E
of these solutions are easily calculated. We find

(2c) 2/p 1/2
[( + 1) ( + 2)]2/p+1/2 ( /p / )

p r(4/p+ 1)

1
(2 )'" ' "[(&+I)(&+2)]'"+' '

p(p+ 2).r'(2/p+ 1/2)
r(4/p+ 1)

Z(n, m): u, + (u ).+ (u")...= O, (Io)

has the following solutions for arbitrary noninteger m =
n:

and hence the relation (2) between E, M, and c follows
immediately.

We can also study these solitary waves in the varia-
tional approximation defined by Eq. (3) as discussed in
I. Following the arguments in I and using l = p+ 2 we
again discover that the soliton width P is independent of
the mass M for arbitrary p. We also find that for ar-
bitrary p we exactly satisfy the relationship (2) for any
value of the variational parameter n. Minimizing the ac-
tion gives us the optimum value of n for each p and again
we find for the optimal n excellent numerical agreement
for the conserved quantities and good agreement for the
global compacton profile except near the places where
the true compacton goes to zero. As a particular exam-
ple for the case p = 4/3 we find that the exact energy (in
units of M) is 0.0245277, whereas the variational result
is 0.024 417 3, which is obtained at n = 1.199. In Fig. 1
we compare the exact and variational expressions for the
soliton solutions for. the case M = 1, and n = 1.

The generalized sequence of KdV equations of Rosenau
and Hyman [2] are very similar to those of Eq. (1); thus
we expect (and also find) that a similar one-continuous-
parameter family of compacton solutions also exists in
their case when in their notation m = n and 1 ( m ( 3.
The compacton equation of Rosenau and Hyman [2],
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FIG. 1. u, with n = 1.199 and u,„,t; for p = 4/3, M = 1,
and o. = 1.
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= x —ct.

Although the Rosenau-Hyman equation does not have a
conserved Hamiltonian associated with a Lagrangian, it
admits the two conservation laws:

Q = u"+'dz . (12)

—1) r (~+ )r (~+ + -)
I ) r4( +1 )r(3 +1) (13)

The Rosenau-Hyman equation also admits two further
conservation laws which are discussed in [2].
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It is straightforward to show that these two conserved
quantities are related by

Q2 ——cQ', j(m),
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