PHYSICAL REVIEW E

VOLUME 48, NUMBER 6

DECEMBER 1993

Initial and boundary conditions for the lattice Boltzmann method

P. A. Skordos
Center for Nonlinear Studies, Los Alamos National Lab, B258, Los Alamos, New Mexico 87545
and Massachusetts Institute of Technology, 545 Technology Square, NE43-432, Cambridge, Massachusetts 02139
(Received 3 December 1992; revised manuscript received 27 August 1993)

An alternative approach of implementing initial and boundary conditions for the lattice Boltzmann
method is presented. The basic idea is to calculate the lattice Boltzmann populations at a boundary node
from the fluid variables that are specified at this node using the gradients of the fluid velocity. The nu-
merical performance of the lattice Boltzmann method is tested on several problems with exact solutions
and is also compared to an explicit finite-difference projection method. The discretization error of the
lattice Boltzmann method decreases quadratically with finer resolution both in space and in time. The
roundoff error of the lattice Boltzmann method creates problems unless double-precision arithmetic is

used.

PACS number(s): 02.70.—c, 05.20.Dd, 47.15.—x, 51.90.+r

I. INTRODUCTION

The lattice Boltzmann method is a numerical scheme
for simulating viscous fluids that is motivated by kinetic
theory [1-7]. A short description of the method is as fol-
lows. The method represents the state of the fluid at a
computational node using a set of real numbers which are
called populations and are analogous to the microscopic
density function of the Boltzmann equation. The popula-
tions are convected from one lattice site to another in
discrete time steps, and are relaxed towards local equilib-
rium between every convection. The relaxation step or
collision operator conserves mass and momentum (and
energy for thermal models) just like a particle collision in
kinetic theory.

The mapping from the populations F; to the fluid vari-
ables p, V., V, is a straightforward summation [Eq. (3) of
Sec. II] and is performed in every step of the computa-
tion. By contrast, the inverse mapping from the fluid
variables p,V,,V, to the populations F; is somewhat
tricky to compute, and has not received much attention
for computational purposes. However, it is easy to see
that if a good algorithm for calculating the inverse map-
ping were known, it could be used to implement initial
and boundary conditions for the lattice Boltzmann
method. This paper presents a method for calculating
the inverse mapping that is accurate and easy to use, and
demonstrates that this method provides accurate initial
and boundary conditions.

In theory the inverse mapping can be obtained from
the Chapman-Enskog expansion, but in practice addition-
al manipulations are needed to employ the truncated
Chapman-Enskog expansion successfully. These manipu-
lations and the resulting equations are discussed in Sec.
IV B. Aside from the Chapman-Enskog expansion, there
is another way of calculating the inverse mapping that
uses an extended collision operator (Sec. IV A). This ap-
proach is very intuitive and very general, and it is how
the author originally discovered the recommended
method for calculating the inverse mapping. The two ap-
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proaches however, the Chapman-Enskog expansion and
the extended collision operator produce identical results
in the special case that is most useful in practice and is
referred to here as the hybrid method [8].

The numerical tests of this paper include both initial
and boundary value problems of incompressible viscous
fluid flow. The accurate implementation of boundary
conditions (nonperiodic boundaries and/or internal obs-
tacle boundaries) is very important for practical scientific
and engineering computations. The accurate initializa-
tion of the fluid flow is mostly important for numerical
testing, and also for time-dependent flows when it is
desired to calculate how an initial velocity field (which is
chosen arbitrarily or perhaps is obtained from wind-
tunnel measurements) evolves in time immediately after
start up. The initial value problem is not very important
for studying long-term behavior and steady-state flows
except for avoiding initial errors such as large density
waves that may delay the approach to the correct solu-
tion.

Traditionally the use of an accurate inverse mapping
for the lattice Boltzmann populations has been avoided
both for initial value and for boundary value problems.
In the case of initial conditions, when the fluid density
and velocity p,V,,V, are specified at time zero and the
goal is to calculate p,V,,V, at later times, the popula-
tions F; can be initialized equal to the equilibrium values
F71 which are known in terms of p, ¥, V. The error that
results from this approximation can be overcome by dis-
carding the first few steps and measuring the parameters
of the flow afterwards (recalibrating the solution). This is
often done in the literature without further discussion. A
problem with this approach however is that it ends up
solving a slightly different problem than the original
problem defined by the original p,V,,V,. By contrast,
traditional methods such as finite differences do not need
any recalibration. Thus, to put the lattice Boltzmann
method on equal footing with other methods (for numeri-
cal testing in particular) it is desirable to have an accu-
rate means of calculating the populations F; from the ini-
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tial values of p, V., V.

In the case of boundary conditions there are techniques
that avoid the inverse mapping as in the case of initial
conditions. In particular, for solid wall boundaries the
velocity of the fluid can be forced to zero by imposing a
no-slip bounce back of the populations F; (see [9] for a
discussion of the actual location of the wall as a function
of the simulation parameters). In the case of boundary
conditions with nonzero velocity, such as the driven cavi-
ty problem ([10], p. 199), the velocity at the boundary can
be “controlled” by inserting momentum (forcing) in every
step as is done in lattice-gas automata. This type of forc-
ing is somewhat ad hoc however, and is often inaccurate,
and requires recalibration of the simulation parameters.
In the case of an arbitrary velocity specification at the
boundary, such as the fluid flows of Sec. VII, the forcing
techniques and the recalibration become very difficult.
Thus it is desirable to have an accurate means of calculat-
ing the populations F; at a boundary node from the fluid
variables p, V,, v, that are specified at this node.

In this paper we show how to calculate accurately the
populations F; at any node from the fluid variables
P Vs Vy that are specified at this node. We have tested
our method in the case of initialization and in the case of
boundary conditions with arbitrary velocity and with
zero velocity, and we have obtained good results in all
cases. For exposition we use the hexagonal seven-speed
model with the 1/7 collision operator (Refs. [1-4]), but it
is straightforward to apply our results to other lattice
Boltzmann schemes. In the Appendix we apply our re-
sults to the orthogonal nine-speed model. We present
computer simulations using both the hexagonal seven-
speed model and the orthogonal nine-speed model, and
we compare the two models in terms of numerical accu-
racy. In the next two sections we review the hexagonal
model. Then we describe several ways of calculating the
populations F; from p, V,,V,, including our recommend-
ed method. In Sec. V we discuss the numerical roundoff
error of the lattice Boltzmann method, and show that
roundoff error in the equilibrium population formulas
causes problems unless double-precision arithmetic is
used. In Secs. VI and VII we discuss our simulations of
initial-value problems and boundary-value problems. We
compare the lattice Boltzmann method against an expli-
cit finite-difference projection method, and we also
demonstrate that the lattice Boltzmann method has
second-order convergence both in space and in time.

II. HEXAGONAL SEVEN-SPEED 1/7 MODEL

We consider a hexagonal lattice with six moving popu-
lations denoted by F;, i =1,...,6 and one rest-particle
population denoted by F,. We suppose that the fluid
variables p, V,, ¥V, are known at every node at time zero,
and the goal is to calculate p,V,,V, at later times. At
startup the populations F; are initialized from the given
fluid variables p,V,, V, (see Sec. IV). After initialization,
successive steps of relaxation and convection are per-
formed to calculate the fluid variables p,V,,V, at later
times. The relaxation and convection steps are described
by the following formulas:
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Fi(x+e;At,t +At)=F;(x,t)+(—1/7)
X[F;(x,t)—Ff(x,1)] ,
Fo(x,t +AD)=F(x,6)+(—1/7)[Fo(x,t)—F(x,1)] ,
i=1,...,6, (1)

4Atv

+
Ax?

=

[SIE

The relaxation parameter 7 is chosen to achieve the
desired kinematic viscosity v given the space and time
discretization parameters Ax, At. The vector e; stands
for the six velocity directions of the hexagonal lattice

os 2m(i —1) sin 2m(i —1)
6 ’ 6

X
= (2)
€T A

The velocity V(x,¢) and density p(x,?) are computed
from the populations F;(x,?) using the relations

6
p(X,t): 2Fi(x,t) ’
i =0
' ] 3)
p(x,t)V(x,t)= 3 F;(x,t)e; .
i=1
The variations of density around its mean value (spatial
mean which is constant in time) provide an estimate of

the fluid pressure P(x,t), according to the following
equation:

P(x,t)=cp(x,t)—<{p)] . 4)
The speed of sound is
¢, =V 3wy(Ax /At) , (5)

where the coefficient w,, is discussed below. The equilib-
rium populations Ff9(x,t) are given by the following
equations:

Ff(x,t)=p(x,)[wy+w,(e;-V)+wy(e;-V)ie; V)
+w,,(V-V)],

F{(x,t)=p(x,t)[zo+2z,(V-V)], (6)

6w, +z,=1,

w;=1/(3¢?), wy=2/(3c*), wy=—1/(6c?),

zyy=—1/¢2, c=Ax/At .

The above coefficients are chosen so that the Chapman-
Enskog expansion (see Sec. III) of the evolution equation
(1) matches the Navier-Stokes equations. In particular,
the coefficient w,; is determined from momentum conser-
vation, the coefficient w,, is determined from Galilean in-
variance (i.e., the convection term (V, 0V, /dx
+V,0V, /dy) must appear in the Chapman-Enskog ex-
pansion with a constant factor equal to one), the
coefficient w,; is chosen to eliminate the (V-V) depen-
dence of the pressure, and the coefficient z,, is chosen to
eliminate the (V-V) term in the mass conservation equa-
tion. There is some freedom in choosing the remaining
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coefficients wg and z,, but they must satisfy 6w, +z,=1
to conserve mass. In our simulations we use the balanced
choice wy =z, =1 unless indicated otherwise.

The computational cycle of the lattice Boltzmann
method is organized as follows: The current lattice popu-
lations F;(x,t) are used to calculate the velocity field
V(x,t) and density field p(x,¢) according to Eq. (3). These
fields are the numerical solution at time ¢, and they are
also used to compute the equilibrium populations
F;9(x,t) which are needed to advance the solution. The
equilibrium populations Ff9(x,z) are used to relax the
F,(x,t) into “relaxed” populations which are then con-
vected according to Eq. (1) to produce the lattice popula-
tions at the next time step. Then the cycle repeats. An
implementation issue regarding roundoff error is dis-
cussed in Sec. V. Boundary conditions are discussed in
Secs. IV and VII.

III. CHAPMAN-ENSKOG EXPANSION

The Chapman-Enskog expansion is outlined here. The
goal of the Chapman-Enskog expansion is to derive a set
of partial differential equations in terms of p and pV that
approximate the behavior of the lattice Boltzmann fluid
in the limit of Ax, At going to zero, with the ratio
Ax /At =c constant, and the ratio (V /c) small where V
denotes the macroscopic speed of the fluid. In particular,
we want to derive the mass continuity equation and the
Navier-Stokes momentum equations. The first step is to
Taylor expand the population variable F;(x+e;At,
t+At) in the evolution equation (1) around the point
(x,t). This produces an equation whose left-hand side is
a Taylor series and whose right-hand side is equal to
(—1/7)(F;—Ff£%). This equation has the following form
to first order in the derivatives:

oF;
——te;"VF;
t

Ata

o =(=1/1)F,—F9) . (]

The second step is to combine the Taylor series equation
(7) with the mass and momentum conservation relations
[Eq. (3)] to derive three equations corresponding to mass
and momentum conservation. The left-hand side of these
equations is a Taylor series, and the right-hand side is
zero because the equilibrium populations F{9 are chosen
to satigfy mass a6nd momentum conservation (for exam-

ple, 3 —oF; =3 =oF7%). The three Taylor series that are
derived in this way contain partial derivatives of quanti-
ties that are sums and tensors of the populations F;.
These equations have the following form to first order:

6 6
9> F; /at+v. SeF |+ =0,
i=0 i=1
(8)
6 6
=1 i=1

If we truncate the mass equation to first-order terms in
the derivatives, the resulting equation contains only sums
of F; and no tensors. The sums of F; can be converted
easily to p and pV, and this produces the mass continuity
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equation. The momentum equation must be truncated to
second-order terms in the derivatives to produce the
Navier-Stokes equations. This is necessary because
second-order spatial derivatives contribute to the viscosi-
ty of the fluid. Second-order terms are not shown in Eq.
(8) but they are easy to write [11].

A complication arises with the pressure tensor
(X ;e;¢;F;) which appears in the momentum equation (8).
The pressure tensor cannot be expressed in terms of p and
pV without introducing an approximation of the F,; in
terms of p and pV. This approximation is necessary in
the mass equation also if we include higher-order terms
in the mass equation. The approximation of the popula-
tions F; is the third step of the Chapman-Enskog expan-
sion.

The Chapman-Enskog expansion approximates the
populations F;(x,t) with the equilibrium populations
Ff4x,t) to zero order, and with the sum
FfUx,t)+F{V(x,t) to first order. The correction term
F{Y(x,t) is discussed below. The approximation of F, ; can
be viewed as another series expansion that is used in
parallel with the Taylor series expansion. The accuracy of
the F; approximation improves as (¥ /c) becomes small-
er. To retrieve the Navier-Stokes equations, it is
sufficient to calculate up to the first-order approximation
F,Fq(x,t)+Fi(1’(x,t). However, we must calculate up to
second-order terms in the Taylor series, as stated previ-
ously, in order to retrieve all the viscosity terms.

The correction term F{" is computed from Ff9 using
the evolution equation (1) Taylor expanded to first order
with the F; replaced by the zero order estimate Ff9 as fol-
lows:

Ffd

FiV=—71At 5

+e,-'VF,-°q] : 9)

Now we can use the estimate Ff(x,t)+ F(!(x,t) for the
populations F; in the momentum Eq. (8), and we can also
express Ff in terms of p and pV to derive two partial
differential equations in terms of p and pV corresponding
to momentum conservation. By choosing the parameters
of the equilibrium population formulas appropriately, we
can make the momentum equations match the Navier-
Stokes equations. For example, the parameters of Eq. (6)
produce the following x-momentum equation (to second-
order terms),

AHpV,) O(pV.V,) d(pV.V,)
P + P + P y
ot ox oy
3(3c2wyp) .
= 2P v pv, )+ 2V )
ox dx
2
v="E 8At(2'r—-l) , U=2zgv .

Higher-order terms (which consist of higher than
second-order derivatives of velocity and density)
represent deviations from the Navier-Stokes equations,
and they are discussed at some length in references
[11,12]. This concludes our summary of the Chapman-
Enskog procedure.
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IV. CALCULATING THE F; FROM p,V,,V,

We now address the problem of calculating the popula-
tions F; at any node from given values of the fluid vari-
ables p, V,, V), at that node.

First we consider the initial value problem where the
fluid variables p,V,,V, are specified on every node at
time zero, and the goal is to calculate p,V,,V, at later
times. If p is not specified according to compressible
fluid flow equations—for example p is typically assumed
to be constant in incompressible fluid flow —then p must

be computed from the pressure as follows:

p={p)+ l% P, an
CS

where ¢, is the speed of sound, {p) is the constant aver-
age density, and P is the pressure with the constant aver-
age pressure subtracted so that (P)=0. The pressure
can be calculated from the velocity by solving a Poisson
equation if necessary (for example, see Ref. [10], p. 153).
It is very important not to initialize the density to be con-
stant [13]. The density must follow the pressure gra-
dients of the lattice Boltzmann fluid according to Eq.
(11); otherwise large density waves and error transients
may result.

Once the fluid variables p, V,, ¥, are specified correct-
ly, there are several ways of calculating the populations
F; using the fluid variables p,V,,V,. In this section we
describe several methods and in Secs. VI and VII we
compare these methods experimentally. We refer to each
method by keyword names that are inspired by [2]. For
example, the keyword d2q7 denotes 2 space dimensions
and 7 populations per node. First we describe the hybrid
method denoted by d2q7H, which is the recommended
way for calculating the inverse mapping, and then we dis-
cuss the truncated Chapman-Enskog expansion which
also produces the hybrid method after some manipula-
tions.

A. Hybrid method and extended collision operator

The hybrid method is a lattice Boltzmann formulation
that uses both the standard collision operator [Egs. (1),
(3), and (6)] and a new extended collision operator de-
scribed here and denoted by d2q7X.

The idea behind the new collision operator is to include
additional terms in the collision operator that are based
on the gradients of the fluid velocity, so that the viscosity
can be controlled independent of the relaxation parame-
ter 7. The terms used here are motivated by equation
2.5.1 of Ref. [11].

The extended collision operator is used in the same
way as the standard collision operator; namely the evolu-
tion equation and the conservation relations [Eqgs. (1) and
(3)] remain unchanged. The equilibrium population for-
mulas of the extended collision operator, denoted F*°9,
are as follows:
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Fred(x,t)=p(x,t)[wo+w,(e;-V)+wyle;-V)(e; V)
+w21(V-V)]
+w31(e,~-V(e,~-pV))+w32(V~pV) ’

i=1,...,6, (12)

F5e(x,0)=p(x,)[2+25(V-V)]+25,(V-pV),
3ctwsyy + 6wy, +25,=0 .

The velocity gradients in the above equation (the terms
with coefficients w;;,ws,,2z3,) are computed using finite
differences unless they are known by other means; for ex-
ample some of the velocity gradients may be known at
the boundary nodes (see Sec. VII). The coefficients
Wo, W1, Wq0,Wy1,29,25; have the same values as in the
standard collision operator d2q7 [Eq. (6)]. It is worth
noting that the velocity gradient terms of Eq. (12) can be
viewed as a correction to the equilibrium population for-
mulas as follows:

Fi*eq:Fieq _|_Fi(lX) ,
(1) (13)
F; V'=w;(e;-V(e;pV))+w;,(V-pV) .

This view is useful in the next section to relate the ex-
tended collision operator to a truncated Chapman-
Enskog expansion.

The shear and bulk viscosities of the extended collision
operator are given by the following formulas (calculated
using the Chapman-Enskog procedure):

2 3ctw
*='ﬂ(27*—1)"‘—3l R
¢ (14)
e CAL._ ., 304w31 2
= 27*—1)zy— 2 —3c*w;, .

We denote by 7* the relaxation parameter of the extend-
ed collision operator to distinguish it from the relaxation
parameter 7 of the standard collision operator (and ac-
cordingly for other parameters). When 7* is set equal to
one, the coefficient wj; is chosen to achieve the desired
shear viscosity given the discretization parameters Ax, At.
The coefficient w3, is chosen to achieve the desired bulk
viscosity, and the coefficient z3, is chosen to enforce the
relation (3c?w;; +6w;, +25,)=0 which corresponds to
mass conservation.

In the case of the hybrid method (when the standard
and extended collision operators are used in the same
computation), the bulk viscosity of Eq. (14) is chosen
equal to the bulk viscosity of the standard collision
operator given by Eq. (10) (similarly for the shear viscosi-
ty). Also the relaxation parameter 7* of the extended col-
lision operator is set equal to 1.0. In this special case the
coefficients w;;,w;,,23, simplify as follows:

_ (1—7)At
YTy
Wiy = —'wO( 1 _‘T)At )

Z3,=—zo(1—7)At .
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The extended collision operator (d2q7X) controls the
viscosity independent of the relaxation parameter 7* so
that 7* can be set equal to one. In the special case of
7*=1.0 the extended collision operator replaces the F;
with F*4 in each step, and thus the F; can be set exactly
equal to F**1 at startup and at the boundary nodes.

The extended collision operator is accurate when im-
plementing initial and boundary conditions, but it is not
accurate when iterated many times. The reason is that
the extended collision operator controls the viscosity us-
ing the gradients of the fluid velocity, and the gradients
are computed using finite differences. The inexactness of
finite differences produces an error in viscosity which
means that the computed solution decays at a slightly
different rate than desired. The error accumulates with
successive iterations, and the method does not approxi-
mate the solution as Atz goes to zero (see Fig. 3 in Sec.
VIB).

The best of both collision operators can be achieved,
however (extended and standard), by combining the two
operators. We observe that two different collision opera-
tors having the same transport coefficients (shear and
bulk viscosity in our case) can be used interchangeably in
the same computation. We have verified experimentally
that switching between the different but equivalent col-
lision operators incurs only a small error. By combining
the two collision operators we get a hybrid method,
denoted by d2q7H, where the extended collision operator
is used at the boundary nodes all the time, and at every
node during the first step of the computation. After the
first step, the standard collision operator is used at the
inner (nonboundary) nodes.

B. Truncated Chapman-Enskog expansion

An alternative way of deriving the hybrid method is to
employ a truncated Chapman-Enskog expansion and to
perform additional manipulations. We start by describ-
ing the zero order and first order expansions, and then we
show how to modify and simplify the first-order expan-
sion in order to derive the hybrid method.

The zero-order expansion, denoted by d2q7FO0, approx-
imates the populations F; with the equilibrium value Ff9.
As stated earlier this approximation is used very often in
the literature, and it is accompanied by recalibration of
the solution after the first few steps are discarded (initial
transients). In our simulation tests of Sec. VI we do not
perform any recalibration however, because our goal is to
compare the accuracy of calculating the populations F,
from the fluid variables p, V,, V.

The first-order expansion, denoted by d2q7F1, approxi-
mates the populations F; with the Chapman-Enskog ex-
pansion truncated to first order,

F,=F#+F" 16)
Fea

at

F{V=—71At

+e,--VF,-eq] .

By differentiating the equilibrium population formulas
[Eq. (6)], we can get formulas for the derivatives of Ff9in
terms of the derivatives of the fluid variables p,V,,V,.
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The derivatives of p, V,, ¥, are known in some cases (for
example, in our exactly solvable fluid flow problems), but
in general they must be estimated using finite differences.
In our initialization tests of Sec. VI we use finite
differences. In particular, the time derivatives of p, ¥V, v,
are estimated using the Navier-Stokes momentum and
continuity equations, and the spatial derivatives of
PV, V, are estimated using spatial finite differences. We
have also tested the initialization methods of this section
using the exact values of the derivatives, and the results
are qualitatively the same as those reported in Sec. VI.

In Sec. VI we will see that both d2q7F0 and d2q7F1
produce significant errors in initialization. It is a little
surprising that the first-order Chapman-Enskog correc-
tion does not perform well, but there is an easy explana-
tion. We observe that the correction term F'! of Eq. (16)
does not conserve momentum. This means that the ve-
locity field that results from Eq. (16) is different from the
original velocity field. The conservation relations that
correspond to Eq. (16) are as follows:

zF;1>=(v-pV)+%’j— ,
' 17

ApV,) d ApV,V,) o(pV,.V,)
My =_F"x7 4 200 x"x x"y
EFI etx at cs ax ax + ay ’

4

and a similar equation for EiF,»“’e,-y. Therefore mass is
conserved via the macroscopic continuity equation, but
momentum is not conserved. On the other hand, the
above equations suggest an easy way to fix the problem:
We simply add a viscosity Laplacian term so that
momentum will be conserved via the Navier-Stokes
momentum equation. The new (modified) Chapman-
Enskog correction term, denoted by F{'™) is as follows
[14]:
Fa

FM = _ ;A d
! ot

+e; VES+[—v/(3¢2)]V¥e; V) | .

(18)

In our numerical tests of Sec. VI we refer to the above
equation as d2q7F1M. Our numerical tests show that
d2q7F1M is very accurate for initialization purposes. In
practice, however, the d2q7F1IM method is rather
cumbersome to apply because it requires the calculation
of many derivatives, including a time derivative and a La-
placian term.

Fortunately, Eq. (18) can be simplified greatly by
neglecting second-order terms in the Mach number. This
means that only terms up to first order in (V¥ /c) are kept
in the Chapman-Enskog expansion, and terms propor-
tional to (V /c)? are discarded because they are small. In
addition, the time derivatives are replaced by space
derivatives using the macroscopic mass and momentum
equations. Examples of this kind of expansion can be
found in Refs. [15] and [16]. Thus, Eq. (18) simplifies to

F9=_7A¢ éei-V(ei-pV)—wo(V-pV) (19)
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and similarly for the rest particle population
F{1 = —1At[—zo(V-pV)] . (20)

In Sec. VI we shall see that the simplified Eq. (19) is as
accurate as the original Eq. (18) for initialization pur-
poses. We also note that the above formulas look suspi-
ciously similar to the hybrid method that was described
in the last section. In fact, it is easy to verify that Egs.
(19) and (20) produce identical results with the hybrid
method.

If Eq. (19) is used to initialize the populations F; as
F;=Ff+F{'S), and the first relaxation step is performed,
then the resulting populations which are convected
(denoted as F,) are as follows:

Fiz(};'ieq+Fi(‘IS))+(_I/T)Fi(ls) , 1)
F.=F+(1—r)At %(ei-V(efpV))-—wo(V-pV) ,
C

(22)

The above populations are identical to the populations
that are convected after a relaxation step using the ex-
tended collision operator [Eq. (13)] when the simplified
values of w;;,w3,,z;, for the hybrid method are used [Eq.
(15)]. In Secs. VI and VII we will test experimentally the
methods discussed in this section.

V. NUMERICAL ROUNDOFF

This section discusses an implementation issue of the
lattice Boltzmann method that can cause problems if one
is unaware of it. If the lattice Boltzmann method is im-
plemented exactly as described by Egs. (1), (3), and (6),
then the method suffers from roundoff error that grows as
the ratio (V/c) becomes small; that is as (Ax /At) be-
comes large. This is undesirable because large values of
(Ax /At) are useful to improve the accuracy of the lattice
Boltzmann method.

The roundoff error (numerical loss of precision) arises
in the computation of the equilibrium populations using
Eq. (6). This formula is a sum of four terms. If we factor
out the density p(x,t), the first term is a constant
coefficient w, and the remaining terms are proportional
to V /e, (V/c)% and V(V /c)?, respectively (see Table I).
Consequently, when V/c is small, for example
V/c~1073, the terms to be added have very disparate
sizes and their sum suffers a significant loss of accuracy
when the computer aligns the numbers to be added
(about 5 or 6 decimal places when ¥ /c ~1073). If single
precision arithmetic is used (about eight decimal places),
then the loss of five digits is a serious problem.

In Sec. VIC, we will see that the computational error
of the lattice Boltzmann method decreases at first when

TABLE I. The terms of the equilibrium population formula
have different sizes. When they are added together, numerical
roundoff error can be significant.

Term wy w Wy wj

(V/c)? (V/c)?

Size 1 V/c
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the speed Ax /At increases, but after some point the error
starts to increase with higher speeds. For example, in the
Taylor vortex when the maximum fluid speed is 1.0, the
error starts to increase at the rate of (Ax /At)!* when the
microscopic speed (Ax /At) is larger than 300. For-
tunately the error growth disappears when double-
precision arithmetic is used, and this confirms that the
breakdown of the method is caused by numerical round-
off. Furthermore we can estimate that each additional
decimal place of computer arithmetic delays the roundoff
problem in the equilibrium populations by a factor of 10
in the speed Ax/Az. This means that double-precision
arithmetic eliminates the roundoff problem for most
practical purposes.

We also note that apart from using double-precision
arithmetic, there is an algebraic transformation that
reduces the roundoff error in the equilibrium populations,
and it can be used in all cases because it does not involve
any additional cost. The algebraic transformation does
not eliminate the roundoff error completely however; in
general double-precision arithmetic remains necessary.
The idea is to modify the populations F; defined by Egs.
(1), (3), and (6) as follows:

F,=F;—w(p) ,

A (23)
Ffi=Ff—wy(p) ,

where the spatial average density {p) is constant in time
and typically equal to one. The non-moving population
becomes Fy=F,—z,{p). The conservation relations are
modified accordingly,

6
px,t)= 3 Fi(x,0)+{p) ,
i=0

6
p(x,)V(x,t)=S Fi(x,1)e; .
i=1

The new equilibrium population formulas are as follows:

N
FA(x,t)=wy[p(x,t)—{p)]

+p(x,)[w,(e;-V)+w,(e;V)ie;-V)
Fw, (V-V)] . 25)

N
FE(x,0)=z,[p(x,6)—{p) ] +p(X,1)2,, (V-V) .

The new equilibrium population formulas are numerical-
ly better than the original ones because the term that
used to be wyp is now wy(p—{p)). The new quantity
(p—<p?)) is of the order P/(3c?w) and the pressure P is
of the order p¥? as can be seen from the Navier-Stokes
equations. Hence, the expression wy(p—{p)) is of the
order p(¥/c)®. The new formulas compute the same
quantities as the original formulas, and they incur a
smaller loss of precision. Loss of precision still occurs
when the terms proportional to ¥ /¢ and (V /c)? are com-
bined.

VI. RESULTS —INITIAL VALUE

First we test initial value problems. For this purpose
we use the analytic solutions of a decaying Taylor vortex
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and a decaying shear flow in two dimensions with period-
ic boundary conditions. Figure 1 shows the velocity vec-
tor fields of these flows.

The decaying Taylor vortex [17] has the following ana-
lytic solution:
V. (x,y,t)=(—1/A4)cos( Ax) sin(By)exp(—2avt) ,

V,(x,y,t)=(1/B)sin( Ax) cos(By) exp( —2avt) ,

(26)
P(x,y,t)=—(1/4)[cos(24x)/ A*
+cos(2By)/B?*] exp(—4avt) ,
(2)
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FIG. 1. The velocity field of the hexagonal Taylor vortex and
the hexagonal shear flow are shown in (a) and (b), respectively.
Both flows have periodic boundary conditions.
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where the constant a is equal to (4%2+B?)/2, and v is
the kinematic viscosity. The length constants A,B are
chosen 4 =1 and B =2/V'3 to produce the hexagonal
Taylor vortex, and 4 =B =1 to produce the orthogonal
Taylor vortex. The former is used to test the hexagonal
seven-speed model, and the latter is used to test the or-
thogonal nine-speed model. The flow region of the hex-
agonal Taylor vortex is 0<x <27 and 0=y <7V'3, and
can be covered exactly by a hexagonal lattice using
periodic boundary conditions. Similarly, the flow region
of the orthogonal Taylor vortex is 0<x <27 and
0=y =2, and can be covered exactly by an orthogonal
lattice using periodic boundary conditions.

The decaying shear flow has the following analytic
solution:

Ve(x,p,t)=A4 ,
V,(x,y,t)=B cos(kx —kAt)exp(—k?vt) , (27)
P(x,y,t)=const ,

where the constant k is chosen kK =1 so that x varies be-
tween O0=x =27, and the length constants 4,B are

chosen 4 =B =1 so that the horizontal velocity is equal
to the maximum vertical velocity. The vertical extent of
the shear flow is chosen 0<y <7V'3 for the hexagonal
case, and 0=y =27 for the orthogonal case in complete
analogy with the Taylor vortex.

In all of the results reported below the coefficient of
shear viscosity is chosen equal to one, v=1. The mea-
sured error VE denotes the velocity relative error, and is
calculated according to the following formula:

Sve=vil Zlv,—vyl
VE: Xy Xy , (28)
>Ivel >Vl
X,y Xy

where V* denotes the exact analytic solution, and the
sums are taken over the whole grid. In the case of the
Hagen-Poiseuille flow and the oscillating plate problem
(see Sec. VII) where 3 ,|V,*| =0, we use a different nor-
malization as follows:

SV, —Vi+3Iv, -V}

pE=2t — ) (29)
IVl
X,y

Double-precision arithmetic is used in all of the reported
results unless stated otherwise (for example, in Fig. 4).

We define the Mach number M using the maximum
fluid speed at time zero, which is equal to 1.0 for all of
our test cases,

M=1/c,=At/(AxV 3w,) . (30)

We also define the pseudo-Mach-number or ‘“computa-
tional Mach number” M_,

M.=1/c=At/Ax . (31)

We use M, rather than M in our figures because the
discretization error of the lattice Boltzmann method de-
pends on M, rather than M as we will see below. In the
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case of the Taylor vortex, which is a solution of the in-
compressible Navier-Stokes equations, the compressible
effects are kept smaller than the discretization error by
choosing wy,=1. Both the compressible effects and the
discretization error decrease quadratically with M_, and
the choice wy=1 keeps the compressible effects smaller
than the discretization error in the Taylor vortex at least
(see Sec. VIE). In the case of shear flow, which has zero
density gradient and is a solution of the compressible
Navier-Stokes equations, the error is independent of the
Mach number M and it depends only on M.

For the hexagonal seven-speed model the choice wy=1
produces a Mach number that satisfies the relation
M =(1.53M_,)=(1.53At/Ax). For the orthogonal nine-
speed model described in the appendix the choice
yo=wy/4 and wy=21 produces M =1.53M_ also.
Another choice w,=10"%/3 is discussed briefly in Sec.
VID for the purpose of allowing high Mach numbers
with small M, in particular M =10°M,. We also note
that different values of w, are used in Sec. VIE for the
purpose of examining the error of the lattice Boltzmann
method as a function of Ar while keeping the Mach num-
ber constant. In particular the Mach number is kept con-
stant by varying w, in proportion to At? [see Eq. (32)].
This study allows us to distinguish between compressible
effects and the discretization error of the lattice
Boltzmann method.

A. Initialization error

This section compares the different methods of initiali-
zation that are described in Sec. IV and are denoted by
d2q7F0, d2q7F1, d2q7F1M, and d2q7H. We recall that
the simplified first-order Chapman-Enskog expansion
[Egs. (19) and (20)] is identical to the hybrid method
d2q7H, and thus there is no need to test it separately.
Figure 2 plots the error as it develops during the first 10
steps of the simulation. A 30X30 grid is used
(Ax =2m7/30=0.2094). Figure 2(a) plots the error in the
case of the hexagonal Taylor vortex, using Az =0.001
which gives 7=0.5912 for the standard collision opera-
tor. The curves shown correspond to d2q7F0, d2q7F]1,
d2q7F1M, d2q7H (solid, dashed, dotted, dashed-dotted
lines). Figure 2(b) plots the same data using Az =0.025
which gives 7=2.780 for the standard collision operator.
We can see that the first-order momentum-conserving
Chapman-Enskog expansion d2q7FIM and the hybrid
method d2q7H produce very similar results, and they are
the most accurate in all cases. We can also see that the
first-order Chapman-Enskog expansion d2q7F1 that does
not conserve momentum is more accurate than the zero-
order expansion d2q7F0 when <1 and inversely when
7>1. Figures 2(c) and 2(d) plot the same data as Figs.
2(a) and 2(b) for the case of shear flow. The results are
qualitatively the same. The experiments demonstrate
that the hybrid method can be used to initialize accurate-
ly the populations F; from the fluid variables p, V,,V, in
an initial value problem.
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B. Iterating the extended collision operator

This section examines the performance of the extended
collision operator when iterated many times. We recall
that the extended collision operator uses the gradients of
the fluid velocity to control the viscosity. Figure 3 shows
the error in simulating the hexagonal Taylor vortex and
the hexagonal shear flow using a 30X 30 grid. The error
is plotted against M, with At varying, and is calculated at
the final time 7 =1.0 when the maximum velocity of the
hexagonal Taylor vortex is approximately -+th of its ini-
tial value. The curves correspond to the hybrid method
d2q7H, and to the extended collision operator d2q7X us-
ing finite differences to calculate the gradients, and again
to the extended collision operator d2q7X using the exact
solution to calculate the gradients (solid, dashed, dotted
lines). When the curves of Fig. 3 intersect at M, =0.026,
the relaxation parameter 7 of the standard collision
operator is equal to one, and the coefficients w;;,ws;,23,
of the extended collision operator vanish [see Eq. (15)].
At this point the extended collision operator is identical
to the standard collision operator.

As M, decreases below the value M, =0.026, the error
of the extended collision operator d2q7X using finite
differences to calculate the gradients begins to grow and
approaches relative error one as M, goes to zero (dashed
line). By contrast, the error of the extended collision
operator d2q7X using the analytic solution to calculate
the gradients decreases towards a minimum error (dotted
line) which is determined by the spatial discretization er-
ror of the 30X 30 grid. This shows that the use of finite
differences creates problems after repeated iterations. As
explained in Sec. IV the inexactness of finite differences
produces an error in viscosity which accumulates and be-
comes large after repeated iterations.

The hybrid method d2q7H does not suffer from the
problems of the extended collision operator after repeat-
ed iterations because the hybrid method uses the stan-
dard collision operator at the inner nodes after the first
step (all nodes are inner in this experiment). Figure 3
shows that the hybrid method performs well in the case
of periodic boundary conditions and remains accurate as
M, goes to zero (solid line). We note however that in the
case of nonperiodic boundary conditions the hybrid
method uses the extended collision operator at the
boundary nodes in every step. In Sec. VII we will see
that the use of finite differences at the boundary nodes
does not cause any problems as M, goes to zero, but it
may cause instabilities when M, is large.

C. Roundoff error

Figure 4 compares the error of the lattice Boltzmann
method (d2q7H version) when single-precision arithmetic
is used, when single-precision arithmetic together with
the algebraic transformation of Sec. V is used, and when
double-precision arithmetic is used (dotted, dashed, solid
lines). The data come from simulations of the hexagonal
Taylor vortex with periodic boundary conditions and
30X30 grid. The error is plotted against M, with At
varying and is calculated at the final time 7=1.0. When



48 INITIAL AND BOUNDARY CONDITIONS FOR THE LATTICE . ..

single-precision arithmetic is used and the speed Ax /At
exceeds 300 (therefore M, <0.003), there is a growth of
error that is caused by numerical roundoff. The transfor-
mation of Sec. V together with single precision arithmetic
can reduce the roundoff error but cannot prevent it.
Double-precision arithmetic is necessary to prevent the
error growth in the Taylor vortex for M, <0.003. As ex-
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plained in Sec. V double-precision arithmetic eliminates
the roundoff problem for most practical purposes.

D. Comparison with projection method

This section compares the error of the hybrid method
d2q7H and the error of an explicit finite difference projec-
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FIG. 2. The four initialization methods d2q7F0, d2q7F1, d2q7F1M, d2q7H (solid, dashed, dotted, dashed-dotted lines) are com-
pared using a 30X 30 grid and periodic boundary conditions. (a) and (b) plot the error in simulating the hexagonal Taylor vortex us-
ing At=0.001 and 0.025, respectively (r=0.5912 and 7=2.780). (c) and (d) plot the same data in the case of shear flow.
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tion method in simulating the hexagonal Taylor vortex
and the hexagonal shear flow with periodic boundary
conditions. Both of these flows are defined in the hexago-
nal region 0<x <27 and 0<y <7V'3, which means that
the finite difference projection method must use the
discretization Ay =AxV'3/2. Below we refer to the pro-
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FIG. 3. The extended collision operator is examined after
many iterations. The error is plotted against M, with At vary-
ing, and is calculated at the final time 7"=1.0. The curves cor-
respond to the hybrid method d2q7H, to the extended collision
operator d2q7X using finite differences to calculate the gra-
dients, and again to the extended collision operator d2q7X using
the known analytic solution to calculate the gradients (solid,
dashed, dotted lines). (a) shows the error in simulating the hex-
agonal Taylor vortex and (b) shows the error in simulating the
hexagonal shear flow.
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FIG. 4. The error of the lattice Boltzmann method d2q7H is
shown when single-precision arithmetic is used, when single-
precision arithmetic together with the algebraic transformation
of Sec. V is used, and when double-precision arithmetic is used
(dotted, dashed, solid lines).
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jection method with the symbol EP7 (EP stands for expli-
cit projection) when it is applied to a hexagonal region,
and with the symbol EP9 when it is applied to an orthog-
onal region (this is done in later sections).

The explicit finite difference projection method com-
putes an estimate of the velocity by solving a discretized
Navier-Stokes momentum equation where the pressure
term is omitted ([10], p. 160). Then the velocity estimate
is corrected in order to satisfy incompressibility by solv-
ing a Poisson equation. This correction takes into ac-
count the pressure effects that were omitted in the first es-
timate of the velocity. In addition the solution of the
Poisson equation provides an estimate of the pressure at
the current time step. In our simulations we use SOR
(successive over-relaxation) ([18], p. 680) to solve the
Poisson equation, forward Euler to estimate the time
derivative, and three-point symmetric differences to cal-
culate the spatial derivatives on a grid that is orthogonal
and nonstaggered.

Figure 5(a) plots the error in simulating the hexagonal
Taylor vortex against M, with At varying. The error is
calculated at the final time 7'=1.0 when the maximum
velocity of the hexagonal Taylor vortex is approximately
+th of its initial value. The curves correspond to d2q7H
using a 30X 30 grid, d2q7H using 60X 60 grid, EP7 using
30X 30 grid, and EP7 using 60X 60 grid (solid, dashed,
dotted, dashed-dotted lines). Figure 2(b) plots the same
data against the dimensionless ratio Atv/Ax? which fa-
cilitates comparison between different grids. Figures 5(c)
and 5(d) plot the same data for shear flow. We can see
that the Taylor vortex triggers an instability in the expli-
cit projection method EP7 when Atv/Ax?>0.2, but the
shear flow does not trigger any instability.
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With regard to the lattice Boltzmann method we ob-
serve that it fails to approximate the solution (has a rela-
tive error of 1.0) when M, is larger than 0.2 approximate-
ly. In the case of the Taylor vortex, which is a solution of
the incompressible fluid flow equations, it may appear
that the problem arises from the compressibility of the
lattice Boltzmann fluid (when M_~0.2, the Mach num-
ber is approximately M =1.53M_=0.3). In the case of
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shear flow, however, compressibility is not important.
The shear flow is a solution of the compressible fluid flow
equations, and it should be easily computed by the lattice
Boltzmann method both at low and high Mach numbers.
In fact, the shear flow can be computed easily at high
Mach numbers by using a smaller w,, for example
wy=107°/3 (see below).

The limitations of the lattice Boltzmann method shown
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FIG. 5. The error of the lattice Boltzmann method d2q7H is compared against the error of the explicit finite difference projection
method EP7. The curves correspond to d2q7H using a 30X 30 grid, d2q7H using a 60X 60 grid, EP7 using a 30 X 30 grid, and EP7 us-
ing a 60X 60 grid (solid, dashed, dotted, dashed-dotted lines). (a) and (b) show the error in simulating the hexagonal Taylor vortex and

(c) and (d) show the error in simulating the hexagonal shear flow.
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in Fig. 5 when M, is larger than 0.2 persist independent
of the Mach number. The limitations arise because the
microscopic speed Ax /At becomes comparable to the
fluid speed when M, approaches 1.0, and the high-order
terms in the Chapman-Enskog expansion (which are
neglected in deriving the Navier-Stokes equations) be-
come significant, and produce behavior that differs from
the Navier-Stokes equations.

With regard to simulating shear flow at high Mach
numbers, we can choose w,=10"%/3 which gives
M =10°M_. The error of the lattice Boltzmann method
d2q7H in simulating shear flow with M = 10°M, is identi-
cal to the error plotted in Fig. 5(c). The error in simulat-
ing shear flow is independent of the Mach number be-
cause the density gradients are zero everywhere.

E. Quadratic convergence

This section shows that the lattice Boltzmann method
has second-order convergence both in space and in time.
Second-order convergence in space means that the error
decreases quadratically with Ax while keeping the
dimensionless ratio Atv/Ax? constant ([19], p. 75).
Second-order convergence in time means that the error
decreases quadratically with At while keeping the space
discretization Ax constant. Furthermore, we are interest-
ed in the true discretization error and not the error that
arises from compressibility. When using a compressible
fluid code such as the lattice Boltzmann method to simu-
late incompressible flow such as the Taylor vortex, it is
important to distinguish between the error that arises
from compressibility and the error that arises from finite
discretization.

In Fig. 5 the Mach number decreases in proportion to
M, and thus the effects of compressibility and finite
discretization cannot be distinguished without further
analysis. To distinguish between the effects of compressi-
bility and discretization error, we perform the same simu-
lations as those in Fig. 5, while keeping the Mach number
constant and varying the density coefficient w as follows:

2
At

=1
o= 3 'Axar

(32)

In Fig. 6(a) we show the error of d2q7H in simulating the
hexagonal Taylor vortex at constant Mach number
M =0.02 using a 30X30 grid and a 60X 60 grid (two
dashed lines). For comparison purposes we also show the
error of d2q7H using constant w, =1 and variable Mach
number M =1.53M_ (two solid lines). The constant
Mach number curves are identical to the constant w,
curves except for instabilities which are discussed below.
This indicates that the compressible effects at Mach num-
ber M =0.02 are smaller than the discretization error of
both the 30X 30 and 60X 60 grids. The instability of the
constant Mach number curves (dashed lines) is expected
and it occurs when the density coefficient w, given by Eq.

(32) becomes greater than 1 which forces the density
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coefficient z, to become negative. Similar instabilities can
be seen in Fig. 6(c) which plots the same experiment for
shear flow at constant Mach number M =0.05.

It is important to note that if we keep the Mach num-
ber constant while decreasing the grid spacing (Ax), then
a sufficiently fine grid will eventually bring out the
compressible effects. For example, Fig. 6(b) shows the
same data as Fig. 6(a) while keeping the Mach number
constant at M =0.1. In the case of the 30X 30 grid the
constant Mach number curve is identical to the constant
w, curve as before, which indicates that the discretiza-
tion error of the 30X 30 grid is larger than the compressi-
ble effects of Mach number M =0.1. In the case of
60X 60 grid however, the constant Mach number curve
reaches a minimum error (as At goes to zero) that is
much greater than the minimum error of the constant w,
curve. This is because the discretization error of the
60X 60 grid becomes smaller than the compressible
effects of Mach number M =0.1 when Atv/Ax? becomes
smaller than 0.1 approximately.

In general, we can calculate the Mach number at
which compressible effects become larger than the
discretization error of any grid by doing more numerical
experiments of the kind shown in Fig. 6. Such a study is
not necessary for our purposes however. Figures 6(a) and
6(b) are enough to show that the compressible effects in
simulating the Taylor vortex are smaller than the discret-
ization error of the 30X 30 and 60X 60 grids when w,, is
constant and the Mach number varies as M =1.53M.
Accordingly, we can examine the error curves of Fig. 6
and also of Fig. 5 to find out how the discretization error
of the lattice Boltzmann method decreases with finer
resolution.

If we examine the logarithmic plots of Fig. 5, we see
that the error decreases quadratically with At (it has a
slope of —2) until the minimum spatial discretization er-
ror is reached. In addition the error decreases by a factor
of 4 when we go from the 30X 30 grid to the 60X 60 grid
while keeping the dimensionless ratio Atv/Ax? constant,
see Figs. 5(b) and 5(d). In other words, the lattice
Boltzmann method has second-order convergence both in
space and in time. In Sec. VII we will verify the second-
order convergence for boundary value problems also.
The explicit finite difference projection method EP7 has
first-order convergence in time and second-order conver-
gence in space. The first-order convergence in time of the
projection method EP7 can be seen most easily in Figs.
5(c) and 5(d).

F. Seven-speed versus nine-speed

We now compare the accuracy of the hexagonal
seven-speed model against the accuracy of the orthogonal
nine-speed model. Figure 7 shows the error of d2q7H ap-
plied to the hexagonal Taylor vortex, and the error of
d2q9H applied to the orthogonal Taylor vortex (solid and
dashed lines). In addition the error of the explicit finite
difference projection method is shown when the projec-
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tion method is applied to the hexagonal Taylor vortex
with Ay=AxV"3/2 and also to the orthogonal Taylor
vortex with Ay =Ax (dotted and dashed-dotted lines). A
30X 30 grid is used, and the error is calculated at the final
time T =1.0. We can see that the explicit finite
difference projection method performs similarly on the

hexagonal and the orthogonal Taylor vortices. By con-
trast, the orthogonal nine-speed model d2q9H is
significantly more accurate than the hexagonal seven-
speed model d2q7H. A simple explanation is that nine
speeds per node provide a better discretization of the mi-
croscopic velocity [20] than seven speeds per node do.
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FIG. 6. The error of d2q7H is plotted against M, with At varying, while keeping the Mach number M constant and varying the
density parameter w, (two dashed lines). For comparison purposes, the error of d2q7H when the Mach number varies and the density
parameter w0=$ is held constant is also shown (two solid lines). Results are shown for a 30X 30 and a 60X 60 grid. (a)—(c) corre-
spond to the hexagonal Taylor vortex at M =0.02, the hexagonal Taylor vortex at M =0.1, and the hexagonal shear flow at

M =0.05, respectively.
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applied to the hexagonal Taylor vortex with Ay =AxVv3/2 and
also the orthogonal Taylor vortex with Ay =Ax (dotted and
dashed-dotted lines).

VII. RESULTS —BOUNDARY VALUE

In this section the orthogonal nine-speed hybrid model
d2q9H is applied to several boundary value problems
with exact solutions, and is also compared against the ex-
plicit finite difference projection method EP9. The
boundary value problems are the one-quarter Taylor vor-
tex, the Hagen-Poiseuille flow, and the oscillating plate
above a stationary wall. Figure 8 shows the velocity vec-
tor fields of these flows, and also indicates the boundary

|
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nodes of each flow by drawing a square around the
boundary nodes. Figure 8(c) is plotted at time ¢ =0.4
when the oscillating plate starts moving to the left while
the fluid below is still moving to the right.

The one-quarter Taylor vortex is defined in the region
7/2=<x=37/2 and 7/2<y <37 /2. The exact solution
is given by Eq. (26) with 4 =B =1. The velocity and
pressure are specified at the boundary by evaluating the
exact solution at the horizontal and vertical lines
7/2=x =37/2 and w/2=<y <37 /2. From the pressure
we calculate the density using Eq. (11).

The Hagen-Poiseuille flow is defined in the region
0=x=1 and 0<y <1. The analytic solution is as fol-
lows:

V. (x,y,t)=—(y2—y)AP/(2v) ,
V,(x,,6)=0, (33)
P(x,y,t)=(0.5—x)AP .

The pressure gradient AP is chosen AP =8.0v so that the
maximum fluid speed is 1.0 when y =1. The velocity and
the density are specified at the boundary by evaluating
the exact solution at 0<x <1and 0<y <1.

The oscillating plate problem is defined in the region
0<x =1 and 0=y =1 with periodic boundary conditions
in the horizontal direction x =0 and 1. The velocity is
specified at the top and bottom plates by evaluating the
exact solution, namely,

V,=coslwt), V,=0, y=1,

g (34)
v,=0,

Vy=0, y=0.

The density at the top and bottom plates is set equal to
1.0 (the exact solution has constant pressure everywhere).
The frequency of oscillation @ is chosen »=20 so that
the oscillating plate executes 3.18 cycles of oscillation
during the time interval T =1.0 which is used for testing
(this is an arbitrary choice). The analytic solution of the
oscillating plate problem ([21], p. 88) is given by the fol-
lowing equations:

V,.(x,y,t)=[cosh A sin A( —2 coshB sinB coswt +2 cosB sinhB sinwt)

—cos A sinh 4 (2 coshB sinB sinwt +2 cosB sinhB coswt)]/(cos2B —cosh2B) ,

Vy(x,5,0)=0,

P(x,y,t)=const ,

where A =yV'w/(2v) and B =V »/(2v), and v is the ki-
nematic viscosity.

In the case of steady flow such as the Hagen-Poiseuille
flow, we initialize p, V, Vy equal to the exact steady-state
solution. Then we iterate for 100 steps, and test whether
the fluid is in steady state. If the fluid is in steady state,
we measure the velocity relative error V£, Otherwise we
keep iterating until the fluid reaches steady state. The
goal of this procedure is to measure the error at steady

(35)

state and not to characterize how quickly the fluid
reaches steady state. Our criterion for steady state is that
the relative change in velocity between successive itera-
tions divided by At must be less than 10~ %; namely we re-
quire,

SV, (t +AH)—V, (1)
Xy

S <107 %At (36)
X
Xy
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and similarly for V. tation issue is the calculation of the gradients of the fluid
In the case of transient flow such as the one-quarter velocity at the boundary nodes. Below we will see that
Taylor vortex and the oscillating plate, we measure the the best results are achieved when the gradients of the
error V% at the final time T'=1.0 using Egs. (28) and (29). fluid velocity are specified using the exact solution. In
practice, however, it is possible to specify only some of

A. Implementation of boundary conditions the velocity gradients at the boundary nodes, and not all

of them. For example, the gradient dV, /dy at the top

The hybrid method d2q9H uses the standard collision and bottom walls of the driven cavity problem (not re-
operator at the inner nodes, and the extended collision ported here but see [10], p. 199) cannot be specified be-

operator at the boundary nodes. An important implemen- cause it is part of the solution that one seeks to compute.
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FIG. 8. The velocity field of the one-quarter Taylor vortex, the Hagen-Poiseuille flow, and the oscillating plate problem are shown
in (a)—(c), respectively. Boundary nodes are marked with a square. (c) is plotted at time ¢ =0.4 when the oscillating plate starts mov-
ing to the left and the fluid below is still moving to the right.
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When a velocity gradient cannot be specified, finite
differences must be used to estimate it.

In our simulations we test two possibilities: first the
exact solution is used to specify all of the velocity gra-
dients, and second finite differences are used to calculate
all of the velocity gradients at the boundary nodes. When
the exact solution is used, we denote the lattice
Boltzmann method by d2q9Hyp (XD stands for exact
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derivatives at the boundary). When first-order asym-
metric differences are used, we denote the method by
d2q9H,gp- When second-order asymmetric differences
are used, we denote the method by d2q9H,gp. We will
see that finite differences trigger instabilities when M, is
large, and that first-order differences are more stable than
second order differences, but second-order differences are
more accurate when M, is small.
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FIG. 9. The error of d2q9Hxp, d2q9H gp, d2q9H,kp, and d2q9FO0 (solid, dashed, dotted, and dashed-dotted lines) is shown in
simulations of the one-quarter Taylor vortex, the Hagen-Poiseuille flow, and the oscillating plate—figures (a)—(c), respectively.
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In our simulations we also test the lattice Boltzmann
scheme d2q9F0 which uses the standard collision opera-
tor at every node, both boundary and inner nodes. At the
boundary nodes the method d2q9FO sets the populations
F; equal to the equilibrium values F{9 of the standard col-
lision operator given by Eq. (6). For initialization the
method d2q9F0 would normally initialize the F; equal to
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the equilibrium values Ff¢ of the standard collision
operator as described earlier. In this section, however,
we use the extended collision operator for initialization in
order to distinguish between initial and boundary errors,
and we switch to the standard collision operator after the
first step.

Regarding boundary conditions for the explicit finite
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FIG. 10. The error of the lattice Boltzmann method d2q9Hyy, is compared against the error of the explicit finite difference projec-
tion method EP9. The curves correspond to d2q9Hxp using 30X 30 grid, d2q9Hxp using 60X 60 grid, EP9 using 30X 30 grid, and
EP9 using 60X 60 grid (solid, dashed, dotted, dashed-dotted lines). (a)—(c) show simulations of the one-quarter Taylor vortex, the
Hagen-Poiseuille flow, and the oscillating plate respectively. (d) shows the same experiment as (a) using d2q9H,gp instead of

d2q9Hxp.
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difference projection method, the velocity at the bound-
ary is specified from the exact solution, and the pressure
P is specified from the requirement dP/dn =0 at the
boundary, where dn denotes the direction normal to the
boundary ([10], p. 160). The condition 3P /dn =0 is ap-
plied at the beginning of the SOR calculation using the
values of P at the previous time step, and the resulting
boundary values for the pressure P are held constant
throughout the SOR calculation.

B. Comparison of boundary schemes

In Fig. 9 we compare the methods d2q9Hyp,
d2q9H gp, d2q9H,kp, and d2q9F0 (solid, dashed, dotted,
and dashed-dotted lines) in simulations of the one-quarter
Taylor vortex, the Hagen-Poiseuille flow, and the oscillat-
ing plate, Figs. 9(a)-9(c), respectively. A 30X30 grid is
used, and the error is plotted against M_ with At varying,
and is calculated at the final time 7"=1.0. The standard
collision operator d2q9F0 achieves its smallest error
when the relaxation parameter =1, at which point the
standard and extended collision operators are identical.
The hybrid method achieves best results overall when the
velocity gradients at the boundary nodes are specified
from the exact solution (method d2q9Hyp). The use of
finite differences at the boundary (d2q9Hpp and
d2q9H,¢p) leads to instabilities when M, is large. First
order differences are more stable than second-order
differences, while second order differences are more accu-
rate when M, is small.

C. Comparison with projection method-convergence

Figure 10 compares the error of the lattice Boltzmann
method d2q9Hyp, against the error of the explicit finite
difference projection method EP9 in simulations of the
one-quarter Taylor vortex, the Hagen-Poiseuille flow, and
the oscillating plate, Figs. 10(a)-10(c), respectively. The
error is plotted against the dimensionless ratio Afv/Ax?
to facilitate comparison between different grids. The
curves correspond to d2q9Hyxp using a 30X30 grid,
d2q9Hx, using a 60X 60 grid, EP9 using a 30X 30 grid,
and EP9 using a 60X 60 grid (solid, dashes, dotted,
dashed-dotted lines). Figure 10(b) shows most clearly the
rate of convergence in time. The lattice Boltzmann
method has second-order convergence in time (slope —2),
and the finite difference projection method EP9 has first-
order convergence in time (slope —1). Both methods
have second-order convergence in space.

We also note that the use of first-order differences to
calculate the velocity gradients at the boundary nodes
does not change the overall second order convergence of
the lattice Boltzmann method. This can be seen in Fig.
10(d) which corresponds to the same experiment as Fig.
10(a) but wuses the method d2q9H,pp (first-order
differences to calculate the velocity gradients at the
boundary nodes) instead of the method d2q9Hyy, (exact
values for the velocity gradients at the boundary nodes).
Theoretical explanations for the second order conver-
gence of the lattice Boltzmann method are discussed in
Refs. [20] and [22].
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D. Future work — density at the boundary

In all of our test cases above the density p is assumed
to be known at the boundary and is specified by evaluat-
ing the exact solution. In many practical simulations
however, it is appropriate to consider p unknown at the
boundary. In general there may be density gradients
along the boundary that develop as a result of the fluid
dynamics. For example, in the driven cavity problem a
density gradient develops along the walls of the cavity
(pressure gradient divided by the square of the speed of
sound) which is part of the fluid flow solution that one
seeks to compute. In such cases the p must be calculated
dynamically from the simulated flow. Although we will
not present simulation results concerning this problem
here, we will describe one possible approach of calculat-
ing the density dynamically at the boundary.

A good method of calculating the density dynamically
at the boundary is to calculate p as the average of the
populations F; that “bring fluid into the boundary node”
from neighboring nodes such as inner nodes and/or other
neighboring boundary nodes. For example, in the case of
a horizontal wall that bounds the fluid region from below,
the density p must be calculated as the average of the
populations F,,F,,Fs,F¢,F,,Fg when using an orthogo-
nal grid (see the Appendix). The populations F,,F;,F,
must be omitted in this calculation because they convect
into the bottom wall from the outside of the fluid region.
Similar calculations of the density must be done for all
possible orientations of the boundary. In our simulations
of the driven cavity problem (not reported here) and oth-
er flows past obstacles we have obtained good results us-
ing this approach (this is a qualitative judgment). Future
work must be done to evaluate further this kind of dy-
namic calculation of the density at the boundary.

APPENDIX: ORTHOGONAL 9-SPEED MODEL

We consider an orthogonal (square) lattice with nine
populations at each node. The population F, is nonmov-
ing, the populations FH, i =2,4,6,8 move along the diag-
onal directions at the speed V'2c, and the populations F,
i=1,3,5,7 move along the vertical and horizontal direc-
tions at the speed ¢ =Ax /Az. We denote the orthogonal
nine-speed model with the symbol d2q9 following Ref.
[2]. The relaxation and convection steps are given by the
following formulas:

Fi(x+e;At,t +At)=F;(x,6)+(—1/7)[F;(x,t)—F(x,1)]
Fo(x,t +At)=Fy(x,8)+(—1/7)[Fy(x,0)—F§(x,1)] ,
i=1,...,8,

l+ 3Atv

2 Ax?

=

The relaxation parameter 7 is chosen to achieve the
desired kinematic viscosity v given the space and time
discretization parameters Ax, At. The vector e; stands for
the eight velocity directions of the orthogonal (square)
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lattice,

_ Ax 27(i — 1) 27(i — 1)
== Icos

. A2
€ A 3 ,sin S (A2)

The velocity V(x,t¢) and density p(x,?) are computed
from the populations F;(x,¢) using the relations

8
p(x,t)= 3 Fi(x,t),
i=0 (A3)

8
p(x,)V(x,t)= F;(x,t)e; .
i=1
The variations of density around its mean value (spatial
mean which is constant in time) provide an estimate of

the fluid pressure P(x,t), according to the following
equation:

P(x,t)=cllp(x,t)—{p)] . (A4)
The speed of sound is
¢, =V 2wy +4y,)(Ax /At) , (AS)

where the coefficients wg,y, are discussed below. The
equilibrium populations Ff9(x,¢) are given by the follow-
ing equations:

Ffll=ply,+y,(e;"V)+yyle; V(e V)+y, (V-V)],
Ffl=plw,+w,(e; V)+wyle; V(e V)+w, (V-V)],
F¥=plzy+z,(V-V)], (A6)
4wy t+4yyt+zo=1,

y1=1/(12c?), yy=1/(8c*), y, =—1/(24c?),
w,=1/3c?), wyy=1/(2¢*), wy=—1/(6c?),

25, =—2/(3¢?), c=Ax/At.

In our simulations we use y,=+w, and wy=4 unless

otherwise indicated. The shear and bulk viscosity of the
d2q9 collision operator have the following values (calcu-
lated using the Chapman-Enskog procedure):

c2At

v=—6—(27'—-1) )

(A7)
_ c2At

(27-_1)(1 3w0—6y0) .

The extended collision operator for the orthogonal
nine-speed model (d2q9X) is derived similarly to the hex-
agonal model of Sec. IVA. Two additional terms based
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on gradients of the fluid velocity are included in the equi-
librium population formulas. Everything else, including
all the coefficients w;,y,,wyq, ..., of the standard col-
lision operator d2q9 remain the same. The equilibrium
population formulas for d2q9X are as follows:

Freall=p[y, tyi(e;V)tyyle; Ve V)+y,y (V-V)]
tyule;Vie;pV)]+yn(VpV),

Frel=plw,+w,(e;-V)+w,ole; V)(e;V)+w,, (V-V)]
tws[e;-Vie; pV)]+wy,(VpV),

. (A8)
F39=plzg+2z,(V-V)]+25,(V-pV),

2c%ws, +4ws, +4c?yy +4ysy, +25, =0,
Yy =wsy /4.

The velocity gradients are computed using finite
differences unless they are known by other means. In our
simulations we use second-order symmetric differences
([10], p. 19) at the inner nodes, and first- or second-order
asymmetric differences at the boundary nodes as dis-
cussed in Sec. VII. First-order differences at the bound-
ary are more stable for large M., while second-order
asymmetric differences at the boundary are more accu-
rate for small M.

The shear and bulk viscosities of the d2q9X operator
have the following values (calculated using the
Chapman-Enskog procedure):

2

«_ CTAL
V6

*zczAt
3

—2c*wy —2cHwyy +2y3,) -

2r*—1)—c*wy ,
(A9)
(27* —1)(1 —3wy—6y,)

In our simulations we use y3;, =wj, /4. Once the relaxa-
tion parameter 7 is set equal to one, the coefficient w5, is
chosen to achieve the desired kinematic viscosity given
the discretization parameters Ax,At. The coefficient wj,
is chosen to achieve the desired bulk viscosity. In the
case of hybrid method d2q9H, the bulk viscosity of Eq.
(A9) is chosen equal to the bulk viscosity of the standard
collision operator given by Eq. (A7). The coefficient z;,
must  satisfy 2c2wy;, +4w;, +4c2yy +4y;5, +25, =0 so
that the equilibrium populations conserve mass, and the
coefficient y;, is set equal to wj; /4 so that an unwanted
(anisotropic) momentum diffusion term in the Chapman-
Enskog expansion vanishes.
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