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Rayleigh vvaves fur a discrete elastic paraxial equation
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We investigate the effects of a free surface on the 45' paraxial equation for linear elasticity in a
half space. We show that the 45' equation has no Rayleigh wave and that it has an exponentially
growing instability. We also examine a standard finite-difference approximation to the elastic parax-
ial equation. We show that the discrete equation also has an exponential instability, but this may
be removed by projection. We also 6nd that the discrete elastic paraxial equation has no Rayleigh
waves when the mesh size is small, but a coarse mesh gives two Rayleigh waves. Moreover, by a
proper choice of the mesh sizes, we may select a discretization so that one of these discrete Rayleigh
waves has the speed of a physical Rayleigh wave, and we may project out the nonphysical discrete
Rayleigh wave.

PACS number(s): 02.70.—c, 02.60.—x, 91.30.Fn

I. INTRODUCTION

We describe some results on Rayleigh waves for a
paraxial (one-way-wave) approximation to the equation
of linear elasticity, and we examine a Gnite-difference ap-
proximation. In acoustics and electromagnetics a parax-
ial equation is a good approximation for tracking waves
in a particular direction if the sound speed or refractive
index is slowly varying. Elasticity is more complicated
in that we have two wave speeds, compressional waves

(P waves) are faster than torsional waves (S waves). We
therefore have to decide whether to use a paraxial equa-
tion capable of tracking both S and P waves or to track
only one type of wave. This choice depends to some ex-
tent on the particular application. Thus, in exploration
seismology Claerbout [1] uses an elastic paraxial equa-
tion which tracks only upgoing P waves. Other authors,
such as Graves [2] and Wapenaar [S] track both S and
P waves. Our interest is in long-range seismology so we
also track both kinds of waves, and we choose a paraxial
equation which tracks in a horizontal direction.

The problem we deal with arises from the e6'ects of a
free surface. Specifically, there may be Rayleigh waves
in a boundary layer next to the free surface, and they
travel more slowly than S waves. It is therefore natural
to ask how good a job a paraxial equation designed to
track S and P waves will do in approximating a Rayleigh
wave. The work of Graves [2] suggests that there may be
trouble. We select one commonly used elastic paraxial
equation (the 45 equation) in two spatial dimensions,
and we track both S and P waves horizontally. We show
that there is indeed trouble: this paraxial equation has
no Rayleigh waves, and it is unstable.

One might try to rectify this situation by changing ei-
ther the paraxial equation or the boundary conditions at
the &ee surface (or both). Here, we take a different ap-
proach, working with a 6nite-difFerence approximation to
the elastic paraxial equation. We investigate a standard
central-difFerence approximation to the horizontal elas-
tic 45 equation, and we show that for an incompressible

elastic material one may obtain a variety of surface-wave
behaviors by a proper selection of the mesh sizes in the
horizontal and vertical directions. It should not be sur-
prising that the difference scheme is unstable, but we can
remove the unstable growth by a projection. We also find
that, depending on the horizontal and vertical mesh sizes,
there are zero or two Rayleigh waves (or at the transition
only one), and the speeds of these discrete Rayleigh waves
depend very strongly on the mesh sizes. With a careful
choice of the mesh sizes it is possible to obtain a Rayleigh
wave with the same velocity as a physical Rayleigh wave.

Prom the point of view of linear algebra what is going
on here is that the difference scheme may be represented
as an iteration of the unknowns V at one horizontal po-
sition x &om the previous unknowns V

with matrices M and JV determined by the difFerence
scheme. A discrete Rayleigh wave is an eigenvector V

(2)

with an eigenvalue ( such that ~(~
= 1, and an unstable

mode corresponds to an eigenvalue ~(~ ) 1. The iter-
ation (1) is equivalent to the power method for finding
the eigenvalue with largest absolute value [4], and in our
case it finds the unstable mode very quickly. We may re-
move this instability, as well as the nonphysical discrete
Rayleigh wave, by deflation [4].

II. THE ELASTIC EQUATIONS

We consider a linear elastic solid with constant Lame
parameters A and p, and constant density p. The P-wave
speed n and the S-wave speed P are then given by

A+2@ 2 pand
P P

We also introduce the parameter
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k2 —— k2 ——
p2 (io)

In order to reduce the number of parameters, in our dis-
cussions later we impose the incompressibility condition
A = p, which in terms of q takes the form

(4)

Because v and vp are homogeneous in k and u, we in-
troduce the parameter 8 defined by

QJ
S =

k
)

We remark that we find it more convenient to express
the material properties in terms of q than in terms of the
Poisson ratio o = A/(2A+2p, ), although there is a simple
relationship between them

1 —2q

2(1 —q2)

We also note that for a solid we have p ) 0 and
A + 2p/3 ) 0, so that the value of q is restricted to
the interval

0 & q & 1.

We write the elastic equations in terms of dilatation
and shear potentials as in Hudson [5]. In the absence of
sources the equations of linear plane elasticity take the
form

so that the dispersion relations (10) take the form

P = gl —s2.
k

(12)

We remark that 8 may be viewed as the ratio of speeds:
the phase velocity tu/k divided by the 8-wave speed P.
We also remark that the restrictions that k ) 0 and that
vp be real and positive imply that

0&8&1.
In particular, we exclude 8 = 0 since it occurs only at
one &equency, w = 0.

Substitution of the trial solution (9) into (8) yields a
matrix equation which has nontrivial solutions if and only
if

(2 ', ,5 ~2 p, ) pEq(s) =
~

+ (2q —1)s
~ „+s2 —4 „=0.

ot2$ ~2(g2 + g2)P
/2' p2(g2 + g2)@

(5a)
(5b) (i4)

u = 0 rtt+0, @,
u, = ot, Q —t9 @.

(6-)
(6b)

We work with the Fourier transform of (5) with respect
to time,

2y 2(g2 + g2)p
—~ g=p (t9 +8, )@.

(7a)
(7b)

The elastic solid is assumed to occupy the two-
dimensional half space —oo & x & —oo, z ) 0. The
boundary conditions at the &ee surface z = 0 are the nor-
mal components of the traction vanishing, leading to [5]

in a homogeneous medium. The displacement (u, u, ) is
then given by

Thus by (12), the speed of a Rayleigh wave relative to
the S-wave speed is a zero of

Eq(s) = (2 —s')' —4/(I —q's')(1 —s') (15)

such that 0 ( s ( 1. A graph of E~ for q = 1/~3 is
shown in Fig. 1, and we see that it has a single positive
zero. As mentioned earlier, the root at 8 = 0 has no
physical interest.

10—

IV'. THE 45' EQIJATION

There are many versions of paraxial approximations to
(5). See Wapenaar [3], for examples. We discuss the one
which is a 45 approximation for both P and S waves,

20 t9, $ —(0 —ot, )vtr = 0,

[(1 —2q )ot + t9, P —2q 8 B,vj = 0.
(8a)
(8b)

III. RAYLEIGH WAVES

A Rayleigh wave is a modal solution to (7) and (8) of
the form

ad hoc F&
I

t
t
t
t

\

I
\

'I

\

P = A exp(ikx —u z), g = R exp(ikx —vpz), (9) ~ true Fz
I

0.5

where k, v, and vp are positive. If we substitute (9)
into (7), we obtain the dispersion relations FIG. 1. Rayleigh functions.
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/1+ c9, /8+=ice/ —+ 8, /@,
n', 't . (1

4(d ) ( ck 4ld

P', ) . &1 3P1+ 8, ~B~@=i~~ —+ 8, ~vP.4' r
* i 4'')

(16a)

(16b)

(I (q +0.5)~

(20a)

v~ 1 —qs= 2qs
A: 3qs —1'

P =2s 1 —s
3s —1

(17)

Note that if ~ = 0, the mappings (17) are trivial, v

vp ——0 for all k. We therefore again restrict our attention
to s g 0. It is clear that in order for both v and vp to
be real for real s, we must have

1 1—(q(1 and —(s(1.
3 3q

The analogue of the Rayleigh function (15) is obtained
by substituting v and vp from (17) into (14) to get

I".(s) =
I

+ (2q' —1)"
I3qs —1

x/ +s(8s2(1 —s)
3s —1 )

—16qs 2 (1 —qs)(1 —s)
(3qs —1)(3s —1)

The graph of this function is shown in Fig. 1 for the case
of an incompressible solid q = I/~3, and we see that
there are no real zeros other than s = 0. That is, the 45'
equation (16) has no Rayleigh waves.

V. REMARKS

The great difference between the Rayleigh function
for the elastic wave equation (7) and the Rayleigh func-
tion for the 45 equation is closely tied to the fact that
Rayleigh waves are incompatible with the assumptions
behind (16). In fact, (16a) represents horizontal P waves
moving at speed n (s = 1/q), and (16b) represents hori-
zontal S waves moving at speed P (s = 1). In particular,
the differential equation (16) is chosen so that the behav-
ior of vp/k in (17) as s —+ 1 is that

k
—= V'2(1 —s) 1 — + &((I —s)')

4

in agreement with the behavior of vp/k for the wave equa-
tion (12). Corresponding agreement is obtained for the
behavior of v /k in (12) and (17) as s ~ 1/q. No at-
tempt is made in (16) to obtain agreement between (12)
and (17) for the value s = so corresponding to the speed
of a Rayleigh wave, I~(so) = 0 with I~ as given by (15).

One might think to rectify the situation by changing
the paraxial equation in order to force it to have a correct
Rayleigh wave. We therefore consider

The paraxial equation (16) is chosen so as to be an accu-
rate approximation to waves propagating in the direction
of the positive x axis.

If we substitute the modal solution (9) into (16), we
find that in terms of the parameters q and s the dispersion
relation for the 45 equation is

(20b)

with appropriate choices of p and pp. We selected (20)
for three reasons. One is that it reduces to (16) when

= pp = 1/4. Another is that (20) gives the traditional
15 equation when p = pp ——0. Finally, for any value
of pp the dispersion relation for (20)

vp 1 —s
k (pp + 0.5)s —pp

satisfies a weak form of (19) as s -+ 1, namely,

P = V'2(1 —s).
k

One may choose the value of pp so as to obtain equality
at the Rayleigh root so between the value of vp given by
(21) and the value (12) for the elastic wave equation. The
value of p may be chosen similarly to give the correct
value of v at the Rayleigh root. The Rayleigh function
for (20) corresponding to these choices of the parameters
is shown in Fig. 1 and is labeled "ad hoc Eq." We see
that (as expected) the Rayleigh function for (20) has a
zero at the Rayleigh root, but it also has another zero.
Furthermore, it happens that (20) still has an instabil-
ity excited by the &ee surface. We therefore take this
approach no further.

Another explanation of the peculiarities we have ob-
served is that paraxial equations are derived under the
assumption of slow variation in directions tangent to a
wave &ont, but the introduction of a free surface vio-
lates this assumption. It is therefore not so surprising
that there may be diKculties with paraxial equations at
a &ee surface.

VI. STABILITY OF THE 45' EQUATION

The problem we have for the 45 equation is an initial-
boundary-value problem in the sense that initial data are
prescribed at x = 0, and the solution propagates with
increasing x, subject to a boundary condition at z = 0.
There is an established stability theory, called the GKS
theory, so named for the work of Gustafsson, Kreiss, and
Sundstrom [6]. The clearest form of the theory is the
reworking by Trefethen [7]. Trefethen's paper also gives
many further references.

Since the worst instabilities correspond to modes (9)
which grow in x while decreasing in z, the stability theory
begins by studying (17) as conformal mappings of the
region Imk ( 0 and seeing whether the images overlap
with the half-planes Rev & 0 and Revp & 0. In terms
of the variable s = w/(kP) defined in (11), the half-plane
Imh: & 0 corresponds to the half-plane Ims ) 0. It is
sufBcient to investigate the mapping properties of
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1 —s
3s —1

(22)

since the factor q only changes the scale for v . The
mapping (22) is the composition of a &actional linear
transformation

g = (1 —s)/(3s —1) (23)
with a square root vp = C~g, where C = 2u/P. Both of
these rnappings are very well known. See Bieberbach [8].

I et us determine the image of the half-plane Ims & 0
by the mapping (23). The boundary of this half-plane is
a line which is therefore mapped onto a line or a circle.
We find out what the image is by examining three points:
s = 0, 1/3, and 1, and it is easy to see that they map,
respectively, onto g = —1, oo, and 0. Consequently, the
line Ims = 0 maps onto the line Imp = 0 with the orien-
tation reversed. Thus we have shown that the half-plane
Ims & 0 is mapped by (23) onto the half-plane Imp & 0.

We turn now to the branch of the square root in (22).
Because we want Revp & 0, we select the branch such
that —vr/2 & argvp ( 0. In summary, we have shown
that the half-plane Ims ) 0 is mapped by (23) onto the
half-plane Imp & 0 which in turn is mapped by the square
root in (22) onto the fourth quadrant, —vr/2 & arg vp &
0. Note that we have also shown that real values of s
such that 1/3 ( s & 1 map onto positive (real) values
of vp and that real s with s & 1/3 or s ) 1 give purely
imaginary values of vp.

In our setting the stability theory may be summarized
as follows.

(1) A zero of Ez(s) in (18) with Ims ) 0 and with the
branch of the square root as we just defined it is called
a Godunov-Ryabenky mode, and it produces disastrous
instability.

(2) Except for s = 0 a real zero of E~(s) in (18) out-
side the interval 1/3 & s & 1 or outside the interval
1/(3q) & s & 1/q gives what is called a GKS instabil-
ity. In making this statement, we have used the fact that
the orientation is such that increasing real s corresponds
to decreasing Imv. It is Trefethen's insight [7] that a
GKS mode corresponds to an infinite reflection coefIi-
cient, causing waves to arise spontaneously at the surface
and propagate (undamped) into the medium. Trefethen
also shows how to determine the group velocity of this
downward propagation.

(3) If q & 1/3, a real zero of E~(s) in (18) such that
1/(3q) & s & 1 is a Rayleigh wave. It just so happens
that the GKS definition of stability is somewhat artifi-

cial in that, while it enables one to prove theorems, it also
makes a Rayleigh wave unstable from the GKS point of
view. The reason behind this state of afFairs is that a
small perturbation of the conditions which give rise to a
Rayleigh wave may easily produce an instability in the
more usual sense of unlimited growth of energy. In par-
ticular, the theory is still uncertain about the stability in
the usual sense of Rayleigh waves in an inhomogeneous
medium, although we expect no instability in the sense
of energy growth.

We remark that in the stability theory Godunov-
Ryabenky modes are regarded as easy special cases and
that most of the mathematical efFort is devoted to the
marginal cases for which Ims = 0.

The locations of the zeros of E~(s) with s g 0 for

1/~3 are given in Table I. Note that by squaring
both terms on the right-hand side of (18) and clearing
fractions, we get the product of s with a polynomial in
s of order eight. Thus, there are eight nonzero roots, but
only the first two entries in the table are on the branch
of interest to us, with —7r/2 ( arg v & 0 and —vr/2 &

arg vp (- 0 and Ims & 0. We remark that Table I could be
enlarged, since Ez(s) in (18) is unchanged if the branches
are swapped whereby v is replaced by —v and vp by
—vp. These exchanges produce no zeros on the branch
we want.

The first two entries in Table I are Godunov-Ryabenky
modes, and the GKS theory predicts exponential growth
originating at the surface. The last two entries of Table I
show that (18) has two real zeros with s g 0, but for
neither of them is it true that both Imv ( 0 and Imvp (
0. Thus, the 45 equation has no GKS modes. There are
no Rayleigh waves since the real zeros do not satisfy the
condition 1/~3 & s ( 1.

VII. THE DIFFERENCE SCHEME
We now investigate a G.nite-difFerence approximation

to the elastic paraxial equation (16) and study the effect
of varying the mesh sizes. What is most interesting is the
discretization may move the graph of E~(s) down until
it intersects the s axis, like the shift to the ad hoc Eq
in Fig. 1. We can even make one of the zeros of Eq lie
on the Rayleigh root so. We will still have to get rid of
the instability and the surface wave corresponding to the
nonphysical zero of the discrete Rayleigh function. From
the point of view of Table I what is happening is that the
discretization may move one of the Godunov-Ryabenky
modes onto the real axis, where it meets a zero from

S

0.408681
0.871022
1.8475
0.408681
0.871022
1.8475

—0.92979
0.310668

0.334197 —0.809727i
l.09803 —0.220092i
0.00371746—0.201036i
0.334197 +0.809727i
1.09803 +0.220092i
0.00371746+0.201036i

—0.885978i
—1.53910i

+0.917218i
+0.0886209i
+0.00469868i
—0.917218i
—0.0886209i
—0.00469868i

TABLE I. Zeros of the 45 Rayleigh function.

P~ (d P&n/~
0.404238 —1.190657i
0.574022 —0.231059i
0.00105436+0.863881i
0.404238 +1.190657i
0.574022 +0.231059i
0.00105436—0.863881i

1.42725i
6.36795i
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another sheet. They then split into two Rayleigh modes.
The other Godunov-Ryabenky mode remains and makes
the method unstable.

Let us introduce a grid on the quadrant x & 0, z & 0
with mesh sizes h and h„so that a grid point is

(x, z~) = (nh, jh, ) with integers n & 0 and j & —1.
We also introduce the translation operators T u(x, z) =
u(x + h, z) and T,u(x, z) = u(x, z + h, ). Because we
want a nondissipative difference scheme, we discretize the
paraxial equation (16) as

~

1+ (T —2+T, ) ~
(T——l)/=i(u~ —+ (T, —2+T, ) ~

(T —+l)P,/1
4~2h2 ' ) h~ (a 4(u2hz ' ) 2

~

1+ z 2(T —2+T, ) ~
(T ——1)@= z(u

~

—+ (T, —2+T, ) ~
(T +—l)g.

(24a)

(24b)

It is clear from (24) that there are two natural dimensionless parameters
(uh hh= and 8=—

h (»)
in addition to q = P/n. The parameter h is the reciprocal of the number of z-mesh points per wavelength of an 8
wave, so it is a measure of the resolution. Clearly, 8 is the mesh ratio. In terms of these parameters (24) takes the
form

, , (T. —2+T, ')
~
(T. —1)/=i

~

qh+ (T, —2+T, ')
~

(T. +1-)4,
1,5 . ( 3,18

4q2(I)2 '
p

*
q 4qh

' ) 2

~
1+ (T, —2+T, ) ~(T —1)@=i

~

h+ (T, —2—+T, ) ~

—(T~+1)Q.
( l, i . ( 3

4h
' ' I E 4h

This difFerence scheme is applied at the grid points (nh, jh, ) with n & 0 and j ) 0.

(26a)

(26b)

VIII. THE DISCRETE DISPERSION RELATION

P(nh. , jh, ) = A("(~, @(nh, jh, ) = B("gp'. (27)

A direct calculation gives the dispersion relation for dis-
crete P waves,

For the difFerence scheme (26) in place of (9) it is more
convenient to obtain the dispersion relation by searching
for solutions of the form

Similarly, the dispersion relation for discrete S waves is

1 ( h8((+1)+2i(( —1) )
q3h8($+ 1) + 2i(( —].) )

For h = 0 (zero frequency) these mappings become triv-
ial, giving ( = (,'p = 1 for all values of (. We therefore
require that h g 0.

IX. THE DISCRETE RAY'LEIGH FUNCTION

1 ( qN(( + 1) + 2i(( —1) )
g 3qh8(( + 1) + 2i(( —1) p

As a discretization of the boundary condition (8) at
surface grid points (nh, 0) with n & 0 we use

2—(T —1)(T, —T, )Q+ (T + 1) h + 2(T, —2+ T, ) 'Q = 0,

2
(2q —1)h + 2(T, —2+ T, ) (T + l)$ ——(T —1)(T, —T, )@ = 0,

(30a)

(30b)

where we have used (7) to eliminate 82. Thus, both (26)
and (30) make use of the values of P and @ at the sup-
plementary grid point (nh, —h, ). If we substitute the
modal solution (27) into the discrete boundary condition
(30), we find that nontrivial solutions exist if and only if

2 )' 1)M = -(( -1)
~ q ——~,&-)

'

~ = (1+()h'+ 2
~ ()s —2+ —

~

( 11
(')s)

(32a)

(32b)

~(M N )~

where the entries are given by

(31)
(

& = --((!- 1)
I k ——

I
~ (32d)

P = (1+() ((22 —1)2 + 2
~

(' —2+ —~, (22c)
( 11

(a)
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(26) with boundary condition (30) at z = 0. In this figure
we have taken the orientation as is common in seismology
with the positive x axis going to the right and the positive
z axis going down. The initial data for Fig. 4 are that
P = @ = 1 at x = 0, and the boundary conditions at the
bottom of the figure are discretizations of B,P = 0,@ = 0.
As values of the parameters in the difference scheme we
chose q = 1/v 3, b = 2/3, and 0 = 1. The reason for this
choice of parameters is that according to Fig. 2, they give
a Rayleigh wave of nearly correct speed. (And they also
give a slower Rayleigh wave. ) It is clear in Fig. 4 that
the instability is initiated at the free surface and that it
propagates downward. It is also easy to show that the
rate of growth is as predicted by Fig. 3.

[W(l)] IVV(m) = 8i (38)

It follows &om (38) that the coefficient c in (35) is
given by

c = [W(m)] iVU,

so that we may remove an unstable mode V(1) &om U
by using the operation

U m U —1[W(1)] JVU)V(l).

The eigenvectors W(m) and V(m) satisfy a weighted
biorthogonality relation, and we may normalize them so
that

XI. SOME COMPUTATIONAL DETAILS

We have so far talked about the difference scheme (26)
with boundary condition (30) as if the domain extended
to infinite depth 0 ( z ( oo, but in any actual computa-
tion we must truncate at some value z = zJ and supply
some sort of boundary condition there. We have tried
several arbitrary bottom boundary conditions, including
the Dirichlet condition

P=@=0atz=zJ,

a discrete Neumann condition

The operation (39) is known in numerical linear alge-
bra as deflation. See Wilkinson [4]. wilkinson points
out that defIation is numerically unreliable if one tries to
use it to remove too many eigenvectors, but we remove
only two: the unstable mode and the nonphysical dis-
crete Rayleigh wave. Numerical errors involved with each
mode removal introduce small contributions of eigenvec-
tors that were previously removed. For this reason at
each propagation step we first remove the nonphysical
Rayleigh wave and then the unstable mode, in order to
be sure to keep out the instability.

We remark that we have presented the biorthogonality
in its usual form (38), but it follows from (36) and (37)
that we could replace it by

(T, —T, )P = (T, —T, )g = 0 at z = zg, [W(l)] JHV(m) = 8(

and an extrapolation of the discrete Rayleigh wave solu-
tion (27). On computational grounds there is not much
difference in the effects of these bottom boundary con-
ditions, but we prefer the Rayleigh-wave extrapolation
because it is more physically realistic.

As mentioned in the Introduction, the difference
scheme (26) with a discrete free surface condition (30)
and a bottom boundary condition produce a matrix prob-
lem (1) at each propagation step

JVV„= MV„

U=) c V(m), (35)

where V(m) satisfies

JVV{m) = MV(m).

The &ee-surface boundary condition (30) makes the ma-
trices M and JV non-self-adjoint, so that in order to com-
pute the coefficients c in (35), we need the left eigen-
vectors W(m),

g [W(m)]~M= [W(m)] W. (37)

where V is a vector of the grid values of P and g at
distance x = x &om the start. It is useful to think of the
removal of undesirable modes in terms of an expansion
in eigenvectors

Numerically, the efFects of using (40) in place of (38) are
significant for eigenvalues ( 0, but we have observed
only small differences in computed results. For computa-
tional reasons the biorthogonality (40) is more convenient
because for the iteration scheme (1) we keep a copy of
the matrix M, but we keep only a factored form of JV
obtained by Gaussian elimination.

XII. CONCLUSION

We want to emphasize that the computation of
Rayleigh waves is extremely delicate because they are
only marginally stable. In fact, they are unstable in the
GKS sense of stability. Thus, any perturbation by using
a paraxial approximation or even finite differences or fi-
nite elements can easily make Rayleigh waves either die
out or become unstable. In the cases we considered here,
they happen to become unstable.

Although it is true that the 45' equation has no
Rayleigh waves, we have seen that its discretization does
have them if the mesh size is suKciently coarse. The re-
quirement of a coarse mesh is not as strange as it may
seem. In fact, one of the advantages of paraxial equa-
tions is that because they may be derived from a coor-
dinate system moving with the wave [1], discretizaton
of a paraxial equation may give sufhcient accuracy on
a coarser grid than would be required for the full wave
equation (7). Furthermore, the curves in Fig. 2 show that
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the vertical resolution 8 and the mesh ratio 0 may be
chosen so that the difkrence scheme has Rayleigh waves
of the proper speed. The nonphysical discrete Rayleigh
wave may be removed by the same kind of projection as
is used to remove the unstable mode.

Note also that we have not dealt with all of the
diKculties related to horizontal elastic paraxial equa-
tions. In particular, we have treated the &equency cu as
fixed, but one would normally either use a space-time
paraxial equation or (more likely) solve the equations
(7) for a large number of frequencies and compute the
time-dependent solution by a discrete Fourier transform
over u. Our method requires, however, that the mesh
parameters b and 0 given by (25) be constant. That is,
one would have to vary the mesh sizes h and h, so as
to keep cub and uh constant. This greatly complicates
the Fourier synthesis.

Finally let us note that we have applied the boundary
condition (8) of zero normal traction to the elastic parax-

ial equation (16), and that this has created some difficul-
ties. Although this boundary condition is appropriate
for the elastic equation (5), there is no physical reason to
require it for (16). We have not investigated the effects
of modifying the boundary condition. We merely wish to
point out that it is not sacrosanct.
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