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Dynamics of globally coupled inhibitory neurons with heterogeneity
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A model of many heterogeneous excitable neurons with a global slowly decaying inhibitory cou-
pling is studied. When neuronal intrinsic excitability parameters are randomly distributed, the
system exhibits four regimes of behavior. In addition to synchronized periodic and asynchronous
regimes, we obtain two aperiodic regimes, with bursting rate a staircaselike function of neuron
excitability. In one regime, the system is partially synchronized and, in the second, partially anti-
synchronized. The transition between these two regimes is discontinuous as the disorder increases.

PACS number(s): 87.10.+e, 05.45.+b

Recent studies have considered the dynamics of many
globally coupled oscillators [1—6]. Most efForts have
treated "generic" models, with or without quenched dis-
order (i.e. , parametric heterogeneity), in which each
unit's state is represented by a phase [1—5] or by a com-
plex number [6]. In these models, an isolated unit oscil-
lates periodically, and the effects of coupling on the in-
dividual oscillators are investigated. Many studies have
treated weak coupling since then the system dynamics are
reducible to a phase model [1,7]. For our case, of a real-
istic Hodgkin-Huxley-type neuron model, coupling is not
weak. Moreover, an uncoupled, unstimulated element is
not an oscillator, but converges to a fixed point (FP), and
oscillations emerge as a collective network effect. Here,
phase reduction is inappropriate and new types of behav-
ior are found.

Of additional importance is that, generally, in phys-
ical and especially biological systems the units are not
identical. We study the quenched disorder effects on the
dynamics of such globally coupled systems. In particu-
lar, we consider a model in which an uncoupled neuron
has a stable rest state, but the globally coupled many-cell
network of identical cells can oscillate due to inhibitory
coupling which increases fast and decays slowly (but is
not uniformly slow). Wang and Rinzel [8] demonstrated
that oscillations of a small population of (2—10) identi-
cal neurons can arise and be synchronous when the in-
hibitory synapses decay slowly and the coupling is strong
enough. This finding, later generalized for the case of a
large network [9], countered the classical view that mu-

tual inhibition does not cause in-phase oscillations.
In this article, heterogeneity is introduced in the neu-

ron intrinsic properties. Increasing the level of hetero-
geneity changes the network behavior, and transitions
analogous to phase transitions in statistical mechanics
are observed. At low variability, the system is still peri-
odic and synchronized, while at large variability the sys-
tem converges to a stationary asynchronous state [6,3].
At intermediate variability, two regimes, characterized
by a staircaselike dependence of the bursting rate on the
cell excitability parameter, are seen. In one of them the
network dynamics is synchronous and in the second it
is antisynchronous. A sharp transition between these
two regimes, characterized by a discontinuity in the sys-

tern order parameters, is observed as the level of disorder
crosses a critical value.

A single neuron in the system of N globally coupled
(all-to-all) neurons is described by a set of three nonlin-
ear differential equations, developed by Wang and Rinzel
[8]. The model considers only two ionic currents (calcium
and leakage). This model describes the slow voltage wave
that underlies bursts of fast spikes, although spikes per
Se are not included here; it idealizes a neuron in a part
of the brain called the reticular thalamic nucleus (RTN)
[10]. The ith neuron, i = 1, . . . , % is characterized by
three state variables: the membrane potential V, , an aux-
iliary variable 6;, and the synaptic variable 8i. Neuronal
dynamics are governed by the three differential equations

dV,.* = H, (V, , h;) —g,y„(U; —U,y„) S(t),

dhi* = kh (U, ) [h (V, ) —lt, ] (2)

dsi
dt

* = kI s (V;) (1 —s;) —k„s;, (3)

where the total inhibition order parameter S(t), in this
case of all-to-all coupling, is

S(t) = —) s, (t) (4)

with m (V) = I'(U, g, o- ), h (V) = I'(V, &g, o.h),
and s (V) = I'(V, e„o,), where

1 (V, O, o) = (1+exp[ —(U —8)/cr]) (6)

The rate fun&. tion in Eq. (2) is
kh (V) = /exp [

—tV —
OgA,.)/oui, ] /h (V). These equa-

The nonlinear functions in Eqs. (1)—(3) are defined by

H (U, h) = —gc~, m (V) h (V —Uca) —gl, (V —Ul. )

(5)
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tions are nondimensionalized [11].An uncoupled neuron

(g,~„=0) with gc = 1 has a globally attracting FP, the
rest state.

Equations (1)—(4) define a 3N-dimensional dynamical
system, whose behavior is of interest for large time and
large 1V. The self-coupling term (i = j) in Eq. (1) sim-
plifies the analysis and is negligible for large ¹ For de-
scribing the system's behavior, we define the population-
averaged voltage V(t) = (I/X) P. i V;(t) and the time-
averaged quantities, V = (V(t)), S = (S(t)), and cry 2 =
((V(t) —V) ), where () denotes time averaging after the
system has converged to an attractor. The time-averaged
voltage fluctuation o~ represents the degree of synchro-
nization. It is zero for a totally asynchronous system.

In the case of a homogeneous network, i.e. , g~,.
gc, the system is symmetric to permuting the neurons.
Hence, the homogeneous solution always exists, and. for
a specific choice of parameters it can be a homogeneous
fixed point (HFP), a homogeneous limit cycle (HLC) (the
synchronous phase-locked oscillation), or both. In ad-
dition, cluster states [9,3], in which the system sponta-
neously breaks into a small number of macroscopic clus-
ters, may also appear. Here, we consider the regime of
small k„and large enough g,y so that the HLC is the
global attractor at large N. The effects of heterogeneity,
which preclude the existence of the HFP, HLC and spon-
taneously broken cluster states, are investigated. Our
results are based on numerical computation. The initial
conditions for V; were chosen at random, while h; and 8,
were initialized with the steady-state value of the corre-
sponding V;.

Most of the parameters that define the model are de-
termined by the biophysics of the ionic currents and do
not vary considerably among neurons of a given type.
Parameters that likely do vary include gc~, gl. , and gsyz}
which relate to the total number of ionic channels per
cell. In the limit of large %, a random distribution of
g,z„will be averaged out, and the important variabili-
ties will be those of gc and gl. . Here we have chosen
to examine the heterogeneity of only one parameter, gg,
which is our excitability parameter. Simulations show
that the effect of altering gl. is similar.

We consider the case where gc,. has its values chosen
from a uniform distribution p (g~ ) with average 1 and
standard deviation o~. The values of 0.~ and S, obtained
from numerical simulation, are presented in Fig. 1. Four
regimes of behavior are seen as o~ increases. For small o~,
the system still converges to a limit cycle. For large o~,
it reaches a stationary state characterized by asynchrony
for oscillating cells, and in between there are two regimes
of aperiodic behavior. Each neuron's average bursting
rate fb and phases of bursting are shown in Fig. 2 for
several values of og These regimes are described as fol-
lows.

Periodic state (P): 0 & crs & 0.014. For small values
of os, the system remains periodic (in contrast to pop-
ulations of integrate-and-fire neuron models that do not
fully synchronize as heterogeniety vanishes [12]). All the
neurons burst in synchrony, each emitting one burst per
cycle. The bursting phase depends on g~ such that low-

gc neurons burst later. The peak voltage increases with
gCa.
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FIG. 1. Time-averaged order parameters, calculated from simulations with N = 1000 and averaged over the last half of
1.25 x 10 time units, vs os: voltage Guctustions ov in (a); total inhibition S in (b). Ten different sets of random initial
conditions were used for each value of o.~. Four regimes are seen: P, periodic; PSA, partially synchronous aperiodic; PAA,
partially sntisynchronous speriodic (here, multiple data points for given o's show that difFerent attrsctors were obtained for
difFerent initial conditions); SD, stationary distribution. The nonzero ov in the SD regime is a finite size effect. The arrows
indicate the os values chosen in Fig. 2. In (b) the solid curve represents the constant Sso for the SD state, calculated from
Eqs. (7) and (8). Numerical integrations of Eqs. (1)—(3) performed with the second-order Runge-Kutta method (bt = 0.25).
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FIG. 2. The bursting rates fq and phases
of neurons vs gc for four different amounts
of variability og [arrows in Fig. 1(a)]. If
a neuron's voltage peak at time t; exceeds
Opyr1: 0 375 we say a burst occurred at
t, . The bursting rate is the time-averaged
number of bursts per second. Phase is mea-
sured relative to the burst cycles of one neu-
ron (label go ) chosen as the clock. Stair-
caselike structure of fq is observed in the
PSA and PAA regimes: (a) ag = 0.06 (PSA
regime), go = 1.104; (b) o = 0.108
(PAA regime), go

' = 1.186; (c) og = 0.14
(PAA regime), go

' = 1.146 (here, the
phases of the highest-g~ neurons tend to
accumulate around 0 and vr). Notice that
within a group of neurons having constant fq
there may be subgroups of distinctly diferent
phases. Asynchronous behavior for the SD
regime is seen in panels (d) with erg = 0.24,
go~' = 1.248. Here, fq vs go matches
well the behavior of the self-consistent solu-
tion with SsD ——0.3891, as computed from
Eqs. (7) and (8).

Ca

Stationary distribution (SD): os + 0.175 [6,3,13,14].
In this state, population-averaged variables, in particu-
lar S(t) and V(t), are constant in time. Since S is con-
stant, the dynamics of each neuron is determined. by the
two-dimensional vector field [Eqs. (1) and (2)], where S is
determined self-consistently by Eqs. (3) and (4). Low-gc
neurons are quiescent (fi, = 0) at low voltage, high-gc
neurons are steady at high voltage, and intermediate-gc
(gc not too diIFerent from 1) oscillate periodically and
asynchronously [Fig. 2(d-1)]. There is a small regime of
bistability for neurons with gc near 1.4; they approach
either a FP or a limit cycle (LC) depending on the ini-
tial conditions. The stationary distribution is obtained
only in the limit % —+ oo. For finite N, the global or-
der parameters fluctuate chaotically with decaying ampli-
tude that scales like 1/~K, for os far from the transition
[4,6,13].

The total-inhibition ord.er parameter SSD of the SD is
calculated self-consistently as follows. Assume a value S
for it and calculate the neurons' trajectories. Since S is
time independent, there are no phase relations between
diIFerent neurons on difFerent limit cycles [Fig. 2(d-2)].
Thus, we use the random-phase-approximation ansatz
[5,6] and assume that each neuron on a limit cycle con-
tributes to the inhibitory field only through the time av-
erage of its s, (t). Assuming S and denoting the temporal
period of a neuron by T (gc, S), we calcuate the self-

consistent value of S, denoted by S, i, by averaging s, (t)
over the time period and over the population:

1S..i(S) = dgc. p (gc.) T(gc, S
T(g~, s)

dt s, (t)

For the neurons that go to a FP, T (gc, S) is arbitrary.
The self-consistent solution SSD then satis6. es the equa-
tion

S. i(SsD) = SsD

Since even for a specific SSD there are bistable neurons
that can go either to a Fp or to a LC, the value of S, j is
not uniquely determined, and there is a range of values
that can be obtained. This means that there can be a
continuum of SD states. However, this regime of possi-
ble S is generally small and all the SD states are similar.
The selection of the SD is based on stability and basin-
of-attraction considerations, not analyzed here. Our cal-
culations show that SSD is only slightly dependent on
os [Fig. 1(b)]. The self-consistently calculated value of
S (not shown) agrees well with the simulation results
[Fig. 1(b)], in the regime where the SD state is the stable
attractor. The SD solution exists for each finite erg, but
is not stable at low variability.
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Partially synchronous aperiodi c (PSA) regime:
0.014 & og & 0.064. The network is aperiodic, but its
behavior is characterized by a fundamental f'requency fo
and time period To ——1/fo, corresponding to a peak in
the Fourier spectrum of V(t). The neuron trajectories re-
veal a high degree of synchronization with this frequency.
High-gc neurons burst almost periodically in a synchro-
nized manner. Their amplitude increases with gg, and
for each neuron the amplitude of consecutive oscillations
is almost constant in time. Their bursting rate fb equals
fo As .the excitability parameter gc decreases through
the population, fb decreases monotonically [Fig. 2(a-l)],
in stepwise fashion. Each step represents a group of neu-
rons with the same fb. Prominent steps are seen at ratio-
nal multipliers of fo Noti. ce especially that many neurons
burst at fb = fo/2, but that this group consists of two
subgroups bursting alternately. Neurons with low enough
gc do not burst at all. Nearly all the bursts occur within
a small fraction of the period [ 0.15Tp for o's ——0.06, see
Fig. 2(a-2)], implying high, but not full, synchronization.
The low-gc neurons oscillate with frequency fo, but the
amplitude of consecutive cycles varies and repeats itself
approximately only after an integer number of Tp, which
divers from cell to cell. For these neurons fb ( fo since
the voltage peaks in many cycles fall below the threshold
(—0.375) for our definition of "bursting. " The number
of neurons with fb = fo decreases as os increases, but
remains finite below the transition which terminates this
PSA regime.

Partially antisynchronous aperi odic (PAA) regime:
0.064 & o~ & 0.175. The network is aperiodic, presum-
ably chaotic. Depending on initial conditions, the sys-
tem converges to different attractors, characterized by
different time-averaged quantities like V, o~, and S, and
diferent fundamental frequencies fa The high. -gc neu-
rons divide into two or three groups, depending on a~
and the particular attractor. Two groups of high-gg
neurons burst alternately every 2Tp. Neurons within
each group burst in synchrony, within a small fraction
of the time period [Figs. 2(b-2) and 2(c-2)]. The phase
difference between the groups is around vr, and they are
close to being antisynchronous. A third group, contain-
ing the highest-g~ neurons, may also exist, especially
for large o'~ [Fig. 2(c-2)]. The fb of these neurons ex-
ceeds that of neurons in the two other groups and in-
creases continuously with g~ . Although the cells can
burst at any phase, they are more likely to burst around
0 or vr. The steplike structure of fb is observed also in
this regime [Figs. 2(b-1) and 2(c-l)], and large groups
of neurons with fb = 0 (quiescent) and fb = fo/2 are
found. The quiescent low-gc neurons show small fIuc-
tuations with frequency fo around their steady inhibited
level. Neurons with intermediate values of gc burst ev-
ery few fundamental periods in an irregular manner.

The bursting rate steps found in the PSA and PAA
regimes are similar to those of the devil's staircase found
for phase-locking behavior of periodically forced oscilla-
tors in physical systems (e.g. , Josephson junctions) and
in biological systems (e.g. , neural pacemakers) [15]. They
represent the effects of frequency-locking, and sometimes
also phase-locking, among groups of neurons within the

population. Frequency plateaus can develop along a
chain of endogenous oscillators (nearest neighbor cou-
pling) when the gradient of intrinsic frequencies is too
large ([16]). However, plateaus have not been reported
for globally coupled disordered systems without external
periodic forcing; for example, not in a model of coupled
Ginzburg-Landau units ([6]).

One expects that our system's synchrony should de-
teriorate as the disorder 0.

~ increases, as found also
in "generic" models [1,2,6]. Our simulations (Fig. 1)
clearly show the transitions from the P (periodic) to
PSA regimes and from the PSA to PAA regimes. Dur-
ing the first transition (P to PSA) the order parameter
S changes continuously with oz. In the second transition
(PSA to PAA) it jumps discontinuously as the disorder
0~ increases. This unexpected sharp transition between
a partially synchronized phase to partially antisynchro-
nized phase is a novel result of our model and has not
been observed in other models of disordered systems.
The transition from the PAA to SD regime is smeared
out in the simulation. A rigorous linear stability theory
of the SD state is needed in order to better understand
this transition.

In summary, we have demonstrated that heterogene-
ity of the cell population strongly affects the system's
dynamics. Although the periodic state, in which all the
neurons are phase-locked with slight phase differences is
the global attractor at very small variability, the amount
of variability needed to break the full synchrony is rel-
atively small. At intermediate variability the system
behaves aperiodically; the bursting rate of neurons in
a given network increases in steplike fashion with cell
excitability, g~ . This staircase structure has not been
observed in other models of globally coupled oscillators.
Two regimes at different o~ ranges are discovered with
a sharp transition between them. In one, the neurons
are partially synchronized, and in the second (larger o~)
they are partially antisynchronized. At suKciently high
variability, the system converges to a stationary distri-
bution state that is composed of periodic and stationary
neurons.

In further computations (not shown here) we found
that with stronger coupling (larger g,„„)the system tol-
erates greater variability before synchrony breaks down;
the transitions P to PSA to PAA to SD are shifted to
higher 0~ values. The sharp transition and the stair-
case structure appear for intermediate variability and in-
hibitory coupling that is slowly decaying and not weak.
These features are qualitative, not sensitive to the partic-
ular parameters of the model. Moreover, if the synaptic
decay rate is too rapid (say, k„= 0.1, g,„„=0.7) the
regimes P and PSA do not occur. We conclude that the
slow decay of the inhibitory coupling is a significant factor
for the existence of the synchronized regimes (consistent
with Wang and Rinzel [8]) and for the sharp transition
between the PSA and PAA regimes.

The model predicts that in the PAA regimes there are
neurons that can be either in or out of phase, depending
on the initial conditions. This prediction is consistent
with recent experiments [17], where cross correlation be-
tween RTN neurons revealed both in-phase and 180 out-
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of-phase synchronization. Although the RTN is a part of
a larger feedback system, phase di6'erences observed there
may correspond to the PAA regime and may result from
neuron variability.
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