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Generalization in a two-layer neural network
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Generalization in a fully connected two-layer neural network with N input nodes, M hidden nodes,
a single output node, and binary weights is studied in the annealed approximation. When the number
of examples is the order of N, the generalization error approaches a plateau and the system is in a
permutation symmetric phase. When the number of examples is of the order of MN, the system
undergoes a first-order phase transition to perfect generalization and the permutation symmetry
breaks. Results of the computer simulation show good agreement with analytic calculation.

PACS number(s): 87.10.+e, 05.50.+q, 64.60.Cn

Following the pioneering works of Gardner [1,2], there
have been many studies [3—6] to understand the prop-
erties of feed-forward neural networks using statistical
mechanics. Gardner studied the storage capacity of the
single-layer perceptron [7] and there have been several
related works [1—3]. Another interesting topic would be
learning &om examples. The estimation of an appropri-
ate size of training example set for a valid generaliza-
tion is an important issue in this problem. This problem
was extensively studied for the single-layer perceptron
[4—6,8—10]. However, it is well known that the percep-
tron architecture can solve only a linear threshold prob-
lem. Meanwhile, many of the real-world problems are
approached using the networks with hidden layers [11].
In the presence of hidden layers, the learning mechanism
is much more complicated and not much is known about
the generalization of multilayer networks. Treelike ar-
chitecture where an input node is connected to only one
hidden node was studied by several groups [12—14]. Re-
cently there have been some eKorts to get the storage
capacity of fully connected two-layer networks [15,16].

Here we study the generalization of a fully connected
two-layer network which is believed to perform a fairly
complex task. Consider a two-layer feed-forward network
with N input nodes, M hidden nodes, and a single out-
put node. Every input node is connected to all of the
hidden nodes by the binary weights. Specifically, all the
weights in the second layer are set to unity. This archi-
tecture is usually called a committee machine. We can
always map any network with binary weights into a com-
mittee machine by changing all the negative weights in
the second layer to +1 and at the same time flipping the
signs of the all the weights in the first layer connected
to those negative weights. When the transfer function is
an odd function, this new network performs exactly the
same function as the original one. We calculate the gen-
eralization curve for this machine using the annealed ap-
proximation. We also perform Monte Carlo simulations,
showing good agreement with the analytic calculations.

The network maps an input vector St = (S;, . . . , SN. )

to output 0 given by

W = (W, ) is a set of the synaptic weights whose el-
ement TV~; is a weight &om the ith input node to the
jth hidden node. gq(x) and g2(z) are transfer functions
of the hidden nodes and the output node, respectively.
A teacher network has the same architecture as that of
the student. The weights of the teacher are given by

(W;). We assume a stochastic training algo-
rithm which leads at long times to a Gibbs distribution
of the weights. Energy of the system is defined as follows:

(2)

e(W'; S') = —[o.(W'; S') —cr(A'; S')] .

The performance of the network is measured by the
generalization function e(W) = I dS e(W; S), where

J dS represents an average over the whole space of in-
puts. The generalization error eg is defined by cg

(((e(W))T )), where (()) denotes the quenched average
over the examples and ()z is the thermal average. An
input S,. is chosen according to a Gaussian d.istribution
with variance unity.

In this paper, we will rely on the annealed approxi-
mation. Actually &om our preliminary result using the
replica trick, we have confidence that most of the qual-
itative behavior of the network is explained within the
annealed calculation. As the studies of the single-layer
perceptron have shown, the annealed calculation gives a
pretty good quantitative prediction of the generalization
curve [5]. So, we replace the quenched average of the free
energy with the annealed. average,

(4)
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Here P = 1/T in which the temperature T parametrizes
the level of stochastic noise.

The free energy depends on the overlap order parame-
ter matrices R, Q defined as follows:

1V
1 & G

R~I, = —) W~;W„;,

1
Q~g = —) Wi;Wi„.

(5)

An interesting property of this fully connected machine is
that by exchanging positions of hidden nodes we can con-
struct another teacher which performs an equivalent task
as the original teacher. In successive learning process the
student approaches one of of many teachers constructed
by permutation, which gives a particular structure of the
matrix elements in Eq. (5). There are many possible
forms of matrices according to various teachers. We as-
sume the matrix elements are given by

q,.=~,.+(1-~,.)q,
R~g = b, gRi+ (1 —h, I,)Rp.

This means that the student happens to approach
the original teacher. Also we assume the teacher
does not have any correlation between sites, i e. ,

W, W&; ——8~y. In the limit where M and N
go to infinity, we can use the saddle point analysis for
the free energy. Then the saddle point condition gives
the order parameters Q, Rp, Ri. We consider three dif-
ferent cases, where P is of the order of N, MN, and in
the intermediate region. The free energy and the order
parameters scale differently in each case. We consider
sgn(x) and x as transfer functions. Our method can also
be applied to other transfer functions.

(i) P O(N). Following Seung, Sompolinsky, Tishby,
and Seung [5], we divide the free energy into two part Gp
and G „[5,

PI" = N(Gp—+nG „).
Here P scales as o. = P/N. Gp and G „are of the order
of unity.

We calculated Go and G „up to the order of 1/M.
Then we find an important result,

(lbR, =R, -O (8)
qMp

This condition corresponds to the so-called permutation
symmetry pointed out by Barkai, Hansel, and Sompolin-
sky [15]. As discussed above, the permutation of the hid-
den nodes of a given teacher yields many different teach-
ers. Let us consider the energy surface in the phase space
(W). Each teacher is at a minimum of the energy sur-
face. For a small P and a high T, all the teachers belong

I

to a single thermally connected region in the phase space.
In this case, a student does not know from which teacher
to learn, and the student is roughly equidistant from all
of the permuted. teachers. This picture coincides with the
permutation symmetry described by Eq. (8). The learn-
ing rate is also relatively fast. As P becomes the order of
MN, there appear many thermally disconnected valleys
around the permuted teachers. In this case, the permu-
tation symmetry (PS) is broken, which will be discussed
in case ii ~

In this PS phase, the free energy and the generalization
error eg are given by

Go ———q+ —ln(l —R, + q),
1- 1 2 (9)
—2ln(l +. 2Peg, g2(x) = x

1n~ 1+ ', 'e
~, g2(x) = sgn(x),

Ai —RiA22+ 2'Q, g2(x) = x

(1O)

Note that eG becomes zero when Aq
——A&. A network

with gi(x) = x belongs to this case. Here the permu-
tation symmetry holds for all values of P. A network
with a linear transfer function in the first layer maps to
a single-layer perceptron with continuous weights. Effec-
tive weight of this perceptron from the ith input node is
M i~2 P. W~; for a student and M ~ P W; for a
teacher. In the limit where M goes to infinity, the effec-
tive weights become continuous. The effective weights of
all the permuted teachers are the same. The generaliza-
tion error decays with an asymptotic form eg oc 1/o. . This
explains why learning of the two-layer network with a lin-
ear transfer function in the hidden layer shows the same
asymptotic behavior as that of a single-layer perceptron
with continuous weights [5]. Generally, ep is nonzero for
a nonlinear gi(x), which means learning is not fully ac-
complished in the region P O(N).

(ii) P O(MN). In this case we introduce a new
scaling for the &ee energy,

PP = MN(Go +—n'G~n)~

where n' = P/MN. Go and eg are given by

We define Ai ——f Dx [gi(x)], A2 ——f Dxxgi(x),
2

where Dx = " —e 2 . We rescaled the order param-~2~
eters as Ri ——MRi and Q = MQ. When n goes to
infinity, the generalization error converges to a limit ~G,

given by

A, —A'„g2(x) = x
—cos — ) g2 x = sgn x

1 1
Gp = ——(1 + Ri) ln(1 + Ri) ——(1 —Ri) ln(1 —Rl) )

2 2
'

Ai —As —(1 —Ri)A2, g2(x) = x
g 2 cos 1 ( 3 — 1 2) +( & ~) ~ g (x) sgn(x)7r ~1 (~1 g22) ) 2

(14)

(15)
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where As = f j DxDy gi(gl —B2ix+ Riy)gi(y).
G „has the same form as in Eq. (10). The other order
parameters are eliminated by the saddle point condition.

For a network with a nonlinear transfer function in
the hidden layer, there are two solutions for R~. One is
the PS solution, where Rq ——0 and E'g is equal to cp in
Eq. (12). This corresponds to the limit where n goes to
infinity in case (i). The other is the permutation symme-
try breaking (PSB) solution where Bi is nonzero. When
either gi(x) or g2(x) is the signum function, Ri is one
and eg is zero. This solution describes a perfect learn-
ing state, which is also observed in the perceptron with
binary weights [4,5]. When both transfer functions are
continuous, eg decays exponentially &om a small value
for large o'

There occurs a first order phase transition kom the
PS phase to the PSB one. The transition line a', (T) is
determined by comparing the &ee energies of the two
solutions. For gi(x) = sgn(x) and g2(x) = x, n', (T) oc
—1/ln T at low T. For gi(x) = g2(x) = sgn(x), n', (T)—
n', (0) oc e 2'~ and a', (0) 3.0. It canbe shown that the
PS solution always exists everywhere in the o.'-T plane.
Therefore it is difBcult to observe the transition in the
simulation when the network is of a fairly large size. For
a network of a small size, e.g. , M = N = 11, we observe
the transition in Monte Carlo simulation, which is shown
in Fig. 1. This figure shows a change between the two
phases in the distribution of matrix elements of the order
parameter H defined in Eq. (5). In the PS phase the
matrix elements are small, as can be seen in Eq. (8).
On the other hand, the matrix elements shows a discrete
spectrum in the PSB phase. Here the students does not
always exactly coincide with one of the permuted teacher.
This indicates that the structure of the PSB phase in this
small network may not bed as simple as our annealed

approximation for large M describes. In order to explain
this PSB phase more precisely, we should also consider
replica symmetry breaking, which is beyond of the scope
of this paper.

(iii) Intermediate region: P M N. In thisregion, we
study the network whose transfer function is the signum
function for both layers. Note that the order parameters
Ri and Q diverge as P/N goes to infinity. We examine
this divergence in detail for 0 ( b ( 1. As a result, we
find Ri and Q scale as

4 —6
Rg ——Rp(x M 4

QocM

For large M, Rq goes to zero, which leads to the PS
solution discussed in case (ii).

The learning curve &om the annealed calculation is
compared with the Monte Carlo simulation. Figure 2
shows the learning curve for the case gi(x) = g2(x)
sgn(x). Figure 3 shows the learning curve for the case
gi(x) = g2(x) = tanhx. For the latter case, the &ee
energy and the generalization error do not have closed
expressions as above. We find the saddle point and the
generalization error numerically. The simulation results
show pretty good agreement with the annealed calcula-
tions. The limiting value 6p of the generalization error is
much smaller for the transfer function tanh(x) than for
sgn(x). We obtain smaller so and larger n', for smoother
transfer functions.

There have been several e8'orts to derive an asymptotic
behavior of the learning curve by analyzing the scaling of
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FIG. 1. Snapshot of the matrix elements R~A,. for a net-
work with the transfer functions gi(x) = gq(x) = sgn(x),
N = M = 11) and the temperature T = 5.

FIG. 2. Generalization curve for a network with the trans-
fer functions gi(x) = g2(x) = sgn(x), N = M = 31, and the
temperature T = 5. The solid line is the analytic plot from
the annealed approximation and the horizontal line denotes

The first order transition at n' 9.9 is shown with the
vertical dashed line. Dots show the result from the Monte
Carlo simulation.
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FIG. 3. Generalization curve for a network with the trans-
fer functions gq(x) = gz(x) = tanhx, N = M = 31, and the
temperature T = 5. The solid line is the analytic plot from
the annealed approximation and the horizontal line denotes

Dots show the result from the Monte Carlo simulation.
207 is too large to be shown in this graph.

the volume of solution space [17,18]. These approaches
are usually useful for a network with continuous weights.
The generalization error for a network with continuous
weights is inversely proportional to the ratio of train-
ing examples and the number of weights in the network.
If we apply this to the two-layer machine with continu-
ous weights, the generalization error should decay with
a I/n' form. However, in the PS phase the permutation
symmetry condition, which was not considered in these
approaches, reduces the effective number of weights to
the order of ¹ This explains a rather fast decay of the
error with a power law I/a in the region P O(N). For

P O(MN), the permutation symmetry breaks and the
generalization error decays asymptotically as I/n' T. his
expectation agrees with the result by Schwarze and Hertz
[19] and also with our calculation not reported here. For
the binary weights that we are dealing with in this paper,
this asymptotic behavior is also found for P O(K), i.e. ,

es —ee oc I/cr. For P O(MK), the network undergoes
a discontinuous transition to the perfect learning at n'.
There is no asymptotic decay in this case.

Summarizing our results, learning &om examples in
this fully connected two-layer network is difBcult due to
the existence of the metastable PS state where the PSB
state is stable. If the system is moderately large, it is
trapped in the metastable state in most cases. The min-
imum generalization error we have in the PS state criti-
cally depends on transfer functions. Many of the eKorts
to improve the back-propagation network have been de-
voted to the development of a better learning algorithm
for fast convergence without considering the shape of the
energy surface in the weight space. Our result shows that
an alternative way for improvement is to analyze the en-
ergy surface structure and to find an optimal architecture
of the network by considering various transfer functions
and the size of the hidden unit. It may be useful to find an
energy function which can avoid local minima other than
the usual quadratic form [20]. Other approaches to con-
struct a network by adding hidden nodes during training
may also be helpful to avoid local minima [21,22].

Recently we came to know that H. Schwarze and J.
Hertz were doing a similar calculation for the case where
the transfer functions are sign function [19].
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It was also supported by the Basic Science Research Insti-
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