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Chaotic and phase-locked breather dynamics in the damped
and parametrically driven sine-Gordon equation
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The dynamics of a breather in the damped and parametrically driven sine-Gordon equation is
investigated both numerically and analytically. The Kahunen-Loeve expansion is applied to extract
the energetically dominant localized modes. These modes are used in a Galerkin approximation
to the original partial differential equation. The solutions of the resulting amplitude equations are
then compared to numerical simulations of the perturbed sine-Gordon equation showing a perfect
agreement. In addition, two collective-coordinate models (based on a direct approach and on the
inverse-scattering transform) are constructed and their limitations in comparison with the Kahunen-
Loeve expansion and direct simulations are discussed. Finally, information from the periodic spectral
theory and linear stability analysis is used to identify the Kahunen-Loeve modes and to show why
this approach gives rather good results.

PACS number(s): 03.40.Kf, 05.45.+b, 75.30.Ds

I. INTRODUCTION

As is well known, the sine-Gordon (SG) model is used
to describe many physical efFects in a one-dimensional
approximation, for example, flux propagation in long
Josephson structures, edge dislocations in crystals, non-
linear spin waves in superfIuid A and B phases of He, do-
main walls in ferro- and antiferromagnetic systems, etc.
The elementary nonlinear localized excitations of the sys-
tem are divided into two different classes, namely, kinks
and breathers. The kinks describe statics and dynam-
ics of topological excitations, like flux quanta (fluxons)
in long Josephson junctions or domain walls in mag-
netic systems (see, e.g. , the review paper [1] and ref-
erences therein). The other type of soliton excitations,
the so-called breathers, may be considered as dynamical
bound states of kink-antikink pairs, with the nonlinear
frequency lying within the gap of the linear spectrum.

In various applications the SG model is considered to
be perturbed by an applied external field which, in par-
ticular, is periodic in time (see, e.g. , Ref. [1]). When
an ac (direct) forcing is applied to a SG breather, it
can compensate for the dissipative losses and maintain
a phase-locked stationary mode [2,3]. This effect has the
same physical origin as the phase-locking of an envelope
soliton described by an ac driven nonlinear Schrodinger
(NLS) equation [2]. More detailed investigations of the
ac driven damped SG system reveal complicated nonlin-
ear dynamics including period doubling, spatial-temporal
complexity, and chaos [4,5], and many of these phenom-
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ena have been well understood with the help of simplified
dynamical models (see, e.g. , Ref. [5]).

In a number of physically important nonlinear systems,
e.g. , magnetic systems [6,7], or long Josephson junctions
[8,S], the applied periodic force acts parametricalty, i.e. , it
varies parameters of the model. As is well known, phys-
ical effects produced by direct and parametric ac forces
are rather different, e.g. , in linear models oscillation in-
stability due to a parametric force cannot be limited by
applying dissipation, as it is in the case of a resonance
produced by a direct ac force [10]. A similar difference
may also be noted analyzing nonlinear resonances pro-
duced by both the ac forces [10]. As for soliton-bearing
nonlinear systems, resonant input power related to the
applied direct or parametric ac forces may lead to sim-
ilar dynamical effects for both the driven models, e.g. ,
a parametric force applied to the SG system may also
support a phase-locked breather oscillation if the force
amplitude exceeds a certain threshold value [ll], the ef-
fect being qualitatively similar to the breather stabiliza-
tion by a direct forcing in the damped SG system [3].
In the small-amplitude limit the parametrically driven
damped SG model may be reduced to an effective non-
linear Schrodinger equation [ll] (similar to the case of a
direct forcing [2,12]) which supports exact localized so-
lutions describing the phase-locked solitons [11,13] (cf.
[14]).

Nevertheless, the difFerent physical nature of the direct
and parametric ac forces may show very diferent sce
narios of spatiotemporaL complexity in a driven nonlinear
model with loss. It is a purpose of this paper to give
a detailed analysis of the dynamics of the SG breather
under the influence of an external parametric force, in-
cluding the phase-locked regime of the breather oscilla-
tions, period-doubling and quasiperiodicity leading to a
strange attractor.

The paper is organized as follows. In the next sec-
tion, Sec. II, we briefly describe the model and its physi-
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cally relevant applications. The bifurcation scenarios ob-
tained from direct numerical simulations of this model
are discussed in Sec. III. In the following two sections,
Secs. IV and V, we analyze two types of simplified low-
dimensional models described by ordinary difFerential
equations. To construct the erst model in Sec. IV we
extract from the numerically obtained solutions of the
perturbed SG equation the energetically most dominant
localized modes by making use of the so-called Kahunen-
Loeve expansion [15,16]. With those modes as ansatz
functions we perform a Galerkin projection of the per-
turbed SG equation. The second type of model uses
a collective-coordinate ansatz (see, e.g. , Refs. [17—24])
which allows adiabatic change of the breather parame-
ters. In fact, in Sec. V we use two such models; the
first one is based on the so-called direct approach, and
the second one is derived with the help of the inverse-
scattering transform. At last, in Sec. VI we try to under-
stand why low-dimensional models (and, especially, the
Kahunen-Loeve expansion) work so well for this partic-
ular problem. One main indication is obtained from the
periodic spectral theory applied to the numerically found
solutions. As in the case of a direct ac forcing [5], the
periodic spectral theory allows one to identify the various
kinds of excitations composing the localized solutions. As
we point out in Sec. VI, the case of a parametric driving
is quite different from that of a direct driving. After hav-
ing identified the dominant excitations we make a linear
stability analysis of small-amplitude solutions around the
breather with the help of the linearized Backlund trans-
formation (see, e.g, Ref. [17]). Having the information
so far, it is then not astonishing that the Kahunen-Loeve
modes can be identified with the breather and the linear
modes around the breather. Section VII concludes the
paper.

For simplicity, in the present paper we consider the
case when n = 2, but many conclusions of the present
analysis may also be extended in a straightforward man-
ner to cover a more general case (see, e.g. , Ref. [11]where
a similar generalization has been made for the breather
stabilization problem). The model (1) with n = 2 ex-
actly corresponds, e.g. , to a weak two-sublattice ferro-
magnetic (antiferromagnetic) system [26]. In that case
the main nonlinearity ( sinu) is caused by the mag-
netic anisotropy, and the parameter I' is proportional to
the amplitude of the external (variable) magnetic field.

In the absence of any perturbations, i.e. , for I = o. = 0,
Eq. (1) is exactly integrable and it has two difFerent types
of soliton solutions, kinks and breathers. Existence of
kinks is a general property of many nonlinear systems
with degeneracy of the ground state. However, breathers
are more special objects which in fact may be found as
exact solutions in integrable models. The breather at rest
has the form

Ql —(ub2, sin(~b, t + 8)
ubq x) t = 4 tail 2

~b. cosh[x Ql —(ub2, ]

~b, being the breather frequency, 0 ( ~b, ( 1, and 0 is
an arbitrary initial phase. The moving breather may be
obtained from Eq. (2) by a Lorentz transformation.

III. NUMERICAL SIMULATION RESULTS

Equation (1) is integrated with periodic boundary con-
ditions

( 11 ( I )
7l X= —— =7l X=

2) g 2)

II. MODEL

The model we deal with in the present paper is de-
scribed by the damped and parametrically driven SG
equation

D
uqi —u~ + sinu = —nui + I'sin(ut) sin

n

where I' and o. stand for the strength of the parametric
forcing and damping, respectively. The frequency ~ is
assumed to be selected within the region where linear
waves are stable to the parametric forcing, i.e. , w/2 (

= 1 being the gap of the linear spectrum of the
unperturbed SG equation.

Equation (1) may be derived, for example, as an ef-
fective equation of motion for the magnetization vector
in several magnetic models, u being the angle describing
the orientation of the magnetic vector in a selected (e.g. ,

easy anisotropy) plane. The perturbation from the right-
hand side (rhs) of Eq. (1) appears if one considers the
variable magnetic field [25,26]. Another physically rele-
vant example of Eq. (1) with n = 1 is a long Josephson
junction with parametrically varying critical current (see
Refs. [8,27,9]).

We consider a rather long system length, L = 80, and
choose the resonant breather frequency 2 to lie within
the gap, in particular, in the range 0.90—0.98. The damp-
ing is fixed to o. = 0.004 and I' is varied as a bifurcation
parameter.

While increasing the amplitude I" of the driving force,
the first stage of the bifurcation scenario is generic for
all studied frequencies u: at some critical I' a stable
phase-locked breather appears by a saddle-node bifur-
cation. Increasing the driving I' results in a Hopf bifur-
cation. The bifurcation behavior hereafter depends on
the driving frequency u and the length L. For 2

——0.98
a period-doubling sequence is observed, and it is shown
in Fig. 1. We have obtained this result by integrating the
perturbed SG equation (1) up to time 60 000 and throw-
ing away the transient phase. Then we take two Poincare
sections of the data (u(x = 0), ui(x = 0)) corresponding
to the driving and the Hopf bifurcation frequency while
the parameter I" is varied. We observed that the period-
doubling bifurcations occur either when the frequency 2
goes to 1 for Axed L or for Axed cu letting the length L
go to infinity. This behavior is similar to the ac-driven
case studied in detail in Ref. [5]. For — = 0.93 and

= 0.92 we observe a transition to chaos by quasiperi-
odicity. First, a third frequency is observed. Finally, this
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FIG. 1. Period-doubling sequence obtained for L = 80,
o, = 0.004, ~ = 1.96 and varying I'. The quantity a stands
for the value of u(x = 0) in the second Poincare map.

FIG. 3. Transition from quasiperiodicity to chaotic motion
for L = 80, o. = 0.004, u = 1.84.

three-frequency torus becomes unstable and we have the
Ruelle-Takens way to chaos (see, e.g. , [28]). This behav-
ior is depicted in Figs. 2 and 3.

The upshot of the numerical investigations is as fol-
lows: (i) we see various bifurcations of a singLe breather;
(ii) letting the system length I go to infinity, only the
period-doubling route can be observed.

In the next sections we try to develop low-dimensional
models which can be responsible for the scenarios ob-
served in numerical simulations. Since the collective-
coordinate models analyzed below (Sec. V) take as a basis
a breather for an infinite system, we only concentrate on
the regime of large system lengths L where only period
doubling has been observed.

2

K(x, x')P„(x') dx' = A„P„(x)

where the two-point correlation function K(x, x') is de-
fined by the time average

K(x, x') = lim-
T~oo T u(x, t)u(x', t) dt

back to the last century according to [29]. The method
was first applied to fiuid turbulence by Lumley [30,16]
and got a lot of attention in the dynamical systems com-
munity since the work of Aubry et al. [31].

In application to the problem under consideration,
the method consists in formulating the linear eigenvalue
problem

IV. THE KAHUNEN-LOEVE EXPANSION

In this section we apply the Kahunen-Loeve expansion
to the numerically obtained solutions. The Kahunen-
Loeve expansion [15] has quite a long history, going even

1.15

1.05

and u(x, t) is a solution of the perturbed SG equation
(1). The orthonormal functions P are called empirical
eigenfunctions, and in our case they are obtained from
the numerical solutions of Eq. (1). To be more specific,
we integrate Eq. (1) up to time 10000. For our parame-
ters (n = 0.004, ur 1.96, and I' = 0.025) the asymptotic
regime is already reached about time 3000. To build the
correlation function K(x, x') we use 1000 samples in the
time interval between 5000 and 10000.

The useful property about the empirical eigenfunctions
is that they are the optimal choice for a Galerkin

approximation. If we define the projection Z ~ onto the
first % eigenfunctions as the following,
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a„(t) = I' u(x, t)P„(x) dx,
(6)
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FIG. 2. Transition from quasiperiodicity to chaotic motion
for L = 80, n = 0.004, w = 1.86.

then it is easy to show that the eigenfunctions P mini-
mize the error ( ~ ~

Q~u~
~ 2) for every N, where the brackets

( ) denote the time average,
~~ ~~2 stands for the 12 norm,

and Q~ = 1 —'P~ This directl. y implies that they are
ordered with respect to the energy. They also minimize
the representational entropy S (see Ref. [32])
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„,(llull2) (llull2)

which is a consequence of the former property.
The first nine eigenfunctions are displayed in Fig. 4.

The first one has simply the shape of the breather itself.
The higher modes look like radiation modes modified by
the breather. We come back to the discussion of the
physical meaning of the modes in Sec. VI.

The next step is to use the eigenfunctions P in a
Galerkin approximation

P~ 'Bqqu —0 (Pivu) + sin('P~u)

so that the maximal error between —1 ( u ( 1 is less
than 2 x 10

The surprising fact is that only two modes are in
fact necessary to pick up the essential properties of the
perturbation-induced breather dynamics of the paramet-
rically driven damped SG breather described by Eq. (1).
To support such a statement, in Fig. 5(a) we show the
Poincare map of the phase space (u, u) where the coor-
dinates are computed by projecting the numerically ob-
tained partial differential equation (PDE) solutions onto
the first eigenfunction. Figure 5(b) instead is obtained
from the Galerkin approximation making use only of two
modes. The error in the location of the bifurcation points
is less then 4%.

+nu, + I'sin(~t) sm Piv — = 0 . (8)
2

sin(u) —ciu+ c2u, ci ——0.9974812954,

c2 ———0.156 506 831 9,
(9)

In order to solve Eq. (8), we approximate the sine func-
tion by a Chebyshev polynomial

V. COLLECTIVE-COORDINATE ANALYSIS

A. A direct approach

There are several variational methods to obtain re-
duced evolutional equations describing the perturbation-
induced breather dynamics. One of those methods is
based on a Lagrangian (Hamiltonian) formalism and in
its simplest form the method was proposed in [20] (see
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tion for I = 80, n = 0.004,
cu = 1.96, and I' = 0.023.

0.1

0.08-

0.06-

0.04-

+~ 0.02

0

E ~.02.

404-
4.06-

4.08-

4.1~ „-
J

-ZU -1U U 1U ZU

0.15

0.1

4U ~15~V -iV -1U U

X
4J lU

0.15

ZU W 43 ' ~U -3U =~V -lU U 1U ZU W 4lJ



48 CHAOTIC AND PHASE-LOCKED BREATHER DYNAMICS IN. . . 4795

also [22]). The main basis of any variational approach is
to select a proper ansatz. The choice of the ansatz may
allow one to remove singularities which frequently occur
in the system of the corresponding ordinary differential
equations (ODE's) resulting from that ansatz (see, e.g. ,

[»]).
Following [20] (see also [22]), we use for a breather in a

parametrically perturbed SG equation (1) the following
ansatz:

12 12dx —u, + —u —(1 —cosu)
2 ' 2

+2r sin(~t)[1 —cos(u/2)] I. (12)

with wi„= Ql —k2. I et us now consider Eq. (10) as an
ansatz in the system Lagrangian density defined as

ui„(x, t) = 4 tan e"( +') —4 tan e" *

sinh(kz)
cosh(kx)

(10)

If we assume k = 0, then the parameter z(t) is the oiily
effective variable, and its evolution is determined by the
e6'ective Lagrangian density,

which is in fact a linear superposition of a kink and an-
tikink. For the kink (antikink) in the pure SG equation,
one would have k = (1 —z ) ~ and z = dz/dt = const
while the breather would be determined by the relation
[see Eq. (2)]

I. = —,'M(z)z' —U(z) + L„(z),

where the dot means time derivative, and

2hz
M(z) = 16k 1+

sinh 2kz

k
sinh[kz(t)] =

~br
sin(u)b, t + 0),

U(z) = tanh (kz) —-M(z) + 16k,
M(z)

2k2

0.85 L„(z) = 4I'sin(cut)z tanh(kz). (16)

Dissipation-induced efFects in the efFective collective-
coordinate model may be taken into account calculating
the dissipative function, Q = —J dxu~, which for the
variable z(t) takes the form

C)
II 0.7
X

~ H

0.65

Q = znM(z)z . (17)

Equations (13)—(17) define the dynamics of an efFective
particle with the coordinate z(t) and a variable mass
M(z), which is described by the motion equation,

0.55 I I I I I
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0.85
where the primes stand for the derivatives in z.
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FIC. 5. The phase space of the first Kahunen-Loeve mode
obtained (a) from numerical solution of Eq. (1) and (b) from
the two-mode Galerkin expansion.

B. Perturbation theory based on the
inverse-scat tering transform

The perturbation theory based on the inverse-
scattering transform (IST) is a rather well developed ap-
proach, and it uses the fact that the pure SG model is
exactly integrable (see, e.g. , Ref. [1] for an extended re-
view). The main idea of the method is to use the IST
technique to derive evolutional equations for the soliton
(in particular, breather) parameters. This method also
assumes a choice of an ansatz, but such an ansatz is
usually taken in the simplest form, just using an exact
breather shape with the parameters being assumed to be
defined later on. In the case of the SG equation, it is
convenient to take the perturbed breather in the form
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v 1 —ub
ub, (x, t) = 4tan

Ct) br
, (19)

cosh(x Ql —a b2, )

wb, = —(1 —
Mb~) cos QH(&b» X) [1 + I(cub„y)], (20)

H(wb. , y) [1 + (1 —~b, ) cos yI(~b. , y)].
~br

(21)

Here we have introduced the notations

[2I' sin(cut) sin y —o.wb, cos y]H(~b„y) =
[cubz + (1 —wb, ) sin y]

1 (va2+ 1+a tI ~br~ X ln
av'a' + 1 (ga' + 1 —a)

' (23)

where

where the breather's frequency wb, and the phase deriva-
tive y are assumed to be slowly varying in time. Equa-
tions to describe evolution of y and wb, in the presence
of the parametric forcing and damping are derived by
means of the IST method (see, e.g. , [1]) from the gen-
eral equations given in the Appendix, and they may be
written in the form

C. Comparison with numerical simulations

We have used the equations derived in the framework
of the two collective-coordinate methods to compare the
corresponding results with those given by direct numer-
ical simulations. First of all, the collective-coordinate
models can describe rather well the saddle-node bifur-
cation to a stable and unstable breather, but both the
approaches do not allow one to recover any further bifur-
cations. It is not too surprising that the period-doubling
sequence cannot be captured at this choice of the system
parameters, since even for large amplitudes of order one
the SG equation can be mapped to an efFective nonlinear
Schrodinger equation with the efFect that the correspond-
ing collective-coordinate models are only two dimensional
equations which are first order in time. This result is
valid for the ac periodic direct [12] as well as parametric
[11] driving forces. This confirms the ansatz using the
Kahunen-I oeve modes which also take radiation modes
into account.

Nevertheless, we would like to note that the onset of
existence of the breather is much better described by
Eqs. (20), (21) based on the IST approach. For exam-
ple, the value of the threshold Field amplitude to support
the breather compared to that obtained from a direct
numerical integration is indistinguishable, whereas the
collective-coordinate equation (18) shows a deviation of
about 25%.

1 —Mb
2

sin
br

(24)
VI. PERIODIC SPECTRAL THEORY AND

LINEAR STABILITY ANALYSIS

Equations (20)—(24) give a full set of the so-called adi-
abatic equations for the perturbation-induced dynamics
of a SG breather at rest, and these equations are qualita-
tively consistent with one second-order difFerential equa-
tion (18) of the direct approach.

Periodic spectral theory has successfully been used (see
Refs. [33,5]) to identify the modes present in the system.
The key to the method is that the unperturbed SG equa-
tion results as an integrability condition to the following
differential equations (see, e.g. , [34—36]):

/0 —11 d i (0
)

fo —11 d i t'0
~, » )~ dt+4"'~1

1 t' e'"

16' q o

II 1
0 ) 16' 0

—ME C=o,

—vE C=o,

(25)

(26)

where m = u + uq and 4 is a two dimensional vector.
In the case of periodic boundary conditions for u the

search for bounded solutions of (25) defines an eigenvalue
problem in A = ~E. This (continuous) spectrum consists
of the real-A axis plus spines connected to it and bands
of the spectrum which lie in the complex plane. In Ref.
[5] further details can be found as to how the spectrum
may be numerically calculated.

In the integrable case the spectrum does not change
in time and it is the central object of the integrable the-
ory with periodic boundary conditions (see, e.g. , [37—39]).
Although the knowledge of the spectrum is not sufFi-
cient to reconstruct the solution u, the location of the
bands already contains information about the spatial

and temporal behavior of the solution. For example,
spines connected to the real-A axis correspond to radi-
ation modes, bands on the imaginary axis to (anti-) kink
trains whereas bands located on a circle of radius r = 1j4
belong to breather trains.

In Fig. 6 the spectrum for the perturbed SG equation
(1) is shown for nine difFerent times. The parameters
are such that the dynamics is a period-2 motion. The
sequence in Fig. 6 shows half of the period-2 cycle. Al-
though the perturbed problem (1) is not integrable any-
more the spectrum still gives us inside which modes are
present in the system. In our case, the breather band
changes adiabatically. Radiation modes, especially the
k = 0 mode, are also excited. It is worth mentioning that



CHAOTIC AND PHASE-LOCKED BREATHER DYNAMICS IN. . .

the radiation modes are well separated from the breather
band. There is no colliding between the breather band
and the spines. Therefore the complicated (and, espe-
cially, chaotic) SG breather dynamics cannot be caused
by the occurrence of a double point as argued by [33]
in the case of a direct driven force. Our explanation for
the complicated nonlinear dynamics of the perturbed SG
equation is very simple: one has to study the marginal
modes around the breather. Only a few of them are ef-
fectively excited by the parametric driving, all others are
damped and therefore slaved. The dynamics can then
be described by an attractor consisting of a few modes,
which can, in principle, be obtained by center-manifold
theory.

To confirm this point of view we calculated the
I

marginal modes for the unperturbed SG equation lin-
earized around the breather ub, given by Eq. (2)

till —
ZZU 4 + Cos(tlbr) V, = 0 (27)

u being assumed small in comparison with ub„and com-
pared them to the Kahunen-Loeve modes. Due to the
integrability of the SG equation one can explicitly cal-
culate all marginal modes as shown by McLaughlin and
Scott [17]. To do this one makes use of a Backlund trans-
formation to calculate from the radiation modes around
the Hat solution u = 0 the radiation modes around the
kink (antikink). Using these modes the radiation modes
around the breather can be calculated by applying the
Backlund transformation once more again. The explicit
formula for the solutions of Eq. (27) is

2n ) p cosh (px) —sin (cut) puA /2ug x, t = exp +icugt+i kx 1 ——
) ~

g cosh (px) + ~, sin (orat) ) & + (p —~2) &2/6 + 1/162

(A —A/16) w sinh(2px) —(As + A/16) p sin(2wt)+ 4[& + (p —~ )& /&+ 1/162][cosh(2px) + cos(2olt)]
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FIG. 7. The derivatives of
the breather with respect to w,
to, and a combination of both.

In addition to these modes other solutions can be founb found
b differentiation of the breather with respect to its pa-
rameters. In our spatially symmetric case we iiave t
additional solutions of Eq. (27) defined as

8
~br =

0&
4 —1 sin(~t)

in~ i~ti A&2 cosh(px)~2 cosh' (px)

cos(wt) . sinh(px)+—t + sin(~t)x
cosh(px) cosh (px)

br =
Bto

4p cos wt
sin2 (~ti cosh(px)~2 cosh2 (px)

which correspond to change in frequency and temporal

Figure 7 shoms the modes (29),(30) and a combina-
tion of them whereas Fig. 8 shows the first six radiation
modes. If one compares this figures with Fig. 4 for the
modes following from the Kahunen-Loeve expansion, one
can see that the marginal modes and the Kahunen-Loeve
modes span similar subspaces.

VII. CONCLUSIONS

In conclusion, we have investigated the phase-locked
and chaotic dynamics of the breather in a parametri-
cally driven damped SG model numerically and by ap-
plying difI'erent collective-coordinate methods. We have
shown that the bifurcation scenarios observed in numer-
ical simulations may be explained in the framework of
a collective-coordinate approach but the most perfect
agreement has been achieved by using the Kahunen-
Loeve modes, i.e. , those corresponding to a series of en-
ergetically most dominant localized modes of the forced
breather oscillations. Here the Kahunen-Loeve approach
s applied to a soliton-bearing model and in the case an-is appie o a

alyzed here the method does show excellent agreemen t
with direct numerical simulations in the framework of a
corresponding PDE. In particular, as has been shown in
the present study, only two modes of the Kahunen-Loeve
approach are in fact necessary to pic up the most es-
sential properties of the phase-locked breather dynamics
including a series of bifurcations and transition to chaos.
One of the reasons why the method works so perfectly
in comparison with a standard collective-coordinate ap-
proach has been shown by applying a linear stability
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diation modes [see Eq. (28)]
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analysis based on the Backlund transformation. Another
reason is the nature of the ac force itself: A paramet-
ric driving force, being out of the parametric instability
condition, does not excite a background as in the case
of a direct ac forcing, so that the breather and radiation
modes split to be detected in their "pure" form.

We believe the approach based on the energetically
dominant Kahunen-Loeve modes is one of the most e8'ec-
tive approaches to describe driven and damped dynamics
of localized modes (including solitonic ones as a partic-
ular case), so that the method can be widely used in a
variety of diferent soliton-bearing models dealing with
ac driven damped dynamics of nonlinear waves.
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~ v' — ','Dp cosy,
4 ~br

(A2)

subject to the IST method which consists in finding (dis-
crete or continuous) spectral data of an auxiliary linear
problem associated with the SG equation, the so-called
scattering data defined for the initial conditions u(x, 0)
and ut(2:, 0). The unperturbed temporal evolution of the
scattering data is rather trivial, and the main subject of
the IST method is to solve the so-called inverse-scattering
problem which allows one to find the solution u(x, t) with
the help of the scattering data using their simple evolu-
tion in time. The main idea of the perturbation theory
based on the IST is to use all the steps of the IST method
but to take into account the perturbation-induced tern-
poral evolution of the scattering data. If we take the
breather in the form (19), i.e. , a breather at rest, its
perturbation-induced dynamics is described by two cou-
pled equations of the first order for the frequency wb, and
the phase y, and these equations may be obtained in a
rather general form,

APPENDIX sin g
X &br + Dl

4 I —
lob

1
Dp

Mb
(A3)

In this appendix we present the basic formulas of the
perturbation theory based on the IST method applied
to a SC breather. The results displayed below may be
considered as a particular case of the formulas presented
in [I] when the breather is at rest.

We start from the perturbed SG equation of the form

where

R(ub, (z) )z"e'
dz n=0, 1,

cosh z+ a2

u„u+ si—nu = e7Z(u), (A1)

where e is assumed to be small and, for simplicity, 'R ~ 0
at [x[ —i oo (otherwise, we should make a renormaliza-
tion, see Ref. [1]). At e = 0 the SG equation (Al) may be

a2 being defined in Eq. (24). Equations (A2) —(A4) de-
scribe evolution of the breather parameters under the
iniluence of a perturbation 'R(u), and in the particular
case of Eq. (I), Eqs. (A2) —(A4) are transformed to give
Eqs. (20)—(23) discussed in Sec. V B.
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