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Dynamic phases in a spring-b&ocQ system
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When a block is pulled via a spring across a surface, there appear to be several different dynamic
"phases. " These can be characterized by the pulling velocity vo and a dynamic velocity vD

yarn/k, where g is the acceleration of gravity, m is the mass of the block, and k is the spring constant.
For sufficiently small vo, the block displays stick-slip (relaxation) motion. Then, as a function of
decreasing vD, this stick-slip motion is first nearly periodic, then aperiodic with approximately an
exponential slip size distribution, and then aperiodic with possibly a power-law slip size distribution.
When vo is increased, the block eventually ceases to stick and just slides across the surface. The
motion can then be adequately described by a Langevin model.

PACS number(s): 46.10.+z, 46.30.Pa, 62.20.—x, 05.40.+j

I. INTRODUCTION

The physics of nonlinear systems can often be surpris-
ing and. unpredictable. In mechanical systems the non-
linear element may be friction, a force far more com-
plicated than the one discussed in elementary physics
texts. Suppose, for example, a block resting on a sur-
face is attached to a spring, the other end of which is
pulled at a constant velocity. At suKciently slow ve-
locities, it is observed that, "the sliding process is not
a continuous one; the motion proceeds by jerks. The
metallic surfaces 'stick' together until, as a result of the
gradually increasing pull, there is a sudden break with a
consequent very rapid 'slip' [1]." This intermittent be-
havior has been termed stick-slip (or relaxation) motion
and is now established as a generic phenomenon of fric-
tion in overdamped systems [2—6]. This phenomenon is
also reminiscent of fault seismicity [7] and for this rea-
son attempts have been made to model earthquakes by
spring-block systems with many degrees of freedom, both
experimentally [8] and theoretically [8—14].

The results of an experiment with a single metal block
on a dry metal surface will be presented [15]. Previously,
systems with only a single degree of freedom have gener-
ally been studied with large loads in an engineering con-
text [4, 6]. (One exception is an experiment by Feeny and
Moon who found chaos in a driven system [16].) As might
be expected, it is found that the dynamics of a system
with only one (apparent) degree of freedom is quite dif-
ferent from that displayed by systems with many degrees
of freedom. Such systems generally show scale invari-
ance and are possibly examples of self-organized critical-
ity (SOC) [17, 18]. It has been suggested that the scale
invariance found in earthquakes (see Appendix) is also an
example of SOC [19,20]. This has been supported exper-
imentally in model systems by Burridge and Knopoff [8]
who found scale invariance in a spring-block model by
measuring the change in potential energy after each slip
event, and by Feder and Feder [21] who measured the
force required to drag sandpaper across a carpet. There
may, however, be other possibilities. Computer simula-
tions by Vasconcelos et al. [14] strongly suggest that the
observed scaling represents only a portion of some more

complicated dynamic phase diagram. We shall return to
this idea at the end. of the paper.

The paper is structured as follows. In Sec. II we review
various relevant aspects of friction. The experiment is
described in Sec. III and the methods of data analysis are
given in Sec. IV. The results of the analysis are presented
in Sec. V, followed by a discussion in Sec. VI.

II. SOME ASPECTS OF FRICTION

In this section we discuss the importance of contact
area, surface geometry, and the normal degree of freedom
in the context of our experiment. For a review of friction
theory and stick-slip motion, see Refs. [2—6].

A. Static friction

Geometrically, one may view a material surface as be-
ing rough, consisting of asperities of different sizes which
will deform under pressure [22]. If one surface is placed
on top of another, the deformation will cease when the
total yield pressure P& of the asperities equals the load
Fl. of the upper surface divided by the total contact area
A„ i.e. , P„=Fl, /A, . This is the basic assumption of the
well-known adhesion model for static friction of Bowden
and Tabor [2], where the origin of the static friction is
an (intermolecular) adhesion between the two surfaces at
the points of contact.

Assuming plastic deformation, an estimate of the con-
tact area A, can be made by approximating P„=gH~
where g is the acceleration of gravity and H~ is the
Brinell hardness. Thus for a metal block of height h and
density p, and with El, ——pghA where A is the apparent
area, we find that, typically,

A, /A = 10
H~

where we have taken h = 1 cm, p = 10 g/cms, and
H~ = 10~ g/cm . Thus, even though the apparent
area may be macroscopic, the contact area can be quite
small. (Specifically, in our experiment A 1 cmz so
A, 100 pmz. ) Thus microscopic randomness may not
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simply average out. This apparent stochastic element
can result in strong fluctuations in the static friction so
the classical friction law, where the friction force is pro-
portional to the load, will only exist in an average sense.

B. Dynamic friction

Dynamic friction presents a diferent problem. Exten-
sive experimental studies [2—6] have established that the
velocity dependence is weak and nonlinear and has hys-
teresis. Attempts have been made to explain these fea-
tures purely in the context of the adhesion model dis-
cussed in the previous section but only with limited suc-
cess [4]. More recently, so-called state-variable friction
laws have been introduced mainly on a phenomenologi-
cal basis [24].

Both experiments and simulations, however, have
demonstrated the importance of the normal degree of
freedom [4], since as the velocity increases, there will be
more momentum transfer into the normal direction, pro-
ducing an upward force on the upper surface. This will
result in an increase in the separation between the two
surfaces, and hence a decrease in the contact area. From
here one can either return to the adhesion model with a
reduced contact area and hence reduced adhesion [4], or
use the collisions between the asperities as the dissipation
mechanism [25]. Both these models have been used with
some success in explaining the observed behavior. They
may also be used in connection with a Langevin model
for the motion where the collisions are the source of the
noise term. This will be discussed further in Sec. VD.
An important consequence of this picture is that if the
fluctuations in the static friction are indeed determined
by surface geometry and contact area, then one should
expect the dynamic friction to fluctuate for the same
reasons. Again, this means that deterministic friction-
velocity relations at best only exist in an average sense.

C. Stick-slip motion

When a block is pulled via a spring, one observes that
as a function of the pulling velocity vo, there are two
distinct dynamics in the slow and fast limits [4]: stick-slip
(relaxation) motion for sufficiently small vo and damped
harmonic motion (i.e. , continuous sliding) for sufficiently
large vo.

The stick-slip motion that has been observed previ-
ously is usually periodic or nearly so. This can be ex-
plained as follows. Since the loads are usually on the
order of kilograms, the contact area [see Eq. (1)] will be
on the order of square millimeters, which may result in
less stochastic and more deterministic behavior. Given
a narrow distribution of initial conditions, say, in the
static friction, a deterministic equation of motion will
ahvays result in a (nearly) periodic motion. As a conse-
quence, purely deterministic relations between stick-slip
characteristics, such as amplitude and period, and exper-
imental conditions have generally been used in modeling
this phenomenon [4, 6]. In the present experiment, we
used masses between 30 g and 700 g and in fact
we observe a transition from aperiodic to nearly periodic

motion when we switch to heavier loads. These results
will be discussed further in Sec. V C.

For large vo, the block no longer sticks to the surface
and instead we observe continuous sliding. The dynam-
ics become essentially that of a damped harmonic oscilla-
tor, although the motion is still not completely periodic.
Again, this will be discussed further in Sec. VD.

Given what has been said above, it is diKcult to find an
equation of motion for stick-slip motion in the stochastic
limit, let alone one that also describes the crossover to
damped harmonic motion.

III. EXPERIMENTAL SETUP

The experimental setup is shown schematically in
Fig. 1. The basic idea, as described in the Introduc-
tion, is very simple. In practice, however, it is far more
convenient to keep one end of the spring fixed in the
laboratory frame of reference and place the block on a
rotating surface and hence obtain arbitrarily long time
series. We therefore used a rotating table (1) driven by
a rubber wheel (2). The wheel was connected to a gear
box (3) with ratio settings from 1:1000 to 1:500000 and
which was driven by a 5000-rpm dc motor (4). The mo-
tor speed was kept constant throughout the experiment.
Thus, by changing the gear ratio, we were able to obtain
a range of effective pulling velocities vo from 0.016 mm/s
to 8.0 mm/s.

Most of the work was conducted on the outer surface of
a 32.5-cm-diam bearing made from SAE 52100 steel. On
it was placed a 28.5-g block of dimensions 1 x 1 x 3 cm
made from a work-hardened tool bit (5). Both surfaces
were therefore smooth and robust. Larger masses were
studied by placing weights on top of the block. We also
studied brass and aluminum surfaces with a block of the
same material. The aluminum surface was smoothed on a
milling machine and the brass surface was simply cut. Al-

though the steel surface was considerably smoother than
the brass and aluminum surfaces, they all gave qualita-
tively the same results. One might expect that the much
harder and smoother steel surface would diminish the im-
portance of random processes, but this was not the case.
The blocks and table surfaces were prepared by cleaning
with isopropyl alcohol and then running the apparatus
for about an hour before measuring.

The block was rigidly attached to a 4-cm plastic rod (6)

FIG. 1. A schematic sideview of the experimental setup
(see text). The block rests near the perimeter of the table
closest to the observer.
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will also trigger the algorithm, a mean filter was applied
and a second criterion was used to identify an event,
namely the duration of the slip. Slips with durations less
than or equal to three sample intervals (- 0.04 s) were
rejected. This algorithm was applied to various data sets
and checked by eye. No obvious events were missed and
nothing that was indistinguishable from the noise was
selected. When an event was located, the following four
event parameters were recorded: the event time, the slip
size, the slip force, and the slip duration. In the data sets
that will be presented, all had more than 35000 events,
except those with vo ——0.016 mm/s which had 6000
events.

To what extent are the data reproducible'? Due to fac-
tors such as wear and oxidation, the raw signal will never
be exactly reproducible in the sense that a run over the
same surface segment will yield the same result. Never-
theless, averaged quantities, such as the distributions of
the event parameters and the power spectra, were always
found to be reproducible. This also implies that we are
observing a stationary process at least on the time scales
of the experiment. Eventually, of course, significant wear
will occur which will alter the dynamics.

V. EXPERIMENTAL RESULTS

The system was studied primarily with three con6gu-
rations:

(i) Small mass (28.5 g) and loose spring (22.4 N/m):
VII = 350 II1II1/s.

(ii) Small mass (28.5 g) and stifF spring (152 N/m):
n~ = 134 mm/s.

(iii) Large mass (670 g) and stifF spring (152 N/m):
vD = 651 mm/s.

The meaning of v~ will be discussed in Sec. VI. Only
the stick-slip (relaxation) regime will be examined in
the following sections. An analysis of the damped har-
monic (continuous sliding) regime will be deferred until
Sec. VD. Unless indicated otherwise, the steel surface
was used. Configuration (i) was also studied with the
aluminum and brass surfaces.

Slip size distr ibution

This is the most obvious one to study given its possible
connection to single fault slips in earthquakes (see Ap-
pendix). In our system, we can explicitly calculate the
relationship between the energy E released (dissipated)
in a slip and the slip size s. If the block is at rest (in the
table's frame of reference) just before and just after an
event, then the energy released is just the change in the
potential energy of the spring:

E = — (x2 —E) —(xi —E)
k- 2 2

2

where k is the spring constant, E is the equilibrium length
of the spring, and x2 and xi are the positions of the block
just before and just after an event, respectively. Since
s = z2 —xi, we can rewrite Eq. (2) as

E = ks [x2 —I. —s/2].

Thus, if 2:2 —E )) s/2 we find that E s, as assumed for
earthquakes. In our experiment, this condition only fails
for the very largest (and rarest) slips.

The distributions for the slip size are shown in Fig. 3
for a wide range of pulling velocities. (The statistics are
such that it is not necessary to show the cumulative dis-
tributions as is usually done. ) lt appears that they have
an approximately exponential distribution with a char-
acteristic size of 0.1 mm which is independent of the
pulling velocity vo. For this configuration, we do not ob-
serve the scaling seen in earthquakes, model systems, or
simulations.

It should be pointed out that the slip size can be de-
fined either in the laboratory frame of reference or in
the table's frame of reference. As vo ~ 0, they become
indistinguishable, but this is not true otherwise. How-
ever, the corrections for vo 0.3 mm/s are typically

0.01 mm and hence insignificant. The distributions
shown in Fig. 3 are for the laboratory frame which is
consistent with Eq. (2).

I I
I

I I I I
I

f I

A. Con8guration (i)

We return once again to the data segment shown in
Fig. 2(a) which was in fact taken with this configura-
tion. The following qualitative features should now be
noted. First, there is no apparent periodicity in the sig-
nal. This implies that the friction force might not obey
a simple deterministic relation. This is supported by the
fact that slip forces of approximately the same magnitude
can be followed by considerably different slip sizes. Sec-
ond, there are slip sizes covering the full dynamic range of
our measuring apparatus. Finally, it appears that there
is a build-up preceding a large slip, i.e., there are a num-
ber of small jumps just before a large one. We will now
examine the distributions of some of the event parame-
ters. All of the distributions that will be presented have
been normalized.
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FIG. 3. Slip size distributions for configuration (i). The
straight line above the data is a decaying exponential function
with a decay length of 0.1 mm.
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A Poisson process, i.e. , where there is a uniform prob-
ability that the block will stick in an interval ds, will, of
course, yield an exponential distribution. However, this
cannot be the complete explanation for the data. This
can most clearly be seen by looking at the return plot of
the slip size difference, i.e. , s +i —s vs s —s„ i. This
is shown in Fig. 4. (One can also see correlations in the
slip size return plot, i.e. , s +z vs s„, but it is not nearly
as striking as Fig. 4.) The interpretation for this figure
concerns the build-up discussed at the beginning of this
section. Consider a sequence of three consecutive slips.
Three small slips will result in the clustering of points
near the origin. Two small slips followed by a large slip
will result in the clustering of points on the positive y
axis. A large slip followed by two small slips will result
in the clustering on the negative x axis. A small slip
followed by a large slip followed by a small slip results
in the clustering on the line y = —x in the fourth quad-
rant. If the slip sizes were indeed randomly distributed,
i.e. , uncorrelated with one another, they would produce
a circularly symmetric distribution. Thus, although the
distributions appear to be exponential, the underlying
dynamics may not be Poissonian.

The slip size distributions for the aluminum and brass
surfaces are qualitatively similar to the data taken on
the steel surface, except that the characteristic length
is larger. As examples, the distributions for vo
0.16 mm js are shown in Fig. 5.

2. Slip force distribution

The slip force distributions are shown in Fig. 6. If
we consider the local static friction to be a function of
position, then the slip force is probing this function. For
vo 0.4 mm/s, the slip force (static friction) distribution
is well parametrized by a three-parameter log-normal dis-
tribution:
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FIG. 5. Slip size distributions for aluminum and brass for
configuration (i). The straight line below the data is a decay-
ing exponential function with a decay length of 0.3 mm.

1

/2' o(f —f, ).

[1n(f —f.) —ln( fp —f,)]'x exp

where fo is the peak position, f, is a lower threshold, and
o is a measure of the width of the distribution. The sig-
nificance of f, is that there exists a lower threshold for the
static friction. It is not easy to explain the presence of a
significant tail, let alone why the static friction in the ex-
periment should follow such a distribution. Log-normal
distributions can be a consequence of, for example, the
law of proportionate eKect, and one can easily make ar-
guments in this vein. However, this is not very rewarding
in terms of new insight.

As we increase vo, the log-normal fit becomes worse.
If we attribute the log-normal distribution to the static

0..8 I I I I
[

I 1 I I
f

I I I f
[

I I I I

0.15 I f I
i

I I
I

I I I I

0.0

+
V)

vo
——0.16 rnrn/s

0.10

0.05

~ vo
——0.0'l6 mm/s

~
v& ——0.16 rnrn/s

m/s-

—0.8
—0.8 —0.4 0.0 0.4

S —S
1

ITlP1

0.8 0.00
30.0 40.0 50.0

& (mN)

60.0

FIG. 4. Return plot of the slip size difference for configu-
ration (i).

FIG. 6. The slip force distributions for configuration (i).
The solid lines are fits to log-normal distributions (see text).
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friction, then there is no reason why it should parametrize
the slip force at faster velocities since there is no longer
a simple correspondence between the slip force and the
static friction.

We note that the static coeFicient of friction, defined
as the mean static friction (approximately the peak po-
sition) divided by the load, is —0.15 in agreement with
previous results [3]. Also, the threshold f for the static
friction decreases with decreasing velocity and is inde-
pendent of the surface material. This indicates a two-
parameter log-normal distribution for the static friction
in the limit vo ~ 0.

This brings us to the question of whether the slip force
distribution, which is the measured static friction, can
be interpreted more generally as the true distribution for
the static friction. The question is relevant since we do
see a velocity dependence in the log-normal distributions.
The reason for this may be that the dynamics are decid-
ing how we are probing the surface, e.g. , there may be
strong correlations between the slip force f and the stick
force 1' —ks. The distribution of conditional probabilities
I (f —ks~ f ) seen in Fig. 7 indicates that the correlations
are weak since the slip force does not determine the low-
est value for the stick force. This does not, however, rule
out an exclusion process. One interpretation is that due
to the average velocity dependence of the dynamic fric-
tion, the slipping will cease at a higher spring force when
the velocity of the table is higher. Hence the dynamics
are not directly deciding how we are probing the surface,
but are excluding a part of the true static friction distri-
bution that can only be measured by placing the block
at random positions and then pulling it.

The slip force distributions for aluminum and brass
are also well parametrized by log-normal distributions.
As examples, the distributions for vo ——0.16 mm js are
shown in Fig. 8.

8. R'aiting time distr ibutions

If the nth event begins at time t, then the waiting
time is de6ned as A =—t +~ —t . The waiting time

0.08 I I I I
I

I I I
I

I I I I
I

I

0.07

0.06

0.05

0.04

0.03

0.02

0.00
30.0

vo ——0.'l6 mm/s
., &Ilt, lt JI

I I
~ + Aluminum

~I'1I (II.-
i1- - -III ~ " "II Brass

I I s I I I I

I

'

I I'
~

I.I I

I
—I~

50.0 70.0
f (mN)

90.0
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distributions for two intermediate velocities are shown in
Fig. 9. They are peaked and appear to have exponen-
tial tails whose slopes are clearly dependent on vo, as
expected. (A pure exponential is expected for a Poisson
process, i.e. , random events. ) For the slowest velocity
we see more complicated behavior, as shown in Fig. 10.
For waiting times 2 s, there is a possibly exponential
decay before the peak. It would appear therefore that
there may be difFerent processes dominating on difFerent
time scales.

If we compute the average time w between two events,

, it depends on the pulling velocity vo
as shown in Fig. 11. These data can be explained as fol-
lows. Clearly, the waiting time is a sum of the time spent
sticking to the table surface plus the time spent sliding
on it (the slip duration). If we then assume that both the
average distance the spring stretches (or equivalently, the
force in the spring increases) and the average time spent
sliding are independent of vo, then 7 (vo) can be written
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sensitive to higher-order correlations that are apparent,
for example, in Fig. 4.

The stick-slip motion typified in Fig. 2(a) can be rep-
resented by the following expression for the position of
the block as a function of time in the laboratory frame
of reference:

N

x(t) = xp + vpt —) s„0(t —t„),
n=1
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PIG. 10. Waiting time distribution for the slowest velocity
for configuration (i).

where a is a constant, N is the total number of events,
8 and t are the size and time of the nth event, respec-
tively, and 0(t) is the step function. Thus we assume
that the signal consists of a linear part interrupted by
instantaneous events, which becomes a better approxi-
mation to the true signal as vp ~ 0. (Of course, the
slips are not instantaneous, but we will ignore this since
it only results in some form-factor efI'ects not relevant to
the present analysis. ) With periodic boundary conditions
with period T, the Fourier transform of x(t) is (ignoring
the constant xp)

b7.(vp) = —+ r
Vp

(5)
N N

x(iv) = —. vpT —) s„+) s„e' '-
ZM

(7)

where b is the mean distance the spring stretches dur-
ing sticking, and 7 is the mean slip duration. Equa-
tion (5) also yields the correct asymptotic behavior. As
vp M ex) 7 M 7 where 7 is found experimentally to be
within 5%%uo of the undamped eigenperiod 2vrgm/k, and
as vp ~ 0 7 M oo, as one would expect. This agrees
with previous results showing that the frequency of the
motion approaches that of the undamped eigenfrequency
as the pulling velocity is increased [4].

n=l

Now, the first two terms inside the brackets will tend to
cancel, since this is precisely the condition for the dy-
namics to be stationary. Thus the power spectrum is
just

Power spectra

5.0 I I I I I I I II I I I I I IIII I I I I I I II

4.0

Power spectra can be a useful although somewhat lim-
ited tool in analyzing dynamic phenomena. Specifically,
it only measures two-point correlations and thus is not

where the first term inside the brackets represents the
self-correlations. At high frequencies only the self-
correlations will remain, yielding the expected 1/f be-
havior originating from the slip discontinuities. At sufIi-
ciently low frequencies, the terms inside the brackets will
become constant, so again one should observe 1/f2 be-
havior. What will happen in between will be determined
by the specific correlations between the 8 's and t 's.

If the 8 's and A 's are uncorrelated for difIerent
events and with each other, then it can be shown that
the power spectrum becomes [26, 27]

2.0

S(iv) - —1+ 2 Re
(s)'
(s') 1 —g

P(A)e * dA,

1.0

0.0
'lO

I I I I I I I II

lO

I I I I I I I II

lO

0 ~~S

I I I I I I I I

lO

FIG. 11. The average waiting time r(vo) for configuration
(i). The solid line is a fit to Eq. (5) giving b = 0.06 mm and
7 = 0.21 s.

where (s) and (s ) are the first and second moments of
the slip size distribution respectively, and P(A) is the
waiting time distribution. In this case, we see that we
only require the distributions for 8 and A in order to
calculate the power spectrum.

The power spectra for steel, aluminum, and brass at
two difFerent velocities are shown in Figs. 12(a) and
12(b), respectively. Using a model function for the mea-
sured waiting time distributions shown in Figs. 9 and 10,
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it is possible to find a numerical solution to Eq. (9), but
it misses all the important features of the data. It does
not reproduce either the position or the size of the shoul-
ders in the data or, more importantly, the low-frequency
behavior. [Other (deterministic) assumptions concerning
the interdependence of s and A can be made [27], but
it does not improve matters. ] Instead we see nontrivial
long-time correlations indicating that S(f) f with
o, between 1 and 1.3.

We note that 1/f behavior is still expected at some
lower frequency. However, if we measure for too long,
correlations from the finite size of the table result in a
peak in the power spectrum corresponding to the pe-
riod of rotation. This makes longer time measurements
impossible. These correlations are shown in Fig. 13 for
vo ——8.0 mm/s although it was observed at all veloci-
ties. The 6rst and strongest peak is from the period at

125 s, and the higher frequency peaks are its harmon-
ics. The shape and width of the peaks correspond to an
exponential decay time for the autocorrelation function
of 80 s. There are clearly memory efFects in the stick-

I I I I
l

'lO

I I I I I I lll I I I ! I ill] I I l I 1111

'lO

'lO

vo ——8.0 mm/s

lO
I I I I I

10

I I I I I I I II

10

I I I I I I I II

10

I I i I I I II

FIG. 13. Power spectrum for configuration (i) showing
correlations corresponding to the period of rotation of the
table.

10

slip process, indicating, for example, that the stick-slip
characteristics are local properties of the surface.

C:

'lO

10

10

10

10

IO

10

10
10

Vo

Steel
---- Aluminum
-------- Brass

I I I I I I lll I I I I I I III I I I I I I III I I I I I I lll I

10 10 10 10

B. Configuration (ii)

When we used a stiver spring with the same small
mass, we found qualitatively difFerent behavior. Fig-
ure 14 shows the slip size distribution for this configu-
ration. It is no longer exponential and would appear to
be better represented by a power-law distribution. For
comparison, the slip size distributions for configuration
(i) (see Fig. 3) are also included here. Unfortunately,
it was not possible to examine this development further
since the measureable range of motion of the block be-
comes increasingly restricted as the ratio of m/k is de-
creased.

10

10

10

I I I I I I I I I I I I I I I I-

'lO

10

10

10

10
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Vo

I I I I I IIII I I I I I IIII I I I I I IIII

10 10 10
r (Hz)

I I I I I III

'lO

~M 10O
CL

10 I I I I l

'lO 'lO

s (mm)
10

FIG. 12. Power spectra for steel, aluminum, and brass for
configuration (i). (a) vs —0.016 mm/s. The steel data is
composed of two separate measurements, the high frequency
part being heavily averaged. (b) v&&

——1.6 mm/s. The straight
lines below the data are a power law with an exponent of —1.

FIG. 14. Slip size distribution for configuration (ii). The
solid line through the data is a fit to Eq. (10) (see text). The
slip size distributions for configuration (i) (see Fig. 3) are also
shown for comparison.
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FIG. 15. Slip force distribution for configuration (ii). The
solid line is a fit to a Gaussian distribution.
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f (Hz)

FIG. 17. Power spectrum for configuration (ii).

It will be observed that there is a small curvature in
the data, indicating that a power-law distribution must
be modified. One obvious choice is

P(s) s ~e (10)

where 8 is a cutoK length. A fit to this function is shown
in Fig. 14 and yields P 1.6+0.3 and s, 0.1+0.05 mm.
The corresponding exponent found in earthquakes (see
Appendix) ranges from 1.6 to 2 for small and large earth-
quakes, respectively. What is the meaning of s . If it is
a correlation length, then we should interpret configu-
rations (i) and (ii) as, respectively, the "hydrodynamic"
and "critical" regimes of the same fixed point.

The slip force distribution is shown in Fig. 15. The
distribution would now appear to be symmetric, lacking
the tails seen in Fig. 6 for configuration (i). In Fig. 16
we show the waiting time distribution. It still has a peak
and an exponential tail as in configuration (i). The power
spectrum is shown in Fig. 17. It is difBcult to conclude
anything about the low frequency behavior.

C. Configuration (iii)

From the discussion of contact area in Sec. IIA, we
expect more deterministic (and hence periodic) behavior
as the block mass is increased. (The spring constant
was also necessarily increased. ) In Figs. 18—20, we show
the distributions for the slip size, slip force, and waiting
time, respectively. They all appear to be Gaussian and
hence we conclude that the motion is quasiperiodic in
agreement with previous results [4]. The power spectrum
shown in Fig. 21 corroborates this conclusion. The peak
at 0.3 Hz corresponds to the mean waiting time seen
in Fig. 20.

D. Langevin model for large eo

We now recall the colliding asperity model for dynamic
friction discussed in Sec. IIB. As the block slides across
the table, there will be many collisions between the as-
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FIG. 16. Waiting time distribution for configuration (ii).
FIG. 18. Slip size distribution for configuration (iii). The

solid line is a fit to a Gaussian distribution.
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FIG. 19. Slip force distribution for configuration (iii). The
solid line is a fit to a Gaussian distribution. FIG. 21. Power spectrum for configuration (iii).

x+ P(x —vp) + (upx = (x —vp)rI(t),

where p is a damping coefficient (px may be regarded
as the linear term of an expansion), ~p ——gk/m is the
natural frequency, and iI(t) is a Gaussian noise term, i.e. ,

(il(t)) = 0 and (rI(t)rI(t')) = 2DS(t —t'). The form of
Eq. (11) is such that both the damping and the noise
will vanish when the block is at rest relative to the table.
Substituting y = x —pvp/urp, we can rewrite Eq. (11) as

~+ h —~(t)1~+ ~p~ = vpn(t)— (12)

We believe that the noise term modifying the damping

perities of the two surfaces. Since the asperities have a
spacing + 5 pm [23], the block will, on average, cover
hundreds of asperities per second as it slides across the
surface. This makes it reasonable to think of the motion
of the block as generating noise. We therefore propose
the following equation of motion for the position x(t) of
the block in the laboratory frame of reference:

will have no effect except at short times. (This appears to
be confirmed by simulations. ) Thus, Eq. (12) will simply
behave as a Langevin equation for a noise-driven damped
harmonic oscillator. The power spectrum is then just [28]

4DS &u
ld + 2+cd + cafp

I

Figure 22 shows the power spectrum for configuration
(i) with vp ——8.0 mm/s. There appears to be a 1/f
background. This is most likely an artifact of making a
Gnite time measurement which can create the illusion of
a slow constant drift in the signal. That is, if x(t)
x(t)+ct then x(w) -+ x(w)+c/ice (for periodic boundary
conditions) resulting in the addition of a 1/cu2 term to
Eq. (13). In Fig. 22 is also shown a fit to the data of
Eq. (13) with this correction term added and with gap

fixed to its measured value.
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FIG. 20. Waiting time distribution for configuration (iii).
The solid line is a 6t to a Gaussian distribution.

FIG. 22. Power spectrum for continuous sliding for con-
figuration (i). The dashed line is a fit to Eq. (13) corrected
for a linear drift (see text).
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VI. DISCUSSION

Following Vasconcelos et al. [14], we will assume that
the dynamics is determined by the various scale velocities
found in the problem. In our case, there are two. First,
there is the pulling velocity vo. Dimensionally, we can
form a second velocity from the available parameters,
which is vD = ggm/k. The physical meaning of vD is
that it is proportional to the maximum velocity that can
be attained by the block when it slips. If we consider
the motion of the block when it is sliding to be that of
an undamped harmonic oscillator, then its position as
a function of time is x(t) = xp cos ~pt where xp is the
initial position of the block, and of course (rJp = gk/m.
Its velocity is therefore x(t) = —xpurp sinwpt. The initial
position xo is just the displacement of the spring when
the block slips, which is just the slip force divided by the
spring constant, i.e. , xp ——f/k The s. lip force is given by
f = p, mg where p, is the static coefficient of friction the
instant before a slip begins. Thus, the maximum velocity
of the block is xpup ——Ii,ggm/Ic.

We would now like to consider our system in the con-
text of a dynamic phase diagram, with the pulling veloc-
ity vo and the dynamic velocity vD as the phase param-
eters. The phase diagram might then look schematically
like Fig. 23. Clearly, for sufIiciently large vo, the block is
continuously sliding over the surface. One might suppose
that as vD is increased, this will only happen for larger
and larger values of vo. As vo ~ 0, we see only stick-slip
(relaxation) motion. For large values of vD [configuration
(iii); see Sec. V), we observe nearly periodic motion. As
v~ is decreased [configuration (i)], the motion becomes
aperiodic and has approximately an exponential slip size
distribution. As vLi is decreased further [configuration
(ii)], the slip size distribution becomes distinctly nonex-
ponential and possibly power-law, indicating a crossover
from a hydrodynamic" to a "critical" regime. The na-
ture of the boundaries is not known, although they are
certainly not sharp. For example, we know there is a
region between continuous sliding and stick-slip motion
which is a mixture of the two. In this case, one might
regard the fraction of time spent sticking as an order pa-
rameter [14].

The physical consequences of changing vD can be spec-
ulated upon as follows. If we regard the block as a point
object moving in a potential well due to the interactions
of the asperities, then for sufIiciently large vD, the block
will always have sufficient energy to clear every energy
barrier, since the asperities obviously have a maximum
size. In this case, the dissipation mechanism is indepen-
dent of the asperity size distribution, i.e., only average
values are important, resulting in a more or less deter-
ministic friction force and hence (nearly) periodic motion
of the block. As vD is decreased, the block will interact
with the larger asperities, resulting in stochastic behav-
ior refIecting their distribution. As vo is decreased yet
further, the block interacts with even the smallest asperi-
ties from which we must conclude from the data that they
have a different distribution than the large asperities.

The one-dimensional model of Jensen et al. [29], where
a chain of particles interconnected by springs moves in
a random potential, yields some results similar to ours.
However, it is not straightforward to map our experiment
onto this model. They find a power spectrum qualita-
tively similar to those in Fig. 12 and an asymmetric slip
force distribution as we do. However, their slip size dis-
tribution appears to be power-law and not exponential.
It may be that their system will display exponential slip
size distributions in some other region of their parameter
space.

The onset of a slip might be considered in the con-
text of the so-called fiber-bundle model of which there
are two versions. The first is "democratic, " where af-
ter the breaking of one fiber the force is redistributed
equally among the remaining fibers. It can be shown [30]
that this version obeys a central limit theorem yielding a
Gaussian distribution of the breaking force for the entire
bundle. The other version is "hierarchical, " where the
weakest fiber breaks first, the second weakest next, and
so forth. Hence, the force for which the bundle breaks is
given by the strongest fiber. For a rather general class of
distribution of fiber strengths, this will yield an extreme
value distribution for the breaking force of the entire bun-
dle. Thus, neither version reproduces the log-normal dis-
tributions found in our experiment.
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APPENDIX: EARTHQUAKES

A great deal has been written about earthquakes [31].
For reference, we briefly review some of the pertinent con-
cepts. The seismic moment is often defined as M = psA.
where p is an elastic shear modulus, s is the size of a
fault slip, and A. is the area of the fault. The seismic
energy E is proportional to the seismic moment. The
Gutenberg-Richter law states that the cumulative num-
ber of earthquakes N greater than a magnitude m is

given by log N~ = a —bm where a and 6 are empirical
constants [32]. The magnitude and seismic moment are
in turn related by m = —log M —d, where c and d are
again empirical constants. Thus, the number density n
of earthquakes of energy E or event size s scales as

where B = bic T. here is some consensus that B 0.6
for small earthquakes, while B 1 for large earthquakes.
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