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Discreteness efI'ects on the formation and propagation of breathers in nonlinear
Klein-Gordon equations
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Oscillating localized solutions are studied in the case of a nonlinear Klein-Gordon equation,
extending previous results. The discreteness effects are studied on the propagation of the breathers
and we show that the Peierls-Nabarro potential is an increasing function of the amplitude of a
breather. Showing the possible role of impurities to trap the modes in a 6nite region and results for
the collision phenomenon between such excitations, we exhibit a mechanism to localize energy as
large-amplitude breathers in the lattices. Their creation is thus explained by a physically relevant
mechanism.

PACS number(s): 03.40.Kf, 63.20.Pw, 46.10.+z

I. INTRODUCTION

Solitons, or more generally localized nonlinear excita-
tions, have been used to model many physical phenom-
ena in solids or macromolecules [1], such as dislocations,
magnetic-domain walls, collective electronic [2] or ionic
[3] charge transport in solids or macrornolecules, energy
transport in proteins [4], or the local opening of DNA
[5,6]. In most of these applications, the atoms or spins
can be considered as harmonically coupled and subjected.
to a nonlinear external potential which can be due to the
rest of the crystal or macromolecule (such as in disloca-
tions, ferroelectric domain walls, DNA dynamics) or an
external field (such as in magnetic chains). This results
in a nonlinear Klein-Gordon equation for the on-site de-
gree of freedom u of the form

where V is an external (substrate) potential.
Although in the mentioned cases [1], the physical sys-

tem of interest is a discrete lattice, the theoretical mod-
eling generally uses a continuum limit approximation to
allow for analytical treatment. The role of discreteness
to modify the conclusions derived in the continuum limit
has been investigated in detail in the case of topological
excitations (kinks) that interpolate between two difFerent
ground states of the system [7—9].

There is, however, another class of excitations that is
important for physical applications: the large-amplitude
localized excitations or breathing modes. Contrary to the
kinks, which have a Rnite minimum energy, the breathers,
which can be created without an energy threshold, often
play the role of precursors in the formation of nonlin-
ear excitations. Although some studies of the role of
discreteness on breather dynamics have been performed
[6,10—13], the role of the lattice is much less understood

for breathers than for kinks. One reason is that breathers
are two-parameter solutions that are not only de6ned by
their position but also by their internal dynamics.

Breathers in Klein-Gordon equations are particular
cases of intrinsic localized states in anharmonic lattices
which have been extensively studied in the last few years
[14—17]. However, the models that have been considered
in this context involve anharmonic interactions between
particles, while in the Klein-Gordon models the nonlin-
earity comes from an on-site potentia/. For the study of
discreteness effects on permanent-profile kink solutions,
this distinction has been found to be crucial. While
narrow kinks in a Klein-Gordon model radiate phonons
and therefore lose energy [18], nontopological kinks in
monoatomic lattices can propagate without any energy
loss [19]. This fundamental difference can be attributed
to different linear dispersion relations in the two cases.
In other approaches [11—13], the study of the breathers
is performed on a discrete nonlinear Schrodinger (NLS)
equation. This introduces some constraints related to the
properties of the NLS equation; for instance, the conser-
vation of the norm, which imposes a strong restriction on
the dynamics of the breathers (for instance, the trapping
of the soliton on the maximum of a perturbative poten-
tial [11]).Although the discrete NLS can be derived with
some approximations from the Klein-Gordon equation,
this conservation relation does not apply to the original
equation. Therefore it is important to study the effects of
discreteness on the breather directly on the ELein-Gordon
equation rather than on the discrete NLS. This is the aim
of this paper.

In a previous paper [6], we considered the role of dis-
creteness in the ps model. By first studying the equa-
tions of motion of the system in the continuum limit, we
obtained approximate expressions for the breather solu-
tions. Owing to the importance of breathing motions in
many physical applications, and particularly in DNA, we
developed a Green's-function method to take account of
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II. MODEL AND SMALL-AMPLITUDE
BREATHERLIKE EXCITATIONS

The discrete Ps model that we consider is a chain of
particles of mass m = 1 equally spaced and submitted to
the substrate potential

;(=; —=;), f

6", ifu&1,
(»)
(1b)

where w& is a constant and u the displacement of the
particle from its equilibrium position. The potential is
then qualitatively analogous to the Morse potential, i.e.,
a potential with a plateau at large positive displacement,
a strong repulsion for the negative ones, and finally a
well around the equilibrium position. All the analytical
results will be obtained in the region of the well, below
the critical value u = 1, but it is necessary to modify the
gP potential for displacements greater than 1, to prevent,
a possible divergence of the displacements in numerical
simulations. Nearest-neighboring particles are harmon-
ically coupled with elastic coeKcient unity so that the
Hamiltonian of the system is

H = ) [-,'u„'+ —,'(u„—u„,)'+ V(u)].

the discreteness efI'ects in detail. Searching long-lived. os-
cillatory solutions, we found an accurate expression, and
the agreement with the simulation, both qualitative and
quantitative, was a strong demonstration of the reliabil-
ity of the formalism when the extent of the breather was
of the order of the substrate lattice spacing. The main
conclusion that emerge~i from our results was that the
discreteness of the chain could be of great importance
for a model, particularly when breather modes are in-
volved. But this work was confined to the time evolution
of harmonic lattices, with nonlinear on-site potential, as-
sociated with static localized modes. We consider here
the propagation of breather modes. We also investigate
the creation of large-amplitude breathers and show how it
can be related to the ability of the breathers to propagate
in the lattice and to their properties when they interact.
Moreover we study the effect of impurities. The behavior
of the breathers in the presence of impurities is interest-
ing in two respects. First it shows the stability of the
breathers and second the impurities can trap breathers
in some region of the space where their interaction can
result in the formation of large-amplitude excitations.

The remainder of the paper is organized as follows.
In Sec. II, we present briefly the model and the small-
amplitude breathers. Then, in Sec. III, in order to com-
plete the first work [6], we explain the role of discrete-
ness on the propagation. We present a simple formalism
to obtain analytical expressions of the solution. We can
then obtain the Peierls-Nabarro barrier for a breather.
In Sec. IV, we present the interaction of breathers with
one or two impurities of the lattice. In Sec. V, we exhibit
the combined role of the impurities and the collisions on
the discrete breathers to localize energy in the chain.

where the nonlinearity and the dispersion parameter are
given by

5u),'+32sin (—)
16sin4 (~)

' (6)

cuq cos(q) —4 sin (&)P=
2(d

In the large-wave-vector limit, we can then And an
approximate solution localized and oscillating in time,
which behaves like a breather mode. At first order in a
small parameter e, its expression is

/n —V, t) 2u (t) = 2cAsech
~ ~

cos(en —cuqt) + O(e ), (8)

where A, V„and L, are the amplitude, the velocity,
and the width of the wave, whereas 0™ and wg are the
renormalized wave vector and frequency of the breather
(see the complete expression in the previous paper [6]).
This NLS breather gives us an accurate expression for
the breathers in the small-amplitude limit.

In the earlier study, we restricted ourselves to static
breather modes; here we will focus on the time evolu-
tion of propagative ones. The propagation of breather
modes involves three time scales, defined by the three
following frequencies: the frequency of the breather's os-
cillation cup, the frequency of the phonon's modes up,
and the last one, which corresponds to the meeting of
the breather with the lattice during the propagation (the
last one corresponds to the so-called Peierls Nabarro fre-
quency). Nontrivial combination effects of these three
frequencies will be studied. in the next section.

III. PEIERLS-NABARRQ BARRIER FOR A
BREATHER

A. Propagation of small-amplitude breathers

The breathers obtained with the method discussed
above are suKciently stable to have a long lifetime that

Therefore, the equations of motion are given by

u„—(u„+, +u„, —2u„) +(u„' ( u„—u„') = 0. (3)

We are interested in cases where u& can be as large as
u&

——10, so that the continuum limit approximation is
not valid and we have to take into account the com-
plete discreteness of the system. Linear oscillations of
the chain of frequency ~ and wave vector q are described
by the dispersion relation

ur (q) = ~„+4sin (q j2) . (4)

The localized modes that we want to investigate are lying
below the bottom of the harmonic band ug.

As a first step, considering only a weakly nonlinear
solution, we can apply the usual multiple scale expan-
sion [20] to provide an asymptotic perturbation expan-
sion in the amplitude of the breather. Following the
standard method, we obtain [6] the well-known nonlinear
Schrodinger equation for the amplitude:
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gives them suKcient time to interact, provided that they
can move in the lattice. This point is not as trivial as it
might seem if one has in mind the picture of solitonlike
excitations in a continuum medium because discreteness
breaks the translational invariance. The evolution of the
position of the breathers is shown in the small-amplitude
case in Fig. 1(a) and in the medium case in Fig. 1(b).
It is not easy to determine precisely the center of the
pulse; however, if we use a parabolic approximation for
the pulse, we obtain a good approximation. If n is the in-
dex of the maximum of the pulse, and (n+ 1) and (n —1)
the index of its two neighbors, the position of the center
of the excitation is

&n —Z
—&n+X

XM =n+
2('u +y + u t —2u )

minimum energy path but a succession of saddle points.
The energy of a kink which is exactly centered on a site
or in the middle between two sites is de6ned without am-
biguity. For a breather with a given frequency, when it
is centered on a site, there is no obvious constraint that
imposes that it should have the same frequency when it is
situated in the middle between two sites. We have used,
as a working definition of the PN barrier for a breather,
the difFerence between the energies of a centered and a
noncentered breather toith the same frequency Th. is def-
inition gives results that agree with the observations of

I I I I I I I I
I

I I I I I I I I I
I

I I l I I I I I I
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This expression allows us to follow the position of the
breather and to distinguish here two strongly different
behaviors. When the amplitude is very small, the excita-
tion can move without difIiculties. A precise analysis of
the shape of the excitation shows that, during its prop-
agation, the solution adapts itself to the real potential,
since the initial condition obtained with the semidiscrete
approximation is not exact. But, when the breather has
a medium amplitude, we note that the excitations are
trapped on one site, more or less quickly, according to the
initial speed. The comparison of the two figures shows
that the propagation of the modes is more difIicult when
their amplitude is bigger.

The trapping effect of the discreteness is well known
for topological solitonlike excitations and has been ex-
tensively investigated in the context of dislocation theory
[21]. In a lattice, a kink cannot move freely. The mini-
mum energy barrier that must be overcome to translate
the kink by one lattice period is known as the Peierls-
Nabarro (PN) barrier, EpN. It can be calculated by
evaluating the energy of a static kink as a function of
its position in the lattice. For the various models that
have been investigated, two extremal values are generally
obtained when the kink is exactly situated on a lattice
site (centered solution) or when it is in the middle be-
tween two sites (noncentered solution).

For a discrete breather very little is known, although
the PN barrier has been shown to exist [22]. One of the
difhculties is that the breather is a two-parameter solu-
tion. While, for a kink, the PN barrier depends only on
discreteness, i.e. , on the model parameters, for a breather
it depends also upon its amplitude (or frequency). This
amplitude dependence is crucial for our analysis because
we are interested in the growth of breathers. As they
increase in amplitude, the PN barrier that they feel
changes. The definition of the Peierls barrier itself is
not as simple for a breather as for a kink. In principle,
its value can be obtained by monitoring the breather as
it is translated along one lattice constant. While for a
kink the path followed by the particles in the multidi-
mensional phase space of the system can be obtained by
minimizing the energy while the position of the central
particle is constrained in all intermediate states, in the
case of the breather, the path in the phase space is not a
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I'IG. 1. Position of the center of the breather for diferent
initial speeds. Time units are denoted (t.u. ). We present
the evolution of the NLS breather with an amplitude of 0.33
in (a) and 0.58 in (b), for the four following initial speeds:
Ve = 1.8 10

& Ve = 8.2 10
&

Ve = 0.182& and Ve = 0.282.
Note that in (b), in the second and third cases, the breather
is trapped on site 100, which results in the same line in the
figure.
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the breather motion made by molecular dynamics simu-
lations, but the notion of the PN barrier for a breather
will require further analysis.

B. Large-amplitude breathers

To calculate the PN barrier, we have to compare the
energy between two cases: the breather is centered on a
particle or between particles. In the previous paper [6],
we focused our study on the first case, but we can easily
extend the method to the second one. The procedure is
the following: we look for stationary-mode solutions by
putting 1.10 I I

]
I I I

[
I I I

i
I I I

I
I I I

I
I

(a)

cases the breather moves so that the center reaches the
bottom of the well; i.e. , the solution converges toward the
more stable breather. To prevent this tendency we chose
to impose the symmetry and calculate the solution for
only a half of the chain, the second half being known by
symmetry: thus the position of the breather is 6xed. Self-
consistently solved, the system (12) give us the values
of the breather's frequency and of the amplitude of the
di8'erent sites.

In Fig. 2(a), we plot the frequency versus the ampli-

'a~ = ) P~ cos(zldbt)
i=O

(10)

1 00 —--

where orb is the eigen&equency of the breather and p'
are the time-independent amplitude of the ith mode. In-
serting the Ansatz (10) in Eq. (3), we set the coefFicients
of cos(i~bt) equal to each other, retaining only the first
three terms. We obtain

3
0.90—

3

~o2 4" +0'+ (11a) 0.80—

(~d ~b) '4 ~n+i + 4'n i 24'—n

2(g + P„P„', (lib)

i 2-

2P„'P„' + " . (11c)
2
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Then, invoking the Green's functions for the linear left-
hand sides, we get a set of simultaneous nonlinear eigen-
value equations determining the eigenfrequency wb and
the eigenfunctions P'„:

y„'=) G( —,0) yo'+ (12a)

(12b)

2

P„=) G(n —m, 2(ub) 2P (12c)

where the Lattice Green's functions have the following
expression:

ai 2 ~Cga
G n, , (ub N (ud2 —~b2 + 2[1 —cos(q)]

'

For solving this system, the procedure requires more
care than in the centered case [6], to avoid the problem of
instability of this mode. Indeed, since the position at the
top of the PN barrier is intrinsically unstable, regardless
of other possible causes of instability, even starting with a
symmetrical initial condition, the results show that in all

I I I I I I I I I I I I I I0
0.75 0 80 0 85 0 90 0 95 1 00

Cdb Cdg

FIG. 2. Comparison of the centered and decentered brea-
thers. (a) Frequency of the breather modes vs amplitude.
The solid line refers to Eq. (26), the dotted line to Eq. (30),
and the dash-dot-dot-dotted line to the NLS approximation.
(b) Total energy as a function of the frequency. The circles
(the plus signs) correspond to the solution obtained with the
Green's function technique when the breather is centered on
a particle (between two particles).
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tude for the two modes. At hi h fre
am litudej he

mode centered on a particle is larger than when the mode
is centered between particles. A

~ ~

es. comparison of the ener-
gies in the two cases reveals a reat diFj.s a grea iFj.erence, as shown
in ig. ~b). The solution centered oon a partic'e has a
much lower energy. Indeed as th d'

, as e iscreteness eKects are
important, the substrate energ

' th dy is e ominant contri-
bution to the total energy. When th b

e ween particles, two of them participate mainly in the
excitation, ivin rise, g g

' to a substantial increase of the en-
ergy, in comparison with the prev'previous case, where onl
one particle has a large amplitude.

h y

Figure 4 illustrates the simulation of the dynamics of
the breather with a decentered solu

i ion. e numerical scheme for solving the nonlinear

riodic boundary conditions. St t' rar ing with a breather
centered between sites 24 and 25 and

It '
ope of the oscillations of the particl 24 26,

is clear that after about 70 b th
es, , and 25.

~ ~

rea er oscillations the
excitation moves to bet o be centered on particle 25. Althou h

)

we start with a fperfect symmetrical initial condition cen-
tered between particles bp es, because of its intrinsic instabil-
ity, some unavoidable numeri lrica errors have moved the

reather down the PN barrier. As ths e initial condition
is c ear y not the exact solution at the bott

, a p enomenon of modulation a ears: i
e o om of the

ion appears: it is a conse-
quence j6~ of the combination of the b the rea er s frequency

~& after the displacement of th b th je rea erj with the

0.6—
I ~ ~

I
I I ~ ~ ~ I ~ I

J
~ I I ~

0.4—

-0.0—

0.6—
1 ~ ~ ~ I 1 I ~ ~ ~

i
~ I ~ ~

0.4—

o.z H

Z 0.0—

-0.2—

-0.4—

I I I I I I 1 i I I I I

500 1000 1500 2000
t (t.u.)

I e I s s s g I I I g s I I I

0 I I I I I i

0 500 1000 1500 2000
t (t.ll.)

1 0

0.6—
0.5—

(c)

0.4— 0

z
pp

0.0:

—0.2 I

10
n

15
I I

5
I I I I I I I I

20

-0.5— iitiiiiiiitiiii&itiiiil
&ttltRPPPIPPlt&P

I I

0 500 1000 1500 2000
t (t.u.)

FIG. 3. Profiles of the
Gree

o he solutions calculated with the
reen's-functions method when the fre uencq

centered on a art'
b = . ~g. Two cases are shown: the b th

par cele or between two particles.
e re a er

FIG. 4. Envelo e ofp of the oscillations of particles 24 a
~, w en the breather is centered between

particles 24 and 25, at the be in, a e eginning of the simulations. Af-
ter about 300 breather oscillations thions, he excitation moves down
o e eierls-Nabarro well.
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mode situated exactly at the bottom of the phonon band,
which cannot be radiated away because of its zero group
velocity.

Figures 4(a) and 4(b) show the oscillations of the two
nearest neighbors of the center. It is clear that, after the
translation of the center, they have a similar evolution,
except that a new modulation eKect is present: it is due
to the combination of the former &equency with the &e-
quency of the oscillation in the well of the PN barrier.
Furthermore, the two particles are not in phase, because
when one starts with a breather, the shape mode (the
derivative with respect to the position of the breather's
center) is odd. ; so, with the center on a particle, the shape
mode is such that the central site does not move, but the
two neighboring sites are 90 out of phase.

As the spontaneous evolution of a decentered breather
with a &equency w gives a centered breather with a lower
&equency, we cannot calculate the PN barrier &om such
a simulation. Although the energy of the system is con-
served during the integration of the equations, it does
not stay localized in the excitation, since the movement
of the breather generates a strong radiation of phonons.
The Peierls barrier can be obtained &om a calculation of
the energy of the solutions given by the Green's-function
method, independently in the two cases. Figure 2(b)
shows that the PN barrier is very high; as it is an in-
creasing function of the amplitude of the breather [see
Fig. 2(a)], the barrier is an increasing function of the
amplitude. A small-amplitude breather will propagate
easily along the chain, whereas the large-amplitude ones
will be trapped on a siCe because of the additional poten-
tial due to the discreteness.

0 = 2(C —A) —~„ i

A—
2 ) (17)

—~~B = 2(D —B) —~d(B —2AB).

For n = 1, it yields

, ( D'
O=A —2C —(uq

i
C — —C

)

~qD = B —2D —~d(D —2CD). (20)

B= 2Ai —+1 —A i,(2
)

(2i)

whereas (18) and (20) give

D)
su~ = 2

~

1 ——
~

+ ~~(l —2A)B)
= 2 ——+ cu„(l —2C).

B
D

(22)

(23)

Neglecting C in (23), we obtain from these two equa-
tions,

A
~

—
~

=0.
0B) 4B)

As the excitation is rapidly decreasing, we can estimate
that A » C; Eq. (17) gives then

C. Approximate analytical expression
and the PN barrier

Then, we get

D —A~2 + Q(A~2)2 + 2

B 2
(25)

up —A + Bcos(cdbt), (i4)

The Green's-function method provides a very accurate
expression for the discrete breather modes, but the solu-
tion is known only numerically. When the breathers are
highly localized, it is possible to derive an approximate
analytical solution for the &equency of the mode versus
their amplitude in the two cases. First, we consider the
centered case where the mode is on a particle that we
call n = 0. As the mode is highly localized, we assume
~u ] (( ]uq] for ~n~ & 1. We seek an approximate solution
of Eq. (3), by looking for a solution that is localized over
only three sites, putting [17]

(db 2 +1 —A—
2

(dd ~d

2—4+ A2. (26)

Consider now the case where the center of the excitation
is between two particules [in our notation, between the
site (—1) and (0)]. We take the similar ansatz with two
unknown functions uo ——u q and uq ——u 2. Now we

obtain the two following equations for the case n = 0:

As we are interested in breather modes, the particles
should oscillate in phase: the ratio D/B must be posi-
tive and that is why we keep only the plus sign. Equation
(23) gives then

uy = u y —C + D cos(Edge),
, ( B'

0 = (C+ A —2A) —ur„~ A — —A (27)

u, = 0 for ~l~ & i . (i6)
(usB = (B+D——2B) —~d(B —2AB) (28)

The dc parts of the ansatz are positive because of the
asymmetry of the potential. We insert this ansatz into
Eq. (3), and set the coefficients of cos(ur&t) and the con-
stant term equal to each other. We obtain for n = 0,

An analysis similar to that given above can be carried
out, and we obtain

D —(1 + 2A(u~) + Q(1+ 2A~~2)2 + 4

B 2
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Q)
2
6
2

QJd

32+1 —A-
2&d

(14+ 1
2+&

I

.
2(d~ ( 2ld& ) (3o)

2ul + (u& uo) +~d
I

1 2 ~ &uo uo&

(2 3)
, (u', u, l

+2Cdd
I(2 3)

The comparison of the two equations (26) and (30),
with the results of the Green's-function method is shown
in Fig. 2(a). As might be expected at low amplitude,
the results tends to the NLS case, with a good agree-
ment. In this domain, as the excitation concerns more
than three or four particles, contrary to the postulate in
the Ansatze (14) and (15), the present formalism failed
and the agreement is poor. But, in the highly localized
regime, in which we are essentially interested, the two ex-
pressions given by the simple Ansatze are valid. Although
the method can seem very crude, it provides accurate re-
sults in the very discrete cases, because the solutions are
naturally well localized, so that the displacements, which
are ignored here, are really very small.

Using these results we can obtain the energy of the
mode. The expression for the case centered between par-
ticles is

A. Defect mode

We call the particle with the broken bond the origin
n = 0. The equations of motion are now

u~ —(u~+x + un —z
—2u~)

+(u„(1 —bo „)(u„—u„) = 0. (33)

In the linear approximation, we consider the Green's
function G, which satisfies the matrix equation

(w —M) G=1 where M=
0th 0th

(34)

Denoting with the index 0, the
the matrix equation produces the
Go(~ ~) = Go(l& —&I).

We have then

homogeneous case,
chain of equations

breathers in a chain with such a defect. Our approach is
the following: first, we will obtain the expression of the
impurity mode in the linear limit. Then we will prove
that this limit is relevant for this study and we will be
able to deduce the behavior of a breather in the presence
of such a defect. Finally, in Sec. V, we use this result in
order to propose a mechanism of energy localization.

and

2 &uo uo&
Eg =E, +u)„~ ———

~(2 3) (32)

((u' —(u„' —2) Gp(0) = 1 —2Gp(1),

(~' —~d —2) Go(1) = —[Go(o) + Gp(2)]

(35)

in the other case, where the expressions of the two dis-
placements up and uz are easily determined, using A, B,
C, and D. The results shown in Fig. 2(b) attest that, de-
spite its simplicity, the calculation gives accurate results,
especially in the second case.

whose solution [24] is Go(n) = A y~ ~, with

y = —T —Qx2 —1,

IV. IMPUR, ITIES and

We have shown the possible existence, in the lattice,
of very narrow breathers with a spatial extent limited to
a few lattice spacings. As their spatial extensions are so
small, we can expect them to interact strongly with iso-
lated impurities in the lattice. In this section, we study
this impurity effect, which has an intrinsic interest be-
cause in a physical system impurities are likely to be
present, and, as shown in the next section, a possible
role in the creation of large-amplitude breathers.

That defect, which we have chosen, is a site without
substrate potential. In our DNA model [23], such a site
corresponds to a position where the H bonds connect-
ing two bases in a pair are broken. The solvent effects
could be at the origin of such a defect: some experiments
about hydrogen bonds have shown that, in water, they
can be broken easily at temperatures well below the de-
naturation temperature. This phenomenon is present in
the macromolecule because of water molecules around
the DNA skeleton; as the substrate potential is a model
of these interactions, we will study the propagation of

(d —Cd —22 2
d

2

G = Gp+ Gp bM G, (37)

we can obtain the expression of the Green's function for
the imperfect chain:

G.(o)
1 —bM(0, o)G, (o)

As the zeros of the denominator give the spectrum of the
chain with the impurity, we find that the linear impurity
mode (TM) will occur with the frequency:

~IM ~d + 2 — 4+ Md
4 (39)

Now taking into account the impurity at the origin, with
M = Mp + 8M, we obtain bM(0, 0) = —~d. Using the
Dyson equation [25]
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Therefore the local mode is in the gap, and with our
parameter the breather frequency is in the lower half of
the frequency gap.

The calculation of the shape and the &equency of the
mode was obtained in the linear approximation, but as
the Green's function G is a rapidly decreasing function,
the pulse is extremely localized around the impurity. If
the center of the excitation has an amplitude of 1, the erst
neighbors will have an amplitude lower than 0.1, where
the linear approximation is really valid. Furthermore, as
the equation of motion of the center of the mode is linear,
since on this site the nonlinear substrate potential is sup-
pressed, no corrections should be done for this particle.
Numerical simulations of the dynamics of this mode have
con6rmed that the solution is indeed extremely accurate.

with the Huctuations. The breather is therefore stable
enough to be an important excitation in the physics of
the system.

But now arises the main question: How is it possible
to create such an oscillation requiring an important lo-
calization of energy' The small-amplitude breathers can
easily be created by thermal Huctuations, as we noticed
in a very similar model [6]. But the energy of large-
amplitude breathers is very large, and it is necessary to
And how their creation is possible to justify their exis-
tence and then their importance. In the next section,

~ ~ ~
I

I m I
I

I
I l I

B. Interaction of breathers with impurities
250—

Having checked numerically the existence of the impu-
rity mode, the question arises as to how it can help us
to localize the energy. As the high-amplitude breather
modes of Sec. III have a significantly higher frequency,
and as the phonons of the chain have a &equency gap
up, they will have extreme diKculty in getting by the IM,
except due to some very nonlinear phonon process that
will end up with the frequency of the IM. This property
will be useful in trapping excitations in a region. Indeed,
if two impurities of this type are located on the chain,
the energy between them will be trapped. Putting an os-
cillatory solution of the phonon type between two sites,
the excitation stays located in that region, and is not
radiated away as it does without impurities: the energy
is clearly trapped. Now suppose that one puts a moving
breather in that region whereas it should propagate along
the chain as in Sec. II, the excitation is now trapped, be-
cause of successive rejections on the impurities, as shown
by Fig. 5(a). We clearly see the oscillatory motion of the
excitation between the two impurities, located on sites
30 and 70.

But this result was obtained at zero temperature, and
the propagation of breathers has to be checked in the
presence of small perturbations. In order to study this
aspect, we have investigated the dynamics of the model
in contact with a thermal bath by molecular dynamics
simulations with the Nose scheme [23,26]. The system
is aged for 150 000 time steps ( 300 oscillations of the
breather) to reach thermal equilibrium at 100 K. Then
the breather solution is added to the system and the sim-
ulation is then performed without a thermal bath at con-
strained energy.

Figure 5(b) shows the evolution of the energy of the
system by a contour plot versus the unit cells and time.
As there are two impurities in sites 30 and 70, the local-
ized structure has an oscillatory motion between these
two "walls. " We can also check that the density of small
fluctuations is bigger in the trapped region, because the
linear waves could not escape Rom this region. If we can
notice that the propagation of the breathers is modified
because of Buctuations, we note that they stay localized
in spite of the many collisions with the impurities and
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FIG. 5. Propagation of a NLS breather in the chain with
two impurities, illustrated by the contour plot of the energy
per site vs the maximum of the breather's oscillation. The
two figures correspond to the evolution during 15 000 time
units and we plot only a part of the whole chain. The two
impurities (broken bond) are located on sites 30 and 70. The
breathers correspond to Eq. (2.7) of Ref. [6] with the param-
eters u, = —0.13, q = 0.2, and A = 0.15. (a) Propagation at
zero temperature. (b) Propagation of the breather in a chain
thermalized at T = 100 K.
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we will present a possible mechanism which gives rise to
large oscillating excitations.

V. LOCALIZATION BY COLLISIONS

The existence of localized solutions of the equations
of motion is not sufBcient for their physical relevance.
They must be created by some mechanism in the system
of interest. In this section, we focus our attention on
the formation of large-amplitude breathing modes, and
we show that discreteness is not only essential for their
stability, it provides a mechanism, alternative to mod-
ulational instability, for their formation. This channel
for energy concentration, which is specific to lattices, is
not sensitive to the details of the nonlinear lattice model
which is considered. Therefore it appears as a very gen-
eral process leading to localization of energy in a lattice.

The first step toward the creation of localized exci-
tations can be achieved through modulational instabil-
ity, which exists in a lattice as well as in a continuum
medium, although discreteness can drastically change the
conditions for instability [27] (e.g. , at small wave numbers
a nonlinear carrier wave is unstable to all possible mod-
ulations of its amplitude as soon as the wave amplitude
exceeds a certain threshold). However, the maximum en-

ergy of the breathers created by modulational instability
is bounded because each breather collects the energy of
the initial wave over the modulation length A, so that
its energy cannot exceed E = Ae, where e is the en-
ergy density of the plane wave. Consequently, although
modulational instability can lead to a strong increase in
energy density in some parts of the system, it cannot cre-
ate breathers with a total energy exceeding E . For a
given initial energy density, one can however go beyond
this limit if one excitation can collect the energy of sev-
eral breathers created by modulational instability. Such
a mechanism is not observed in a continuum Inedium
because there the breathers generated by modulational
instability are well approximated by solitons of the non-
linear Schrodinger equation, which can pass through each
other without exchanging energy.

It is easy to check that two small-amplitude breathers
could go through each other, keeping their shape. The
ability of solitons to survive collision completely un-
scathed is 6.equently used as an identifying characteristic
in experimental and numerical investigations to separate
solitons from a large panorama of signals. When the ap-
proximations used to obtain this equation are valid, the
envelope solitons collide without interference. In contra-
diction, when the amplitude increases, the limit is less
valid and the excitations collide inelastically. In our case,
the large-amplitude breather modes do not go through
each other without interactions because of discreteness
effects. Qualitatively, the collision of two breathers with
di6'erent amplitudes increases the diQ'erence. This pro-
cess could be a realistic mechanism of the large-amplitude
breathers' creation, since the exchange tends to favor the
growth of the larger excitation.

Indeed, as a breather with a medium amplitude grows
at each collision with a smaller one, it needs to collide

with a few of them to have a bigger amplitude. The pro-
cess is faster when the excitation is trapped between two
impurities, because of the di8erent rejections, if there
are many excitations in the trapping region, the collisions
take place until the main excitation has absorbed the en-
ergy of the others. Figure 6(a) shows this mechanism.
We start the simulation with two diferent breathers lo-
cated between two impurities. At the beginning, the big-
ger one is on site 40; it collides many times with the
smaller one, which started from site 60. We note that
the amplitude of the first one increases, whereas the other
one decreases. Finally, the process gives rise to only one
excitation, with a large amplitude and a frequency in
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FIG. 6. Propagation of two NLS breathers in the chain
with two impurities: the same as in Fig. 5, centered on site
40 at the beginning of the simulation, and a smaller one
(A = 0.11) on site 60. The picture illustrates the contour
plot of the energy per site vs the maximum of the breather's
oscillation. Two impurities (broken bond) are located on sites
30 and 70. (a) Propagation at zero temperature. (b) Propa-
gation of the breather in a chain thermalized at T = 100 K.
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the phonons' gap. We note also that the final excitation
does not propagate along the chain, since the PN barrier
is too large, and that some small excitations are radiated
away during the few collisions and cannot escape from
the trapping region. They disappear because they are
absorbed by the main excitation.

Figure 7 presents the evolution of the energy of the
main breather versus time. Because of the diKculty in
defining the limits of the breather, we decided to consider
the energy of three sites: the center of the breather and
its two neighbors. After smoothing the data in order to
reduce the Quctuations due to the definition of the energy,
we see clearly that the energy increases as a function of
time. A careful analysis shows that the energy increases
by step at each collision. It is clear, according to the
picture, that the bigger the difference between the two
breathers, the stronger the transfer in energy. We have
checked that the difference in the phases of the two ex-
citations changes the energy transfer; but qualitatively,
once more, the system gives rise to only one excitation,
more or less rapidly: it is one of the large-amplitude
breathers, which expression was given in Sec. III. As
the Fourier transform of the breather oscillations give a
frequency in the phonons' gap (&Iib = 0.96 III'), the exci-
tation does not emit radiations that could give rise to a
small damping of the breather (this is correct to lowest
order since the harmonics generated by the nonlinearity
could be in the phonons' band and radiations could be
emit ted) .

For applications to a real system, it is important to
check that the result subsists in the presence of thermal
fluctuations. Figure 6(b) confirms this result in a ther-
malized chain. As for Fig. 5(b), the system was simulated
with the Nose scheme, so that we can consider the sys-
tem to be in equilibrium, in the sense of the canonical en-
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FIG. 7. Evolution of the energy of the three main particles
of the bigger breather as a function of time.

semble, at a fixed temperature. Then the two breathers
were added, and the figure shows the evolution of the two
breathers with Huctuations. If the dynamics is of course
modified, we note that, qualitatively, the system evolves
in the same way: we obtain only one big breather, which
is static because of its big amplitude. Some other simu-
lations with other temperatures have confirmed that this
creation process is really relevant in this model, even with
Quctuations.

In fact, we observe that its growth rate is larger in
the presence of thermal Huctuations, because it collects
some energy from the Buctuations. The results do not
depend on the boundary conditions. Multiple collisions
can also be generated by periodic boundary conditions
and the same results are found. More importantly, the
results do not depend on the particular nonlinear lat-
tice model that is considered. Using the more physical
Morse potential instead of V(u) given by Eq. (1) leads
to the same general conclusions. However, the process
contains also its own regulation mechanism because of
the fast increase of the Peierls barrier with the ampli-
tude of the breathers. When they become large enough,
the breathers stay trapped by discreteness. As a result,
energy initially evenly distributed over the lattice tends
to concentrate itself into large-amplitude breathers, but
the localization stops before all the energy has collapsed
into a single very large excitation.

VX. COCCI, USj:aW

In this paper, we have extended our previous work
on static large-amplitude breathers to propagating ones.
Since the Peierls-Nabarro barrier is an increasing func-
tion of the amplitude of the breather, we showed that
these breathers will have diKculties moving. Then we
showed that the impurities could trap the excitations in
a small region. Finally, we have presented a simple mech-
anism that could explain the creation of large-amplitude
breathers. The energy of the small-amplitude breathers
being small, it is reasonable to consider that they are eas-
ily created by thermal Quctuations, and numerical simu-
lations at constrained energy have confirmed [23] this pic-
ture. Once these excitations are present, since they are
not solitons in the strict sense, their collisions give rise to
excitations with an increasing amplitude. Although the
impurities are not essential, they accelerate the mecha-
nism by multiplying the number of collisions between the
excitations. Finally, we therefore obtain localized excita-
tions with a large amplitude, which are extremely stable.

Owing to the importance of breathing motions in many
physical applications and particularly in DNA, it was
very important to explain the creation process of these
excitations. We showed that it is closely related to the
discreteness of the lattice. Indeed, first, the breather
modes are stable only in the discrete system; second, the
collisions of two excitations present an antidemocratic be-
havior which increases the bigger excitation, contrary to
the results found in the continuum limit of nonlinear sys-
tem. The frequency of the breathers is a decreasing func-
tion of the amplitude of the excitation. As their energy
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increases because of the collision process, their frequency
decreases until it reaches the zero value where the excita-
tions do not breathe anymore, but stay open. This simple
mechanism could be of great importance to explain how
localized bubbles could be generated in physical systems
without external driven force.

It is important to notice that discreteness acts simul-
taneously to stabilize the breathers and to cause their
growth. Therefore, as the two aspects work in synergy,
the existence of large-amplitude excitations in nonlinear
lattices is likely to occur in many physical systems. In-
trinsic localized modes have been found in more than
one dimension [28,29]. It would be interesting to study
their interaction in the very discrete case to see whether
the same mechanism for their growth is possible. Simi-
larly, the case of magnetic systems would be interesting
to study in the same spirit.
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