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Determination of the statistical distribution of electromagnetic-field amplitudes in comp&ex cavities

R. H. Price, H. T. Davis, and E. P. Wenaas
JA YCOR, 700 Comanche Road, N. E., Albuquerque, New Mexico 87107

(Received 12 March 1993)

We describe an analytic technique to predict the statistical distribution of field amplitudes in complex
cavities, which result from the simultaneous excitation of hundreds of modes. We have been able to
determine that the electromagnetic-field amplitudes in a complex cavity are statistically distributed ac-
cording to a I" distribution. The shape of the distribution depends on a dimensionless parameter, the
specific mode density, which is a measure of the number of modes excited simultaneously in the cavity.
In the limit of large cavity volume, measured in cubic wavelengths, and of moderate to low Q, the distri-
bution becomes a y distribution with a uniform shape, independent of cavity parameters. Comparison
with experimental data is included for four real systems widely varying in size, shape, and Q, and with a
laboratory experiment which varied the cavity Q in a controlled manner over two orders of magnitude.
In all these cases the data fell within the 90% confidence bounds of the theory. The theory further pro-
vides a quantitative measure capable of distinguishing to what extent experimental data have been dis-
torted by the finite dynamic range of the measurement instrumentation, and of restoring the correct
statistics in spite of large distortions in the data. This measure does not depend on knowledge of the in-
strumentation system. Errors less than several decibels appear detectable.

PACS number{s): 03.50.De, 05.20.Gg, 41.20.Jb, 84.90.+a

INTRODUCTION

For many years microwave transfer functions and cou-
pling cross sections have been measured for military as-
sets, such as trucks, tanks, airplanes, etc. The measured
functions are extremely complex and appear exquisitely
sensitive to variations in angle of incidence, frequency,
mechanical configuration, and other parameters. More
recently it was recognized empirically that the cumula-
tive distribution function of measured fields or coupling
cross sections was much less sensitive to experimental pa-
rameters (Ref. [l]), and in fact was recognized by some
(Ref. [2]) as a "universal" curve. However, to date no
theoretical basis or justification has been available to sup-
port this observation. It is now possible to provide the
required theoretical justification.

The complex nature of the measured transfer functions
and coupling cross section has been attributed to a
variety of phenomena, including variations in resonance
amplitude, coupling to the cavity, cavity Q, and others.
Each of these undoubtedly contains an element of truth,
but cannot itself account for the observed behavior. In
many of the real, nonideal, cavities measured in experi-
ments, the Q is determined mainly by wall losses and
aperture losses. In nonpathological cases these losses
should vary by only a factor of a few between modes, and
thus are unable to account for the many-order-of-
magnitude variation observed. Similarly, aperture reso-
nances are typically low Q, less than about 30, and thus
do not vary rapidly enough in frequency or greatly
enough in amplitude to account for the observed data by
themselves. Some other phenomena must be responsible
for the greater portion of the observed behavior. We
present evidence to the effect that the principal
phenomenon responsible for the observed characteristics

of transfer functions and coupling cross sections is the
statistical nature of a measurement made at a single spa-
tial location in a complex, irregular cavity, containing
many modes simultaneously excited.

As in many problems in physics the solution hinges on
a clear definition of what is being measured and how the
measurement is made. One can imagine a cavity in
which a single mode is excited and a sensor is located at a
fixed but arbitrary location. For concreteness we deal
with a B-dot-sensor measurement, but the sensor could be
an electric dipole or any other field sensor. Since the B-
dot-sensor is at an arbitrary location relative to the peaks
and nodes of the mode, it may measure a field strength
with any value between the true mode amplitude and
zero. If one changes the frequency slightly and excites a
different mode, the spatial pattern will jump to a new
configuration, and the sensor will be at a different posi-
tion relative to the peaks and nodes. The sensor will
again measure a field strength greater than zero and less
than or equal to the true mode amplitude, and unrelated
to that of the previous mode. Thus, far from measuring
the mode amplitude, in any few measurements the sensor
only measures samples greater than zero and less than the
true mode amplitude by some unknown amount. The
true mode amplitude remains undetermined, as does the
energy density in the cavity and the maximum field that a
sensor or component might experience at some other lo-
cation in the cavity. The other location might coincide
with the peak of a mode, yielding a much higher field
strength.

In reality this picture is further complicated by the fact
that in most real cavities many modes are excited simul-
taneously. The field at a particular location may be the
sum of contributions of hundreds of modes. Further-
more, coupling to the sensor is polarization dependent
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and the polarizations of the many modes are undeter-
mined. In irregular cavities with nonorthogonal walls the
field polarization for a given mode can vary with spatial
location. All this leads to the recognition that an exact
treatment of the problem to calculate the fields in a cavity
of a particular shape, at a particular location, and with
the many other required parameters specified, is both
hopelessly complex and equally useless. Any change in
any of the parameters requires a new complex solution
and leaves no general understanding of the behavior of
the system. A useful solution to this problem must be
statistical in nature and depend only on general proper-
ties of the system. This is an intuitively satisfying con-
clusion. The solution cannot depend in detail on such
things as whether a small metallic can has been set down
somewhere inside the test article, or the position of the
pilot's arms, or whether some mechanical widget has
moved from position 3 to position B, changing the mode
structure. If the answer did depend on those things, all
of the measurements would be useless, defeated by the
minutiae present in all systems.

SPECIFIC MODE DENSITY

Intuitively one would expect the statistical behavior of
the cavity fields to depend on the number of modes excit-
ed simultaneously. This appears to be the case. The
number of excited modes can be easily estimated. The
mode density for a cavity is

dN S~V8v
3

v 8v,
c

where V is the cavity volume, c is the speed of light, v is
the frequency, and dX is the number of modes in the
band dv at frequency v. The derivation of the mode den-
sity is exactly analogous to the derivation of the mode
density used in blackbody radiation calculations and
many other quantum problems, and can be found in de-
tail in any textbook (Ref. [3]) covering blackbody radia-
tion. In connection with blackbody radiation it has been
shown that the mode density does not depend on the
shape of the cavity, only on its volume. (Certain nonsim-
ply connected, pathological shapes must be excluded
from consideration. ) If the cavity is excited by a relative-
ly monochromatic source the bandwidth in which the
modes will be excited is set by the average cavity Q:

MEASURED POWER IN AN OVERMODED CAVITY

The electric and magnetic fields in a cavity can be
decomposed into contributions from each of the cavity's
eigenmodes so that the cavities internal fields can be writ-
ten as

B(r, t)= gB;(r, t),

E(r, t)= QE;(r, t) .
(4)

g, (r') =
1/2

J B,(r, t)drdtB'
Oi

Each of the eigenmodes satisfies Maxwell's equations for
the cavity and its boundary conditions. The explicit
coordinate system chosen is not important since only the
general properties of the eigenmodes are important for
this problem. The system is assumed to be in steady state
or slowly varying, and all transient modes have died out.
These assumptions may not be rigorously required, but
are made to simplify the derivation. We separate each
eigenmode into the product of five functions, each of
which has different properties. These functions are not
separated by coordinates and do not require a separable
coordinate system. The magnetic and electric fields for
the ith eigenmode can be written as

B,.(r, t) =BD;(co)b;(r)g;(r)f;(r)sin(cot +P; ),
E, (r, t) =ED;(co)e;(r)g;(r)h, (r)cos(cot +P; ) .

The first function, BQ, (co), is the scalar amplitude of the
magnetic field of the ith eigenmode averaged over the
cavity volume, such that

B2

U;= V,
8m

where U, is the total energy in the cavity in the ith eigen-
mode. The second function, b,-, is a unit vector which
points along the magnetic field of the ith mode at each
point in the cavity. The third function, g, , is the slowly
varying part of the spatial distribution. It can be ob-
tained by taking the square of the spatially dependent
magnitude of the original ith eigenmode and averaging it
over a half-wavelength-radius volume at each point in the
cavity, as follows:

Combining Eqs. (l) and (2) gives the characteristic num-
ber of modes simultaneously excited in the cavity:

8m V
(3)

We call this quantity the specific mode density. It is a di-
mensionless quantity characteristic of a particular cavity
excited at a given frequency. In reality, numerous modes
in a cavity are excited to a greater or lesser degree, but
the specific mode density is a measure of the number of
modes which contain the majority of the energy in the
cavity.

where V z is the phase volume, a sphere one half wave-
length in radius centered at r'. The new function, g;, is
smoothly varying, without rapid oscillations everywhere
in the volume. Further, it is normalized so the average
throughout the volume is unity. The fourth function, f;,
is the rapidly varying part of the original ith eigenfunc-
tion. It is obtained by taking the spatially dependent
magnitude of the ith eigenfunction and dividing it by
BD;(co) and g;(r), as follows:

2b, (r) B;(r, t)sin(cot)
f, (r)= (g)

80;g;(r)

where the overbar indicates a time average. The fifth
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function is just the time dependence of the ith eigenmode
including its phase, P;. The frequency is determined by
the external exciting field and is the same for all excited
modes. The functions describing the electric field have
analogous definitions. The electric-field magnitude,
Eo;(co), is identically equal to Bo;(to). This means that
the electric and magnetic energy in the cavity are equal,
and each is one half of the total energy stored in the cavi-
ty. We explicitly assume, for simplicity, that there is no
static electric field. Beyond this point the electric field is
ignored as we are considering a B-dot sensor. The treat-
ment of an electric-field sensor is exactly analogous, and
the results for one apply to the other by simply substitut-
ing the appropriate effective area (antenna cross section)
for the sensor.

Finally, the eigenfunctions form an orthogonal basis set:

b;g;f;.bkgkfkdr

where 5,.k is a Kronecker 5 function. We assume that the
energy density of the field is measured at a particular lo-
cation r', by a B-dot sensor with physical area a. Its area
vector is written as

a =aa 5(r —r'), (12)

2

P, =10 [a B(r, t)] (13)

where a is a unit vector pointing along the axis of
greatest sensitivity of the B-dot sensor, and 5(r —r') is a
Dirac 5 function. The power measured by a square-law
detector is

GENERAL PROPERTIES
OF THE EIGENFUNCTION COMPONENTS

—I g, (r)dr= 1 .
1

V v ' (9)

This is required by the earlier definition for Bo;(co), which
stated that it was the volume average magnetic field.
Next, the integral of f, (r) squared, o.ver the phase
volume, is unity:f, f;(r)dr=1 . (10)

While many relationships between the various defined
functions can be derived from Maxwell's equations we
present only those relevant to this problem. First the in-
tegral of g, over the cavity volume is equal to the
volume, which results in

where R is the sensor load impedance in ohms. This can
easily be related to the sensor's free field cross section,
which is

P, a0, = =4mX 10S Rc
(14)

where P, is the power measured by the sensor in ergs/sec,
and S is the incident power density in ergs/sec cm . It
has been assumed that the sensor axis has been aligned to
the magnetic field for maximum coupling. Equation (13)
can be rewritten in terms of the sensor maximum free
field cross section.

OqC
P, = [a B(r„t)]

4m

The power measured can now be expanded in terms of
the functions defined above, as follows:

P, = CTSC

g Bo, (a b, )g, f; sin(tot +P,. )

OqC
X Bo (a'b )'g'f'+ X Bo Bok(a b )(a'bk)g gkfifkcos(4i 0k)

iWk

(16)

It is important to note at this point that when the volume
integral of the field is taken over the cavity volume, the
cross terms of the eigenmodes integrate to zero from the
orthogonality condition Eq. (11). When the field is mea-
sured at a local point the cross terms are not equal to
zero. It is the cross terms which produce the complex
spiky nature of the transfer functions and circuit cross
sections.

dU; + U;=
dt g,

2

e, P,

(CO CO;) +
2Q;

in steady state we have

2

CAVITY RATE EQUATION
AND RESONANCE FUNCTION

The rate equation for the total energy in the cavity in
the ith mode is

U;=

67;

4g l c

'2
CO i

(CO CO;) +
2

V
Bo;(co), (18)
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where e, is the random coupling coefficient for the ith
mode to the cavity, given by e; =P;/P, . The P, is. the
power that is coupled into the ith mode, and the P, is the
total power coupled into the cavity. The random variable
e; is the random part of BQ;, and the ensemble satisfies

be a time average of a stationary process. The central
limit theorem assures that the vector has an asymptotic
Gaussian distribution. The asymptotic distribution of the
quadratic form can then be approximated by a I distri-
bution (Refs. [6,7]) with probability density:

~ a —1 —x/Pf(x)=, O~x & ~ .
r[a]p

The mean of the distribution is

(20)

That is, the energy coupled into the cavity is fixed, and
the independent and identically distributed e; are "gap"
statistics (Ref. [4]).

The resonance function on the right-hand sides of Eqs.
(17) and (18) is only an approximation which is valid near
resonance (Ref. [5]). The actual resonance function is
truncated a finite distance in frequency above and below
resonance. It does not extend to plus and minus infinity.
This fact is important to the convergence of certain sums
and integrals which occur later in this paper.

STATISTICAL PROPERTIES OF THE MEASURED
POWER AND ITS COMPONENT FUNCTIONS

We wish to determine the statistical properties of P„
which includes the form of the distribution, and the pa-
rameters which determine its shape. From Eqs. (13), (15),
and (16) it is clear that P, is positive definite and of quad-
ratic form. The random vector f, is shown in Eq. (8) to

p=aP=E(P, )

and the variance is

(21)

cr =aP =pP=E(P, ) [E(—P, )] (22)

where E( ) indicates the expectation value, and o, the
standard deviation, is to be distinguished from o.„the 8-
dot cross section.

The mean and variance of the measured power can be
determined in terms of the mean and variance of the
functions which are components of Eq. (16). For func-
tions which are independent, the mean of the function is
just the product of the means of its component functions.
The variances are treated similarly. One must use care to
determine that the functions are in fact independent. In
Eq. (16) the amplitude and the phase are not independent.
The expectation value of the measured power E(P, ) can
be expanded as

E(P, )= QE(BO, )E((a b;) )E(g, )E(f; )

1

+ g E(Bp Bp kc o(sP, —
Pk ))E(a b;)E(a b„)E(g, )E(gk)E(f; )E(fk )

i, k
iWk

(23)

The expectation value of the square of P, can be expanded as follows:

E(P,')=
2

CT~C

[E ( T, )+E ( T2 )+E ( T3 )], (24)

where

E(T, )=E QB (ao.b;) g; f;
l

= QE(BO„)E((a b„) )E(g„)E(f„)+g E(BO„BO,)E((a.b„) )E((a b, ) )E(gkg, )E(f„)E(f,),
k k, 1

k&1

E(T2)=2 g Q E(Bo BokBplcos(ltll p))Ek((a.b;) )E(—a bk)E(a b, )E(g; gkgl)E(f; )E(fk )E(fl ),
k, 1 i

k&1

(25)

(26)

E(T3) g g E(BokBolBO Bo cos(pk pl)cos(p —p„))E—((a bk)(a bl)(a b )(a b„))E(gkglg g„)E(fl flf f )
k, 1 m, n

kWn mWn

(27)
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P (8)d 8= —,'sin(8)d 8, 0 ~ 8 ~ n. . (28)

The polarization functions can then be written in terms

a b; =cos(8) . (29)

The expectation values of many of the component
functions can be easily determined. First the polarization
vectors in a complex, nonorthogonal cavity are assumed
to be randomly oriented. To 6nd the expectation values
of the polarization-dependent functions we establish a
spherical coordinate system with the z axis along aj. 8 is
the angle between the polarization vector and the z axis.
The probability density for ending a particular value of 8
1s

where we have used Eq. (6), U is the total energy in all
modes in the cavity, and F is the mean value of the e;.
The sum in Eq. (36) can be approximated by a Rieman in-
tegral, using the density of modes in Eq. (3):

COp

2mFP, -- —--' ~Q 8~& z„
M CO; + 40 2 2&C

4@I',co

3
C

Details of the integration are carried out in the Appen-
dIX.

The second expectation to be evaluated is

Each of three required polarization expectation values
can be determined as follows:

E(g )=[g(r)]'. (3&}

E(a.b; ) = —,
' I cos{8)sin(8)d8=0,

E((a b;) )=—,
' f [cos(8)] sin(8)d8= —,',

E((a b;) }=-,' J [cos(8)] sin(8)d8= —,
' .

{30)

(31)

(32)

The f; functions are rapidly oscillating and constrained
by the normalization condition in Eq. (10). The expecta-
tion values for f; and its square follow directly:

Since g,. is a smooth, slowly varying function of position
in the cavity, its expectation value, g (r), is just a geome-
trical factor which represents the ratio of the local energy
density to the average energy density. It is a slowly vary-
ing function of both location and frequency. By ergodiei-
ty and Eq. (9), if g (r) is averaged over many spatial loca-
tions its average is unity. Also, since the variance of a
slowly varying function is small, it also follows that
E[g]=E[g ], hence

f,dr
E(f;)= Jdr

j f,'dr
2) — V

(33)

(34)fl
@fr

The expectation value for the fourth power of f; cannot
be found exactly for a general eigenfunction, however, it
can be approximated by the range of values it takes on in
a rectangular box. This calculation is given in the Ap-
pendix. This can be thought of as a local approximation
in the region of the measurement point. The required ap-
proxirnation for the expectation value is

J'f dr
E(f4) — v 5 (35)

Gf

E(g (r) }=1,
E(g'(r)) =1 .

Equation (23}now becomes

E(P, )=o, —
Uc

and Eq. (21) becomes

Uc
P, =AP = c7 g

(39)

(41)

and it can be further shown that the expectation can be
bounded by —", ~E(f; ) ~ —',". The approximation for the
expectation value depends on neither the dimensions of
the volume nor the integer values selecting the speci6c
mode, as one would anticipate. It can be seen at this
point that the second term in Eq. (23) is zero from Eqs.
(30) and (33). Two expectation values in Eq. (23) remain
to be determined. The erst is

Equations (40) and (41) relate the mean value of a transfer
function to the total energy in the cavity and to the pa-
rameters for the probability density function in Eq. (20).

We now turn to evaluate Eqs. (24) —(27}. From Eqs.
(30) and (33}it immediately follows that Eq. (26) is zero:

CO).

P,F
E(T2)=0 . (42)

QE(80, )=E '+80;
QP]

(CO CO;) +

(36)

It is also obvious from Eqs. (30)—(35) that only terms
with even powers of the polarization or f; functions are
nonzero. This fact can be used to reduce Eq. (27}, since
the only terms where k =m and I =n or k =n and I =m
are nonzero: Eq. (27) becomes
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E(T, )=2E g BokBoicos'(pk —pi) E((a bk) )E((a.bi)')E(gk)E(gi )E(fk)E(fi')
k, l

k%1

,'g —E QB2 B, o (P„—P)
k, l

k%1

Equation (25) can also be reduced at this point:

E(T, )=E Q Bo(a.b;) g; f;

=E QBokE((a b„) )E(gk)E(f„) +E g BO„BoiE((a.bk) )E((a bi) )E(gk)E(gi )E(fk)E(fi )
k k, l

k+I
P

Q BOk + 9g E g BokBOi
k k, l

kXI

(43)

(44)

Combining Eqs. (24), (42), (43), and (44) we obtain

2 2-
C C7sg

E(P,') =
8m.

Using Eqs. (36) and (40) we obtain

Ok E g BOkBoi + E g BokBoicos (pk pi)
k kI kl

k%1 Lk@1

(45)

[E(P, )]'=
2 2

ccTsg

8m
—X [E(Bok )]'+—E X BoiBok

k k, I
k&I

(46)

Equation (22) for the variance can be rewritten using Eqs. (45) and (46):

o =E (P, ) —[E(P, ) ]2

2 2-
COsg

8m +Bok + Eg +B—okBoicos (pk pi ) —g [E(Bok )] (47)

where it is important to note that in the second term the summation has changed from k not equal to l to the sum over
all k and l.

The remaining expectation values in Eq. (47) are more difficult, but may be evaluated using the Riemann approxima-
tion converting the sum to an integral. Using Eqs. (1), (6), and (18) we can convert the first expectation value as follows:

r

27Tcok
I',

Ok g
( )2+( ~2Q )2

[ k]

2
COk

2mP, .
kco+ n 8+V

Q7
—Q) k + cok 2 k 2'/Tc

2 2
4P, ~ 1 P2 8m Q m~p —FW, —AS

V co '2
2

j.

~N,
(48)

where e is the mean value of Ek, p2 is the second moment of ek (p2=E [ek ]), co —0 and ~+0 are the cutoff frequencies
for the resonance function, and N, is the same as defined in Eq. (3). Details of the integration can be found in the Ap-
pendix.

The second expectation value in Eq. (47) can also be evaluated using the Riemann integral approximation. The
cosine term is dependent on the phase lag for each mode which is in turn dependent on the mode's distance in frequency
from resonance. The phase for a given mode is

CO CO
tan(Pk ) =

Qk [~ ~k ] 2Qk(m mk)— (49)
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The second expectation value in Eq. (47) is first converted to continuous form, followed by substitution of Eq. (49) to
convert the integral from co to P as follows:

y BOk B01cos ( 4 k 4'I )
k I

f +'f +'cos'(yk y,—)dykd4, = 8~—

2~Pc &++ ~++
2

m, cos (Pk Pr)d~kd~3 3 2

mc3Q ~ n— ~—n [(co c—ok)2+(cok/2Qk) ][(co—col) +(col/2Qi) ]
2 2 24', co

C
(50)

Details of the integration again follow in the Appendix.
Equations (48) and (50) can be inserted into Eq. (47) yield-
ing

Uco. =ap = cr,'3V
o-2

1 3P2 e

2 g2

=a P 1+ — +3
2 g2

(51)

As a result of the fact that the ek are gap statistics, it can
be shown that

P2

E
7

E'

]—2E'

(52)

Uc
'3V

2

(53)

Solving for a and P we find
—1

a(co) = 1+ 6

S

(54)

p(co) =p 1+ 6

~N,
(55)

Uc
IJ, ( a) ) =ap =E [p ( co ) ]= crS S (56)

where we have again expressed Eq. (56) in practical cgs
units.

From Eq. (56) an expression for the mean Q of a com-
plex cavity can be derived in terms of measurable quanti-
ties:

coU

P,
3~@ &(&,(~))
o.,c P,

3~@ &(&,(~))
(57)

o c P

where I', is the input power to the cavity in ergs/sec. If a,

transfer function is measured to a single point in a cavity
it is best to assume g(r)=1 since that is its expectation
value when measured over many points in the cavity. If
the transfer function is measured at several points in the
cavity it is still best to use g (r) =1, but use the mean
value of all of the transfer functions to determine the ra-
tio of the expectation value of the sensor signal to the in-

put power.
If a test object is being illuminated from the outside, P,

is not well defined since it depends on the incident power
density and the efFective coupling area. However, this
problem is easily overcome by a technique developed at
JAYCOR called direct cavity pumping. In this technique
an antenna is placed inside the cavity, so that all of the
power radiated is coupled to the cavity. In this case P, is
all of the power radiated by the antenna and may be easi-
ly related to the source power. In reality some power is
also absorbed by the antenna. In practice the Q of virtu-
ally all cavities of real systems, which are not designed to
be high Q resonators, are low enough that the additional
losses out of the cavity pumping antenna are negligible.
If it is necessary to quantify the magnitude of the losses
due to the antenna relative to other losses in the cavity, a
circulator can be placed in line behind the antenna and
the antenna's absorbed power can be measured. Care
must be taken to account for small rejections of the
source power due to mismatches between the cable and
antenna impedances. These refIlected signals are large
enough to be confused with the small signal reabsorbed
from the cavity. Another point of caution when measur-
ing cavity Q by this technique is that the sensor (B-dot,
etc.) should not be placed in direct line with the beam
from the antenna. If it is, an incorrect measurement will
result. It is best to orient the source antenna at an odd
angle relative to any regular walls of the cavity. It is even
better to point the antenna at some very irregular object
in the cavity which will scatter the radiation and cause it
to couple to many modes.

COMPARISON OF THEORY WITH EXPERIMENT

The object of this work is to relate quantities common-
ly measured in high-power-microwave (HPM) experi-
ments (transfer functions and cross sections) to quantities
of practical and theoretical interest (probability of com-
ponent kill, cavity Q, prediction of cavity field statistics
for objects unavailable for test, etc.). For this work to be
useful, good agreement must be obtained between this
theory and experimental data. First, the theory predicts
that in the limit of large cavity volume and/or low Q that
the specific mode density of the cavity becomes large and
a goes to 1 [Eq. (54)]. The I distribution with a equal to
1 is called a y distribution with two degrees of freedom,
or an exponential distribution. In this limit the distribu-
tion becomes independent of the cavity s details, includ-
ing its volume and Q, and becomes what one might call a
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"universal distribution. " The only parameter which the
distribution depends on is its mean value.

The first example that is used to illustrate the compar-
ison of the theory with actual data is a copper cavity
24X24X36 in. . A field is excited inside the cavity by
cw illumination, and is measured by a 8-dot sensor inside
the cavity. Figure 1 is a plot of the transfer function de-
rived from this data. Figure 2 is a comparison of the
empirical cumulative distribution function (CDF) with
the theoretical g distribution with two degrees of free-
dom.

A number of distribution functions have been used to
empirically fit microwave transfer function CDF's.
Among the most popular have been CDF's of Gaussian
and logarithmic normal distributions. To compare the
cumulative distribution functions of a transfer function
for a large test object, using different distributional as-
sumptions, probability plots are used. For the measured
data, comparisons of fit to g, Gaussian, and logarithmic
normal distributions are studied in this way. A probabili-
ty plot displays the inverse theoretical probability versus
the inverse measured probability. A perfect match be-
tween theory and experiment produces a diagonal
straight line. The dotted curved lines on either side of
the diagonal are 90% confidence limits derived using
Kolmogorov test statistics for the distribution shown in
each plot. If the distribution is correct the entire proba-
bility curve should fall within the limits for 90% of all
data sets. The spread in the confidence limits at either
end is the result of statistical uncertainty in the measured
data due to the small number of measured points yielding
very small or very large values. Figure 3 is the probabili-
ty plot for the data in Fig. 1, assuming a y distribution,
Fig. 4 assumes a Gaussian distribution, and Fig. 5 as-
sumes a logarithmic normal distribution.

As seen in Fig. 3, the y distribution is clearly the best
fit to the sample of empirical data. In this case the data
fell outside the confidence limits for both the Gaussian
and the logarithmic normal distributions on the first data
set tested. This indicates with high probability that
Gaussian and logarithmic normal distributions are not
correct for this type of data.

One of the results of this theory which makes it most
useful is the fact that under very general conditions, the
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FIG. 1. Transfer function in copper cavity. FIG. 5. Logarithmic normal distribution.
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CDF does not depend on details of the cavity. Large
computer codes have been formulated to model cavities
to extremely fine detail. Results of such an approach re-
quire extensive amounts of computer time, only to be in-
validated if the operator in the test object were to be
holding, say, a cola can at the time. To illustrate the fact
that the shape of the CDF would not deviate from the
theoretical y distribution, the experiment in Fig. 1 was
repeated, but with a cola can half full of water in the cav-
ity. Figure 6 is the probability plot for the g distribution
for the transfer function measured with a cola can
present.

The y distribution with two degrees of freedom ap-
pears elsewhere as the probability distribution for ampli-
tude spectra. If a time series is weakly stationary, the
periodogram is known to be distributed as g with two
degrees of freedom (Refs. [8,9]). If the system under
study is taken as a linear, time invariant filter (the basis
for cw analysis), and is excited by a white noise source,
then the resulting time domain signal is a weakly station-
ary time series with spectra identical to the transfer func-
tion. The difference is that in the case of the weakly sta-
tionary time series, a single fixed filter is driven by a
broadband random source, while in the cw amplitude
case a single monochromatic source is assumed to be
driving randomly selected filters. The two cases can be
related if for each possible white noise input into the sys-
tem, there exists one and only one corresponding cw am-
plitude measurement such that the discrete Fourier trans-
form of the resulting time domain signal has amplitude
spectra identical to the corresponding cw measured am-
plitude spectra. If this assumption is true, then it follows
that the cw amplitude spectra will be distributed as a y
with two degrees of freedom. This assumption has been
used successfully to generate a probability model for cw
amplitude spectra for electromagnetic-pulse (EMP) exci-
tation of the TACAMO and EMPTAC aircraft (see Ref.
[10]). This assumption is being studied further as the
basis for an alternative proof of the distribution for am-
plitude spectra. This proof will also apply to EMP
broadband excitation.

To challenge further the validity of the theory de-
scribed above we have taken data from a wide variety of
test objects with various volumes, Q's, sizes, and shapes.
Figure 7 shows the transfer function measured in a large

4 r)

-70

- 80
6

Frequency I,'GHz)

J
7

FIG. 7. Large test chamber.

steel box using the direct cavity pumping technique. The
volume of the box was 18 X 10 cm . A number of irregu-
larly shaped metal objects, including chairs, were placed
in the box to prevent any mode degeneracy due to the
fairly regular shape of the box. Measurements made with
and without cavity clutter showed no significant
difference.

In addition, varying amounts of microwave absorber
were added to the box to change its Q. Measurements
were made with no absorber on the walls, absorber par-
tially covering the walls, and absorber covering virtually
the entire surface of the walls. Absolute measurements of
source and sensor power were made and the Q was de-
rived using Eq. (57). Figure 8 shows the probability plot
for the g distribution, using measurements with no ab-
sorber other than normal wall losses. The cavity Q was
5400 and the specific mode density was about 670. As
shown the fit between theory and experiment was excel-
lent. Figure 9 shows the probability plot using data for
the lightly damped steel chamber. The measured Q was
378 and the specific mode density was about 9600. The
fit between theory and data was again very good. Figure
10 shows the probability plot for the data for the heavily
damped steel chamber. The measured Q was 88 and the
specific mode density was 41000. The fit to data was still
excellent. The range of cavity Q's tested with the steel
chamber covers virtually the entire range found in real
systems. The data shown in Fig. 7 are also tested using
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FIG. 6. Copper cavity with cola can. FIG. 8. Chamber without echosorb.
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FIG. 9. Partial echosorb. FIG. 11. Large test chamber, Gaussian.

Gaussian and logarithmic normal distributions. Figure
11 is the probability plot for a Gaussian distribution, and
Fig. 12 is the probability plot for a logarithmic normal
distribution. As can be seen, both distributional assump-
tions are violated.

To challenge the theory with real test articles rather
than contrived laboratory cavities, we made measure-
ments on a small computer, an air to ground missile, a
fighter jet aircraft, a Cessna Citation Jet, a large trans-
port aircraft, and a large military ground vehicle. The
volumes of the various cavities varied by over a factor of
1000. The probability plots for the y distribution for the
first five test objects, illustrating the excellent agreement
between theory and data, are shown in Fig. 13—17.
Agreement between theory and experimental data over
such a broad range of size, shape, and Q lends consider-
able support to the validity of the theory. However, all of
the objects tested above challenged the theory in the limit
of large specific mode density. We have, to date, mea-
sured a few objects in the limit of low specific mode den-
sity and shown that cz does indeed differ from 1, however,
we have not yet completed quantitative verification of the
theory in the low-specific-mode-density limit.

DETECTION AND CORRECTION OF DISTORTED DATA
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FIG. 12. Large test chamber, logarithmic normal.
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The data described by this theory cover many orders of
magnitude and sometimes exceed the limits of dynamic
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20

range of the instruments used to acquire the data. Some
of the lowest-amplitude signals can be below the noise
level of the instrument. This distorts the low-end tail and
shifts the mean of the distribution, which is used to esti-
mate the location parameter of the exponential distribu-
tion. We have observed this effect in some of our data
where the signals were particularly low. The effect of this
distortion on the probability plot is shown in Fig. 18 for
data taken from the gunner's chamber of a large military
ground vehicle. If it is known that the cavity under test
is in the large-specific-mode-density limit (N, ) 10) the
distortion can be easily detected and corrected.

While the mean of the distribution is affected by the
limited dynamic range of the measurement, the median is
unchanged. This is because the mean weights each point
by its deviation from the center, but the median is simply
the value at which half the measured points are above
and half below. Clipping the low points changes the
weighting that determines the mean, but does not change
the number of points below the median value. In fact,
the signal can be clipped up to the median value without
the median being changed. In the limit of large N, the
shape of the distribution is determined by only one pa-
rameter, the mean. For the I" distribution with a =1, the
mean and the median are related by a constant ratio:
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FIG. 16. Cessna Citation aircraft fuselage.
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FIG. 17. Large-transport-aircraft cockpit.

20

20

(58)

where the P, to 5oj indicates median value. When the data
are distorted by limited dynamic range, the median,
which is unchanged, can be used to recover the correct
mean value using Eq. (58) and restore the low-end tail of
the distribution function. The probability plot from Fig.
18 is shown corrected by this technique in Fig. 19. Note
that the error of only 3 dB in Fig. 18 was easily detected
and corrected. It is also possible to use this relation to
generate an alarm during automatic data acquisition to
notify the operator when a specified level of distortion is
exceeded. Equation (58) is not the optimum statistical es-
timator for distortion of the low-end tail. We are
currently developing other more sensitive and accurate
estimators to detect measurement errors and detect devi-
ations of experimental data from theoretical expectations.
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APPENDIX: DETAILS OF INTEGRATION

3
co+ 0 COk

~—& (~ok —~o) +(~o/2Q)2
d COk

(u +ro)
du

u +a

dQ
Q +3Q CO+ 3QCO +CO3 2

2

2 3

I—0 u +a
(A7)

2&6'P~ 8~V COk

2 dCOk
Q& (2~c)' ~—& (ro„—ro) +(ro/2Q)

(Al)

Considering the Laurent's function in the denominator to
be a 5 function centered about co, we get the approxima-
tion

Equations (37), (48), and (50) involve solving complicat-
ed integrals, and to simplify the paper, the details of these
integrations are explained here. Two approaches will be
used, the first a quick approximation by considering the
Laurent's function to be approximated by a 5 function.
Then the value of the rest of the function, evaluated at
the center of the Laurent's function, will be brought out
of the integral. The second method is much more labori-
ous, and gives an exact solution which will be truncated
to give the same value as the quick approximation.

Equation (37): Solve

f,"
du =f," du =0.

u +a Q +a
Using Sec. 2.175 of Ref. [11],it follows that

Q Q

—&Q +a
du =2Q—

2

Using Eqs. (A4) and (A8), Eq. (A6) can be solved:

3
co+n

COk CO + CO 22
d COk

dQ
u +3Q co+ 3Qco +co

—Q u +a

(A8)

(A9)

co'rr + g 2rrQ

2Q

Since the denominator is symmetric, the odd powers will
integrate to zero

3
00 COk

COk CO + CO 22 2 dCOk =2vrQro +3' 20—
2

(A10)

OQ d COk=Ci)

COk CO + CO 2
(A2) and it can be seen that the lead term of Eq. (A10) agrees

with Eq. (A5). Putting it all together,

To solve the latter integral, first make the change of vari-
able Q —cok co:

2rrEPq 8~p' COk
3

2 dCOk
Ql (2mc) ~—& (cok —ro) +(co/2Q)

k
~ 2

oo d COk dQ
—~ (cok —co) +(ro/2Q) —~ u +a (A3) 4~Pc co 3Q1+

C 'rrcoQ

3

4Q2
(Al 1)

where a =(co/2Q) . Using Sec. 2.172 of Ref. [11],

dQ
—~Q +a

and

3
CO COk 2

&
d co k =2 rrQ co

COk CO + CO 2

which combines with Eqs. (Al) and (A2) to get

(A4)

(A5)

2meP cok

~+n 8mV

CO 2+ (A12)

Using again the approximation of the denominator being
a 6 function, the same change of variable, and Sec. 2.173
of Ref. [11],

and since 0(ro, and Q) 1, the lead term in Eq. (All)
clearly dominates. Actual calculations have found the er-
ror of approximation to be less than 2%.

Equation (49): Solve
2

2~~Pc 8~V ~+n COk 4eP, m

Q~ (2m.c)' ~—n (co„—co)'+(ro/2Q)' c'

(A6)

To solve the integral exactly, first make the change of
variable as before, u =cok —co..

4
OO du

—~ [(rok —ro) +(~o/2Q) ] — [u +a]

4 4+Q
CO

=4vrQ co . (A13)
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To solve the equation explicitly, make the usual change
of variable:

where both equations used the fact that Q))1. It can
also be shown that

4
cu+ n COk

&—[(cok —co) +(co/2Q) ]

(u +co)
8Q—&[u +a]

CIQ
Q +40 co+60 Q) +4Qco +co

—0 [u +a]
(A14)

[u'+a]' 4Q

Using Eqs. (A15)—(A17) to solve Eq. (A14),

f u +4u ct)+6u co +4uco +co
CtQ—0 [u +a]

(A17)

and again, since the denominator is symmetric, the odd
powers integrate to zero. Using Ref. [11], it can be
shown that

+2Q+6~gco+4mg co
3&co 3

4

[u +a] co co A +a
4~Q

(A15)

=4vrg co 1+ + +3 3 3 0
2Q 16Q 2mcog

(A18)

2
GQ—

[u +a] ~ 0+a
(A16)

and again, the facts that 0 & co, and Q) 1 makes the lead
term in Eq. (A18) dominate. This agrees with the ap-
proximation in Eq. (A13).

Equation (51): Solve

6)+Q CO+A cokiolcos (Pk
3 3 2

—& [(cok co )'—+ (co/2Q)'] [(gaol
—~ )'+ (~/2Q)']

This integral is simplified by using the transformation

(A19)

tan(Pk ) =
2 co cok

(A20)

then

d~ok =
z dPk

2Q sin (Pk )
(A21)

and

1 2
sin (Pk) .

(co —cok ) +(co/2Q)
(A22)

First approximating the integral using the denominator as a 5 function,

oo oo &k&lcos (fk Pl )
3 3 2

f 4 lT 77

d~kd~l 4Q ~ cos (0k 0!)d4kdll
[(co—cok) +(co/2Q) ][(~—~l) +(~/2Q) ] 0 0

2Q2 4 (A23)

The exact integral uses the same transformation, however, the ~k factors out as a result of the fact that

1
Ct)k —

CO 12 2

Q tan(pk )
(A24)

and so
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~+0 ~+0 ~k ~l COS
3 3 2

co—0 ~—+ Q7 Q) + co 2 Q) ct7 l + co 2
2 3/2 3/2

2Q 6 ~—s ms— 1
CO 1—

co s s Q tan((bk )

11—
Q tan((bt )

cos (0k 0't )d0kdO!

=4Q~ 4 1—
s Q tan(pk )

3/2 3/2

1 — [cos(pk )cos(pt )+sin((bk )sin(pt ) ] dpkdpt
Q tan

(A25)

and expanding the square,

S=(2Q) co f 1—
3/2 2

cos'((b)dt's

+ (2Q)'co f5 tan

3/2

cos(P )sin(P )d P

2

+ (2Q)'co f 1—
3/2

sin ((b)d(b

=(2Q) co f [cos (P)+cos((b)sin(P)+sin (P)]dP +0

1= sr Q to +0 (A26)

which agrees with Eq. (A23).
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