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Stability of the soliton states in a nonlinear fiber coupler
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A detailed study of the stability of the soliton states for a nonlinear fiber coupler is presented. It is

shown that the stability of the symmetric soliton states is delimited by the point of bifurcation: sym-

metric states are stable starting from zero energy up to the point of bifurcation, and unstable beyond the
point of bifurcation. Asymmetric A-type states are stable at points with positive slope in the energy
dispersion curve, and unstable otherwise. 8-type asymmetric states are always unstable. Antisymmetric
soliton states have regions of unstable as well as stable behavior. Moreover, the perturbation growth
rate for the antisymmetric states can be complex in a certain range of spatial frequencies. A close analo-

gy between the stability results for the soliton states in a nonlinear coupler and those for guided waves in

planar nonlinear structures is established.

PACS number{s): 42.81.—i, 42.65.Re

I. INTRODUCTION

Soliton propagation in fiber waveguides supporting two
coupled modes has been studied theoretically by several
authors in the past few years. The nonlinear directional
coupler has certainly been the most frequently studied
such device since it was proposed [1,2]. Switching prop-
erties of this device, using very short pulses, have been
studied extensively both theoretically [3—11] and experi-
mentally [12-15]. It has been shown experimentally [15]
that input pulses as short as 100 fsec can be used to ob-
tain complete switching. In principle, this is not the
fastest switching time which can be achieved with direc-
tional couplers.

From a theoretical point of view, an important issue is
the stationary pulses (soliton states) which can propagate
in the coupler and their stability. The stability of the sol-
iton states determines the device properties for long-term
propagation and the behavior of pulses in the coupler.
Symmetry-breaking instabilities in two-mode fiber devices
taking into account (and also neglecting) cross-phase
modulation have been studied by Wright, Stegeman, and
Wabnitz [16]. It was shown in [16] that different types of
behavior of the soliton pulses can be expected in the two-
mode devices depending on the perturbation of the ini-
tially stationary pulses.

Recently, Akhmediev and Ankiewicz [17] discovered
different (asymmetric) families of soliton states in non-
linear fiber couplers. These soliton states are pairs of un-
equal pulses which can propagate in a directional coupler
without changing their shapes. Moreover, the energy-
dispersion diagram was constructed in [17] for all soliton
states in terms of a unique parameter: their spatial fre-
quency. This diagram shows that new states split off
from symmetric and antisymmetric states at bifurcation
points. Asymmetric states can play a decisive role in
switching phenomena in nonlinear couplers.

In this paper we study numerically the stability of all
soliton states in a nonlinear fiber coupler including asym-
metric soliton states. We found the growth rates of all
unstable branches and presented them in terms of the
same soliton parameter. This allows us to establish a cri-
terion of stability for the lowest branches of the soliton
states. We find, for example, that the reason for
symmetry-breaking instability [16] is the appearance of
asymmetric soliton states at the point of bifurcation.
Particularly, we find that symmetric soliton states are
stable for energies below that corresponding to the bifur-
cation point M [17], and are unstable otherwise. Asym-
metric A-type soliton states are stable at points with posi-
tive slope in the energy-dispersion curve, and unstable
otherwise. Antisymmetric soliton states have regions of
unstable as well as stable behavior. Moreover, the per-
turbation growth rate for the antisymmetric states can be
complex in a certain range of spatial frequencies. The B-
type asymmetric states are found to be always unstable.

The remainder of this paper is organized as follows:
Section II describes the nonlinear coupler equations and
their stationary solutions, together with the bases of the
perturbative analysis. Section II is devoted to the study
of the stability of the symmetric and antisymmetric
states. 3- and B-type states are considered in Sec. IV.
The analogies with the planar case are discussed in Sec.
V. Finally, Sec. VI contains our conclusions.

II. SOLITON STATES OF A NONLINEAR COUPLER

Pulse propagation in a dual-core fiber coupler, includ-
ing the effects of dispersion to second-order and self-
phase modulation, can be described in terms of two
linearly coupled nonlinear Schrodinger equations. In a
reference frame traveling along the coupler with the light
group velocity, this set of equations has the form [4]
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U(g, r) =u'(g, r)e'q~,

V(g, r) =u'(g, ~)e'~~,
(2)

where q is the signal wave-number shift and u '( g, r ) and
u '( g, r } are the new envelope functions. These functions
are supposed to be free of fast oscillations in g. The value

q can be considered as the parameter of a soliton-state
family of solutions. It is analogous to the propagation
constant in the theory of nonlinear guided waves [18].
The remaining parameters of the soliton states depend on
q. By substituting Eqs. (2) into Eqs. (1), one obtains

iu&+ —,'u'„—qu'+ Iu'I u'+ICu'=0,

iu&+ —,'u'„—qu'+ Iu'I u'+Eu'=0, (3)

which has two parameters q and E. Using the following
rescaling:

i U, +-,' U„+ I
UI'U+Z V =0,

t V, +-,' V„+ I
VI'V+CPU=0,

where U(g, r) and V(g, r) are the electrical-field en-
velopes, K is the normalized coupling coe%cient between
the two cores, g is the normalized longitudinal coordi-
nate, r is the normalized retarded time, and the equations
are written assuming anomalous group-velocity disper-
sion (GVD).

Separating explicitly the fast oscillatory part e'~~ from
the envelope functions, we can represent the solutions of
Eq. (1}in the form
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solutions.
In addition to symmetric and antisymmetric states, the

set of Eqs. (7) also has asymmetric solutions with more
complicated relations between the field components uo
and uo. There are no analytical expressions for them, but
they can be found easily be numerical methods (see Ref.
[17]}. There are two different families of asymmetric
solutions which bifurcate from the symmetric and an-
tisymmetric states at certain values of q/K. They have
been labeled in Ref. [17] as A- and B-type asymmetric
states. Figure 1(a), taken from Ref. [17], shows the
dispersion curves on the (Q, q) plane for symmetric, an-
tisymmetric, and asymmetric soliton states. It is seen
from Fig. 1(a) that the A- and B-type asymmetric states
split off from the symmetric and antisymmetric states at
the bifurcation points M and N, respectively.

u'=u~/I~,

Eqs. (3) become

u'=u~K, t =rV K, z =Kg, (4)
0 I I I I I I I I I I I I I I I

—1 0 1 2 3 4 5
q/K

iu, + —,'u« — u+ IuI u +u =0,

iu, + —,'u« — u + IuI u + u =0,
(5)

I I I I
I

I I i4

—,'u« — u + IuI u+u=0,

—,'u„— u+ IuI'u+u =0 .
(7)

Particularly, the set of Eqs. (7) has symmetric

&2(q /IC —1 )

cosh[&2(q/k —1)t]
and antisymmetric

(8)

which have only one parameter, viz. , q/X.
Equations (1) and (2) have the following invariant:

Q =f (IUI'+
I
VI')«= f (I«'I'+ Iu'I'}«

=~~ f" (IuI'+ IuI')dt, (6)

which corresponds to the total energy carried by a signal
inside the fiber coupler. Equations (5) have stationary
(independent of z) solutions: uo(t), uo(t). These solutions
can be found by solving Eq. (5), excluding the terms in-
volving the derivatives with respect to z:

0
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FIG. 1. (a) Total energy carried by the soliton states vs the
normalized soliton parameter q. The solid lines correspond to
stable branches, the dashed lines to unstable branches. Note
that the curves for the symmetric (S), antisymmetric ( AS), and
A-type asymmetric ( A) soliton states have stable as well as un-
stable branches. 8-type asymmetric and antisymmetric soliton
states are represented by the curves 8 and AS, respectively. M
and N denote the bifurcation points. (b) Growth rates of unsta-
ble soliton states. The solid lines correspond to the purely real
growth rates, the dashed line corresponds to the real part of the
complex growth rate, and the dotted line corresponds to its
imaginary part. The symbols above the curves in (b) correspond
to those in (a). The B-type asymmetric soliton states have even
and odd perturbation growth rates.
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u (z, t)=uo(t)+pf(z, t),
v (z, t) =vo(t)+ ph (z, t),

(10)

Let the solutions of Eqs. (7), for some particular q, be
denoted by uo(t) and vo(t) T. hese could be either sym-
metric, antisymmetric, or asymmetric soliton states. We
can study their stability by adding some small perturba-
tions to them:

where y is the growth rate of the perturbation, the aster-
isks denote complex conjugate, and the functions a and b
depend only on t'. Because of the double rescaling of
variables, the growth rate y does not coincide with the
growth rate 5', which would be found by solving Eqs. (5),
or 5, which would be found solving directly Eqs. (3).
Corresponding exponentials are exp(5'z) in the case of
Eqs. (5) and exp(5$) in the case of Eqs. (3). These growth
rates are related by

where f (z, t) and b (z, t) are perturbation functions and p
is a small parameter. Substituting Eqs. (10) into Eqs. (5)
and linearizing in the small parameter p, we obtain

5=5'K, 5=y(q+K), 5'=y (q+K)
(16)

III. STABILITY OF THE SYMMETRIC
AND ANTISYMMETRIC SOLITON STATES

For symmetric and antisymmetric states, ~uo~=~vo~,
and we have

if, + ' f„(q/K—)f+
~ u, —

~

'(2f +f '
) + h =0,

i".+ ,'"« (q-/K)it +—luol'(2h +b ')+f =0.
(12)

From Eqs. (12) we have h =+f or h = —f. Hence, four
different combinations are possible. Let f =h for sym-
metric states or f = —h for antisymmetric states. Then
the set (12) can be reduced to one equation. These two
cases are equivalent to the problem of the stability of a
soliton in a single fiber, which is known to be stable.
Consequently, in this section we shall study the remain-
ing two cases: f = —h for the symmetric states and f =h

for the antisymmetric states.
In these two cases Eqs. (12) are reduced to a single

equation,

if, + ,' f„(q/K+1)—f—
2(q/K+1) (2f +fg) 0

cosh [&2(q /K + 1)t]
(13)

where the upper signs apply to the symmetric state and
the lower signs apply to the antisymmetric state. We can
simplify Eq. (13) by changing variables t'=t&2(q/K+ 1)
and z' =z (q /K + 1):

if, , +f, , riff+ (2f +f*—)=0,2

cosh t
where

(q/K+1) (q+K)
(q/K+ 1) (q+K)

(14)

We separate out the exponential dependence on z' and
write the function f (z't') in the form

f (z', t') =
—,
' [(a +b)exp(yz')+ (a * b )exp(y*z—') ],

if, + —,'f« (q/K—)f +luo (2f +f")+h =0,
ih, + —,'h« —(q/K)h + ~vo~ (2h +h*)+f=0 .

This set of equations has many possible types of solution.
We want to find those solutions which display exponen-
tial growth in the z direction, and which are therefore un-
stable.

Substituting Eq. (15) in Eq. (14), we find that these func-
tions must satisfy the following set of equations:

6
a, , —g+a+ a = —iyb,

cosh2t'

2
b, , —g+b+ b = —iya .

cosh2t'

(17)

1/2
cosht' —t'sinht'

cosh2t'

b=
cosht'

1/2

where [2K/(q —K)]'~ is a small parameter.
Another point where y =0 occurs at g+ =4 (q/K = —', ).

This is exactly the point of bifurcation found in [17]. The
functions a and b at this point are

1
b =0.

cosh t
(19)

Hence, q =—', X and q ~ ~ are the limiting values of insta-
bility for symmetric soliton states. The growth rates and
perturbation functions between these two values can be
found numerically. Our calculations show that the
growth rate is real in this interval. The rescaled curve for
the growth rate 5 versus q/K is shown in Fig. 1(b) by the
solid line labeled S. In the interval K (q (5K/3, the set
of Eqs. (17) has only imaginary eigenvalues y. As a re-
sult, the symmetric soliton states are stable up to the
point of bifurcation and unstable beyond the point of bi-
furcation, i.e., they are unstable at q values where asym-
metric A-type soliton states exist.

Equations (17) can be solved analytically only for g+ = 1.
In our case the value of r)+ varies in the range [1,oo] for
symmetric states and in the range [ —1, oo] for the an-
tisymmetric states. The general solution cannot be found
analytically and we have to solve Eqs. (17) numerically.
We used the linearization method described in [19]. Let
us first make some estimates at the limiting points. It is
possible to find the solutions of Eqs. (17) when the growth
rate is zero (i.e. , y=0). For the symmetric states the
lowest (and unique) eigenfunction is an even function of t
Equations (17) have one approximate solution at g+ ~1
(q~ oo):
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For the antisymmetric soliton states, there are even
and odd perturbation functions. The odd perturbation
function has the largest growth rate. The value g =1
(q~ ~) is one of the limiting values where y =0 for the
odd eigenfunction. The eigenfunctions of the perturba-
tion a and b at this point are

2.
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q/K =

Q/K =

Vo=

I I i I
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& I I 1

sinhta=
cosh2t
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FIG. 2. Real (dotted line) and imaginary (dashed line) parts
of the perturbation [f(~)= —h (r)] of the symmetric state at
the point q/E =3.33. The shape of the stationary symmetric
state uo = vo is shown by a solid line.

The other value of q where y —+0 is q =E. The behavior
of the eigenvalue corresponding to the odd perturbation
function is more complicated close to this point. The
growth rate 5 increases to the left of this point. In the re-
gion K/1. 4&q &K, two different eigenvalues associated
to odd eigenfunctions exist. Numerical simulations show
that the antisymmetric state has real eigenvalues 5 in the
whole interval K/1. 4 &q & ac. In addition to them, there
are complex eigenvalues (5+ i0) in the interval—0.6K &q &K/1. 4. This set of eigenvalue curves, la-
beled AS, is shown in Fig. 1(b). The dashed and the dot-
ted lines stand for the real and the imaginary parts, re-
spectively, of the eigenvalue in the region where it is not
purely real: —0.6K & q & K/1. 4. The eigenfunctions
corresponding to these curves are odd functions of t for
all q. As a result, the antisymmetric states are unstable in
the range —0.6E (q & ~. We did not find numerically
real eigenvalues in the range —X (q & —0.6K. Hence,
the antisymmetric state at small energies is stable.

There are even eigenfunctions corresponding to an-
tisymmetric states as well. The range of q values where
these eigenfunctions exist is located inside the range
where odd perturbation functions exist. Their eigenval-
ues are lower than those for odd functions. Hence, their
inhuence on the field evolution in nonlinear couplers will
be less pronounced. We leave the study of these states for
future publications. Examples of perturbation functions
for the symmetric and antisymmetric soliton states are
given in Figs. 2 and 3.

Real(f)

—1.5
—6

FIG. 3. Real (dotted line) and imaginary (dashed line) parts
of perturbation [f(r) =h(r)] for the antisymmetric state at the
point q/K =1.176. The shape of the stationary antisymmetric
state uo = —vo is shown by a solid line for comparison.

IV. STABILITY OF ASYMMETRIC
A- AND B-TYPE SOLITON STATES

In the case of asymmetric soliton states,
~
u o ~

A
~ Uo ~.

Therefore, Eqs. (11) cannot be reduced to a single equa-
tion, and we have to solve them numerically in the entire
range of q where a certain type of stationary solution ex-
ists. We used the linearization method described in [19]
modified for the case of a coupled set of evolution equa-
tions. In this way we can find the perturbation function
possessing a given symmetry with the largest growth rate.
The results for A- and B-type asymmetric soliton states
are shown in Fig. 1(b) (the curves are denoted as A, B,„,„,
and B,dd). In the case of asymmetric A-type soliton
states, the eigenvalue 5 is purely real in a small region in
the interval 5K/3&q &1.85K (curve A). The corre-
sponding eigenfunctions (f, h ) are even functions of t.
Hence, A-type soliton states are unstable immediately
beyond the point of bifurcation (point M). The value

q =q;„=1.85K corresponds to the point where the ener-

gy dispersion curve Q(q) [see Fig. 1(a)] for the A-type
states has a minimum. This means that the asymmetric
A-type soliton states are unstable at the values of q where
dQ/dq is negative. The eigenvalue 5 is purely imaginary
at q & q;„=1.85K, where dQ/dq is positive. Hence, the
A-type states are stable in this part of the dispersion
curve.

In the case of the asymmetric B-type states, there are
two different (even and odd) bound perturbation func-
tions. The growth rates 5 for each of them are real in the
entire region where B-type soliton states exist. Two 5
curves corresponding to these two perturbation functions
are shown in Fig. 1(b) (curves B,„,„and B,dd). The curve
for 5/K vs q/K corresponding to the even perturbation
function goes to zero at the point of bifurcation q =K
(point N) The odd pertu. rbation function at the point of
bifurcation (point Ãj has the same growth rate as that for
odd perturbations of antisymmetric soliton states. This
shows that the unstable behavior of the B-type states is
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the continuation of the unstable behavior of the antisym-
metric states up to point %.

As both eigenvalues are real in the whole region where
B-type states exist, these states are all unstable. The two
eigenvalues for even and odd perturbation functions are
of the same order of magnitude. Moreover, there is a
point q =1.25K, where their values are exactly equal.
This means that the evolution of unstable B-type states
can be quite complicated in general.

V. STABILITY CRITERION AND ANALOGY
WITH GUIDED WAVES IN PLANAR STRUCTURES

The above results concerning the stability of the
different types of soliton states are summarized in Fig.
1(a). The continuous curves show the stable branches
and the dashed curves, the unstable branches. There is
not a general stability criterion for all types of soliton
states. Nevertheless, it is possible to reach certain con-
clusions.

For the lower-order (symmetric and A-type asym-
metric) soliton states, the stability criterion can be ex-
pressed as follows: If two different soliton states exist at a
given q, the state with higher energy is unstable. The
lowest (in energy) soliton state is stable at dQ/dq ~ 0, and
unstable otherwise. This criterion means that A-type
asymmetric states, which have minimum energy at a cer-
tain q =q;„, are stable at q & q;„and unstable at
q~ q q;„,where q~ is the value of q at point M. The
symmetric soliton states are stable up to the point of bi-
furcation (point M) and unstable beyond it, as they then
have higher energies than the corresponding 2-type
states. Thus, in the small range —', & q/K ( 1.85, there are
no stable states at all.

There is no such simple criterion for the stability of
higher-order soliton states. Each case has to be con-
sidered separately. B-type asymmetric soliton states are
unstable in the whole region where they exist. Antisym-
metric states have regions of unstable as well as stable
behavior. Furthermore, we found that the eigenperturba-
tions of the antisymmetric states ean possess complex ei-
gen values.

There is a close analogy between the soliton states in a
nonlinear directional coupler and the nonlinear guided
waves in a symmetric planar waveguide structure with a
linear layer [18]. The bifurcation phenomena and stabili-
ty properties are very similar if we consider q as an ana-
log of the propagation constant in a planar waveguide
structure, and the total energy Q in the directional
coupler as an analog of the energy liow (or power liow) in
the planar waveguides [18]. Hence, we can deduce some
general properties of the solutions from one case and ap-
ply them to the other, because physically these two prob-
lems are quite similar. Basically, in each case, nonlinear
waves in two media (or cores) interact linearly through

the evanescent optical fields. However, we have to bear
in mind the three main differences between these prob-
lems. First, the solitons in a directional coupler are tem-
poral solitons rather than spatial solitons. Second, the
linear interaction is distributed along the pulses in the
fiber coupler, but is concentrated on the interfaces in pla-
nar waveguides. Third, pulse propagation in a coupler
has to be described by two complex functions, in contrast
to the waveguide, where we deal with a single complex
function. As a result, more symmetry relations are in-
volved in our problem than in the case of the planar
waveguide.

Let us notice some common features between our sta-
bility results for the directional coupler and those for pla-
nar waveguides. We can consider the Q versus q diagram
of the present paper as the analog to the I versus n dia-
gram for planar waveguides [20]. In this case the stabili-
ty criterion for the symmetric and A-type asymmetric
soliton states found in the present investigation is practi-
cally the same as that for planar waveguides [21,20,22].
Additionally, in both problems the perturbation eigenval-
ues can be complex for antisymmetric waves [23].

%'e also notice some differences in the stability results.
The dispersion curves for each particular type of soliton
state cannot be N shaped in the directional coupler, in
contrast to the planar waveguide [18]. Another
difference is that the higher-order nonlinear modes have
different stability properties. For example, antisym-
metric states in planar waveguides can be stable at large
values of the propagation constant [23]. Antisymmetric
states in the coupler are unstable at high q. In both cases
the stability criterion for higher-order stationary solu-
tions (soliton states) cannot be expressed in simple terms
[23].

VI. CONCLUSIONS

In conclusion, we have studied the stability of the soli-
ton states in nonlinear fiber couplers. A stability cri-
terion has been established for lower-order soliton states
(symmetric and asymmetric A-type states). Asymmetric
B-type states are found to be always unstable. Perturba-
tion eigenmodes associated with the antisymmetric states
are shown to have complex eigenvalues in some range of
soliton parameter. Similarities and difference with guid-
ed waves in a planar geometry are demonstrated.
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