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Inverse-scattering approach to femtosecond solitons in monomode optical fibers
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Using the inverse-scattering transform with 3X3 U-V matrix representation and fully exploiting the
symmetry properties of the scattering matrix elements, we found the one-parameter single-soliton, the
four-parameter breather soliton, and the general ¹oliton solutions of a perturbed nonlinear
Schrodinger equation which describes the femtosecond pulse propagation in optical 6bers. The thresh-
old power below which the one-parameter single soliton cannot be formed was given. The main charac-
teristic of the general single-soliton solution of the perturbed nonlinear Schrodinger equation is that it
presents an arbitrary number of "humps" (loca1 maxima of the amplitude) of different heights.

PACS number(s): 42.25.8s, 42.50.Rh, 42.81.Dp

I. INTRODUCTION

Optical solitons in monomode optical fibers are pulses
which propagate without any change in pulse shape or in-
tensity. Because of their remarkable stability properties,
optical solitons are now at the center of an active
research field of nonlinear wave propagation in optical
fibers. This research field started with the result obtained
by Hasegawa and Tappert [1],which show that, under an
appropriate combination of pulse shape and intensity, the
effects of the intensity-dependent refractive index of the
fiber exactly compensate for the pulse-spreading effects of
the group-velocity dispersion. For the negative group-
velocity-dispersion or anomalous dispersion regime, the
fundamental soliton is called a bright pulse, and the prop-
agation of these bright solitons has been studied inten-
sively and verified experimentally [2]. For the positive
group-velocity-dispersion or normal dispersion regime,
the theory [1] and numerical simulations [3] predict that
the solitons are dark pulses (i.e., a dip occurs at the
center of the pulse). The generation of dark solitons in

single-mode optical fibers was also demonstrated [4]. We
mention also the works of several very active research
groups in the Qeld of pulse propagation in optical Sbers in
both the picosecond and femtosecond regimes [5-25].

The propagation of optical solitons in the ps domain
can be well described by the nonhnear Schrodinger equa-
tion (NLSE) [1]. The NLSE is one of the completely inte-
grable nonlinear partial differential equations and its
solutions may be obtained by difFerent methods, e.g., by
using the inverse-scattering transform (IST) [26-30], the
Lie group theory [31], by constructing a certain com-
p)etely integrable finite-dimensional dynamical system
whose solutions determine the exact solutions of the
NLSE [32—34], etc. We mention also the recent work on
IST perturbation theory for soliton propagation and the
first- and the second-order perturbation expansion for
soliton propagation in optical fibers [35].

The propagation of fs optical pulses in monomode op-
tical fibers is well described by the following modified
NLSE:

i +— + lql q+i p, +pzlqf +p3q
. aq 1 a'q, . i)'q, t)q i)lql'

Z 2 ()T aT3

where q represents a normalized complex amplitude of
the pulse envelope, Z is a normalized distance along the
fiber, T is the normalized retarded time (we employ a
frame of reference moving with the pulse with its group
velocity), e is a small parameter, p&, p2, p3, I, and o are
real normalized parameters which depend on the fiber
characteristics [23,24,36]. The last two terms in Eq. (1.1)
describe the fiber loss effect and the self-induced Raman

scattering effect. The very last term produces a shift of
the central frequency of a soliton to a lower frequency
when the soliton width is less then 1 ps [10]. We mention
that in the past years many attempts have been made to
find the solitary-wave solutions of the modified NLSE un-
der various degrees of approximations [37—45].

To the best of our knowledge for arbitrary values of
the parameters p, , p2, and p3, Eq. (1.1) with @=0 is not
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completely integrable. However, for an appropriate
choice of these parameters it can be integrated by the
IST. Thus the cases when /3, :Pz.P3=0:1:1(the derivative
NLSE type I), P, :j32.P3=0:I:0 (the derivative NLSE type
II) and P&.Pz..P3=1:6:0(the Hirota equation) were solved
in [46—48], respectively. Recently, Sasa and Satsuma [49]
showed that the case P&./32.P3= 1:6:3is also integrable by
using the IST. The Sasa-Satsuma single-soliton solution
may have either one "hump" or two "humps" of equal
heights. Nevertheless, the authors of Ref. [49] obtained a
particular single-soliton solution of Eq. (1.1) with
P, :P2./33

= 1:6:3and e= 0
In the present paper we find the most general single-

soliton solution of the perturbed NLSE:

single-soliton solutions with an arbitrary number of
"humps" of difT'erent heights. At the end of this section
we briefly discuss the procedure to construct the general
X-soliton solution.

Finally, in the last section we briefly summarize our
conclusions.

In Appendix A we analyze the analyticity properties of
the Jost functions and of the scattering matrix elements
and in Appendix B we show in detail the procedure to ob-
tain the integrals of motion.

II. THE INVERSE SCATTERING TRANSFQRM

In order to integrate Eq. (1.2) we make, as in [49], the
following transformation:

'az 2 aT2 u (x, t) =q(TZ)exp — T-L Z
65 185

(2.1)

+i5 +6lql +3q ' ' =0 (1.2)
QT BT BT

classified by the following criteria: (i) the diagonal ele-
ment of the scattering matrix a33(g) has only one zero on
the imaginary axis; (ii) the diagonal element of the
scattering matrix a33(g) has two zeros located symmetri-
cally with respect to the imaginary axis.

With a specific choice of the parameters which de-
scribe the general single-soliton solution we also find the
breather soliton solution for Eq. (1.2).

The paper is organized as follows. In Sec. II we
present in detail the method to integrate Eq. (1.2) by us-
ing the IST. By taking into account the symmetry prop-
erties of the matrix U in the U-V representation for Eq.
(1.2) we establish the symmetry properties of the Jost
functions and of the scattering matrix elements a; . Us-
ing these symmetry relations we derive the corresponding
Gel'fand-Levitan-Marchenko (GLM) equations and the
time-dependence of the scattering data.

After that, in Sec. III we find the general single-soliton
solution of Eq. (1.2) and we obtain as particular cases the
one-parameter single soliton, and the four-parameter
breather soliton solution. We show that by an appropri-
ate choice of the soliton parameters one can obtain

I

with t =Z and x =T —Z/125.
Thus Eq. (1.2) transforms to a complex modified

Korteweg —de Vries (KdV) -type equation:

" +5 ~ " +6l. l' ~" +
Bt Qx 3 Bx Bx

=0. (2.2)

In order to integrate Eq. (2.2) by IST we consider as in
[49] the following eigenvalue problem:

O'II

Bx

where ig—0 0

ig u*—

(2.3)

(2.4)

aq' v
Bt

where

(2.5)

,
—u' —u ig

is a column vector (%&,%2, %3)', and g is a time-
independent spectral parameter. With the time evolution
of the eigenvector 4 given by

ux

1 0 0
V= —4i5g' O 1 O +45(g' —lul')

0 0 —1

0 0

0 u

0 0*
—u* —u 0

uxx 1 0 0
+2i5g u*' lul'

ux ux

0

uxx

u„+5(uu* —u u ) 0 —1 0

0 0 0 0
(2.6)

x —+ oo

the compatibility condition of Eqs. (2.3) and (2.5) is equivalent with Eq. (2.2). We note that IST with 3X3 U-V matrix
representation has been discussed in [50—52].

Next for a real eigenvalue g we introduce the Jost functions y"(x;g) and g"(x;g), i = 1,2,3, which satisfy the follow-
ing asymptotic conditions:

y". (x;g) ~5, e (2.7)

g". (x;g)~5, e ', x~ ~, (2.8)
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where y 1
=y2= —1 and y3 = 1. Because for real g the matrix U is anti Hermitian ( U+ = —U), we have

(2.9)

for any pair of solutions of Eq. (2.3) corresponding to the same eigenvalue g. Now we introduce the scattering matrix
(X [CK j ( g ) ] ' j—

1 2 3 via the following relationship:

3

g"(x'g)= y (z (g)y"'(x'g) (2.10)
j=1

between the two bases I y"(x;g)];—
1 2 3 and I g"(x;g)]; 1 2 3 in the space of solutions of Eq. (2.3). Because the matrix

a is unimodular (deta= 1) and taking into account that the two bases tp"(x;g)];, 2 3 and I 1()"(x;p)];—1 2 3 are or-
thogonal, we obtain that the matrix a is unitary, i.e., a+ =u '. Using this property and Eq. (2.10) one can easily find
the following equations:

[(2 (g)~(1) eiPx & (g)~(2)ei/x]/(Ze (g) —iti(1)et' [ire (g)/&s (g)]f(3)el'

(g)~(1) eig x+~ (g)(p(2)eig ]x/ 2(e (g) q(2)el' [~e (g)/~e (g)]f 3)eigx

ip(3)e —igx/~ (g) —iti(3)e
—igx+ [~ (g)/~ (g)]p(()e i'—+ [(2 (g)/(Z (g)]iti(2)e igx—

(2.11a)

(2.11b)

(2.11c)

5= 1 0 0
0 0 1

(2.12)

From the asymptotic behavior of the Jost functions
q&"(x;g) and it "(x;g), i=1,2,3, one can find the subse-
quent relations:

q7
"'(x '

g ) =y' '(x '
g )

~ (2)(x .g)
—~(1)(x .g)

y (3)(x .g)
—~(3)(x .g)

q")(x g)=q(2)(x g)

1T(2)(x g)=q")(x g)

q(3)(x g)=q("(x g)

(2.13a)

(2.13b)

Due to all these properties, one can Gnd the following
symmetry relations:

In Appendix A the analyticity properties of the Jost
functions and of the scattering matrix elements as func-
tions of the spectral parameter g are studied.

Now we establish the symmetry properties of the Jost
functions and of the scattering matrix a which will help
us to find the most general single-soliton solution.

lt is easy to observe that if 4(x;g) is a solution of the
system (2.3) then )Ii(x;g):—Sqi" (x; —g*) is also a solu-
tion of the system (2.3) where S is the following unitary,
Hermitian matrix:

0 1 0

a)1(g) =aZ2( —g*), a)2(g) =a2)( —
g ),

a33(g)=a33( —g'), a31(g) =a32( —g*),

~13(k) ~23(

(2.14)

Next we derive the GLM equations. To this aim we in-
troduce the integral representations of the Jost functions:

g"(x;g)=5; e ' + f ds I(. "(x,s)e ', (2.15)
X

where I(."(x,s) =(K((')(x,s),K(2'(x, s),K(3'(x, s))' with
lim, K"(x,s) =0, i = 1,2,3.

A direct consequence of the symmetry relations (2.14)
is the property that the zeros of a33(g) are either on the
imaginary axis in the lower complex half plane or located
symmetrically with respect to the imaginary axis at
(g', —g), Imp) 0. In the following we assume that
(233( g ) has K pairs of simple zeros located symmetrically
with respect to the imaginary axis at (g;. , —g; ), Imp, . &0,
i =1,2, . . . , X.

For g=P we have

q"'(x'g')=c" it'"(x g*)+c"g'"(x g") (2 16a)

and for g= —g;, by using the symmetry relations (2.14)
we obtain

'(x' —g )=c"*1t"'(x' —g )+c"*p' '(x' —
g )

(2.16b)
In a slightly difFerent manner than in [49], by taking

into account the symmetry relations (2.14) we find from
Eqs. (2.11a)—(2.11c) the following GLM equations:

0
K("(x,y) —0 F (x +y) —f ds K( '(x, s)F*(s +y) =0,

.1.
0

IC' '(x,y) 0F(x +y) —f ds IC( —'(x, s)F(s +y) =0,
.1.

(2.17a)

(2.17b)
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1 0
K' '(x,y)+ 0 F(x+y)+ 1 F (x+y)+ f ds K'"(x,s)F(s+y)+ f ds K' '(x,s)F'(s+y)=0,

0 0

respectively, for y & x, where F(z) is given by

C31
(j)

C32
(j)

F(z)= g i exp( i g—'z)+ exp(ig z) + f e
a33(~;) ' a33(-~, )

(2.17c)

(2.18)

where prime denotes the derivative with respect to g.
Taking into account the integral representation for g' '(x;g) and using Eq. (2.3), we find the following expression for

the "potential" u (x):

u(x)= —2K/'(x, x) . (2.19)

From Eqs. (2.17a)—(2.17c) we finally obtain the GLM equation for IC P'(x, y):

X'& '(x,y)+F(x+y)+ f dzKP'(x, z) f dx[F*(z+s)F(s+y)+F(z+s)F'(s+y)]=0.
x x

(2.20)

In the following we Snd the time dependence of the scattering data. It should be noted that the time evolution equa-
tion (2.5) does not allow for the time-independent asymptotic condition (2.7) and (2.8). Due to this fact we introduce
the time-dependent eigenfunctions which are de6ned as

q
"' q"e——xp(y, v t),

q "=y"exp(y; V t),
(2.21)

(2.22)

where V = lim„V33(x) =4i5(, i=1,2,3.
By using the asymptotic form (~x~ ~ ~ ) of Eq. (2.5), Eq. (2.10}, and the time-dependent eigenfunctions (2.21) and

(2.22},one can easily find the time dependence of the scattering data:

a33(g, t)=a33($,0), a;i(g, t)=a J($,0); i j =1,2;
a3;(g, t)=a3&($,0)exp( —8i5( t), a;3(g, t)= ,a(3$, 0)e px(8i5$ t),
c&»(t)=c~~'(0)exp( —8tg"t); t =1,2.

(2.23)

III. SOLITON SOLUTIONS

In the previous section we have given the location of the zeros of the a33(g), which is a basic criterion for classifying
soliton solutions.

First we analyze case (i) when the diagonal element a33(g) of the scattering matrix has only one zero on the imaginary
axis at g = i'/2, ri—& 0. In addition we put a»(g) =0 for real g.

In this case the function F(z) is given by

F(z)=a (t)exp
'gz

2
(3.1)

where a (t) = ic3, (t)/a33( ig/2)—
Considering that the function X', '(x,y) has the form K', '(x,y) =K(x)exp( —riy/2) from Eqs. (2.19), (2.20), (2.23),

and (3.1), we obtain the simplest single-soliton solution of Eq. (2.2):

u (x, t) = —sech [g(x 5g t —xo—) ]e
2

where xo=(1/g)lni/2~a (0)~/ri and go=argo (0).
Thus we can write the one-parameter single-soliton solution of Eq. (1.2) in the form

q(Z, T)= sech ~ ri T —5g + Z —To exp i . T — +go
1 . 1 Z

2 125 66 186

(3.2)

(3.3)



48 INVERSE-SCATTERING APPROACH TO FEMTOSECOND. . . 4703

wher~ To =&o
We mention that this soliton solution was also obtained

in [49] in a particular case [see Eqs. (38) and (51) in Ref.
[49]]

Now we give some estimations for the threshold peak
power below which the single soliton (3.3) cannot be
formed. We notice that the single-soliton solution (3.2) is
real regardless a constant complex phase. From this
reason the condition of the absence of the discrete spec-
trum of the eigenvalue problem (2.3) with real u is (see,
e.g., Ref. [28])

&2f u dx &0.904. (3.4)

Supposing that the initial pulse shape is

u (x,0)= A sechx, from Eq. (3.4) one can obtain the
threshold value of the amplitude A below which the sin-
gle soliton (3.3) cannot be formed: A,h =0.203. The cor-
responding threshold peak power is

(3.5)

where S,~ is the e6'ective core area,
D =(2mc/A, )(t} k/Bco ) is the group-velocity dispersion
parameter, n2 is the nonlinear refractive index coefficient,
and t, is the characteristic time of the pulse.

For a dispersion shifted fiber with typical parameters

3.0 3.0

2.5— 2.5—

2.0— 2.0—

1.5—

1.0— 1.0—

0.5— 0.5—

0.0 I—2
0.0 I—2

(d)

3.0 3.0

2.5— 2.5—

1.5— 1.5—

1.0— 1.0—

0.5— 0.5—

0.0 I—2
0.0 I—2

FICJ. 1. The shape of ~q~ as a function of T for the general single soliton solution (38), with q&, =vrf2, yb =0, /=2, 71=2, ~ao ~
=1,

for (a) r=0, (b) r=0.25, (c) r=0.5, and (d) r=0.75.
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Dl =0.4 ps/nm km, n2 —3.2=3.2X 10
I' =6 5 W fo t, =50 f/W at A, =1.55 pm we obtain P,h

——

f( rFwHM ——88 fs) and P =168.8 W for t, =10 s
= 17.6 fm).

Next, we discuss case n w en
' f

the scattering matrix a33(g) has two zeros, — w
g=( g—+i')/2 with g, g &0.

the eneral single-so iton so u
'

In order to And e g
X' '( y) has thethis case we consider that the function

&
x,y

following expression:

i'
Ky (x,g )=L(x)e '& «+M(x)e (3.6)

F(z) =a (t)e '~ '+b (t)e'~', (3.7)

I' (g*) and b(t)=ic32(t)/a33(where a t =ic (t)/a33 an
le-soliton solution isIn this case the general sing e-so i on

e take a3,(g)=0 for real g soAs in the previous case we ta e a3]
that the function I' (z) is

3.0

2.5— 2.5—

2.0— 2.0—

Iql I ql

1.0— 1.0—

0.5— 0.5—

0.0 I—2
0.0

—4 —2

3.0 3.0

2.5— 2.5—

2.0— 2.0—

Iql Iql

1.0—

0.5— 0.5—

0.0
2

0.0 I—2

f
I I

as a function of T for the gen«»"p
with r=0 75, .sing e-sle-soliton solutton (3, = =

~r o

b OI a=0, for (a) y =0 and (b) y, =m.

as a function of T for the breather
soliton so utio

ga = IPt»a= fof (a) gp =Oorpa=~s(b pa=~a
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u (x, t) =—
& (pg +tpb )/2

28
—2( A +iB)

0 0

2g

+ bI ol

—2( A —iB)

+ Ibo I

—2( A +iB)
—Iap I

( I
I2+ Ib I2)e

—2A

(I. I'+ Ib. l'). -'"
2g

—l e'B

—iBe

(Ia I +Ib I )e

( Ia I'+ Ib, I')e -'"
2g*

iB

l '17

—iB

(3.8)

where

Iab Ie '" '' (Ia I+Ib I)e
2gy2 ~2

2
Ie

—2(A —iB) (Ia I'+Ib, I')e —2A

2g

2 =g[x —5(ri —3g )t], B =/[x+5(g —3' )t]+(y, —((ob)/2, ao=a(0), bo=b(0), y, =arga (0), and yb =argb(0).
In order to obtain the breather soliton solution one can choose Iao I

= Ibo I

=i(' and argap = —argbo. With this choice
the soliton solution is

ice "[icos(B+2(t))+4IJIsin(B+P)]—43/2IJI cosB cosh(A+/)
u x, t =2q

i~ e "(1+cos P)+q cos[2(B+P)]—8I(I cosh (A +P)
where g= In'/3/2a and (t =argg.

This solution described by four independent parameters (a, g, ri, ip, ) represents a pulse moving with the velocity
5(vP —3g ) performing internal oscillations. Then the breatherlike soliton solution of Eq. (1.2) can be obtained from Eq.
(3.9) via the transformation (2.1). In the limit g—+0 the breather soliton (3.9) becomes the single-soliton solution (3.3)
with To, ipo modified in view of our choice (3.7).

We mention that the breather soliton solution (3.9) can be put in the form

/cosh(A +p)sin(B+y)+gsinh( A +p)cos(B+y)
g cosh (A +p)+ri cos (B+y)

(3.10)

where e ~ = (2
I $ I /g )e ~, y =P —

m /2, and ice ' =a(0).
We notice that if one chooses IaoI =a., IboI =0 in Eq.

(3.8), one can find the Sasa-Satsuma single-soliton solu-
tion [see Eqs. (38) and (39) in Ref. [49] ]. We mention
also that the evolution of this single soliton, under the ac-
tion of a small dissipative term, or the term accounting
for the intrapulse Raman scattering was thoroughly in-
vestigated in [53] by using the simplest technique of the
perturbation theory based on the so-called balance equa-
tions for the quantities which are integrals of motion of
the unperturbed equation [54].

A suitable parameter for describing the qualitative
behavior of the single-soliton solution (3.8) is the ratio
r =

IbpI /IaoI. It is not necessary to analyze this solution
for r C [0, ~ ), but r & [0,1] because when r~1/r the
solution u (x, t)~u'(x, t) (up to a phase factor). In Figs.
1(a)—1(d) it is shown the influence of the parameter r on
the shape of the solution (3.8) written in (Z, T) variables.
We mention that for this choice of the parameters the
Sasa-Satsuma single-soliton solution [i.e., r=0 in (3.8)]

F(z)= g
j=1

a.(t)exp( —if*.z)+b. (t)exp(ig z) (3.11)

where a;(t}=ic3')'(t)/a33(g; )

a33( —
g, ), i =1,2, . . . , N.

By choosing K() '(x,y) in the form

and b,.(t)=ic,"2 (t)/

has only one "hump" [see Fig. 1(a)]. Figures 2(a) and 2(b)
present the drastic change of the shape of the same solu-
tion when the parameter y, changes from 0 to m. . Fig-
ures 3(a) and 3(b) show the profile of the breather soliton
(3.10) for different values of y, . Thus, we arrive at the
conclusion that the general single-soliton solution (3.8)
can have an arbitrary number of "humps" by an ap-
propriate choice of its parameters.

Next we show the procedure to obtain the general N-
soliton solution of Eq. (2.2). In this case we consider that
a3)(g) =0 for real g and a33(g) has N pairs of zeros locat-
ed at (g;, —

g, }, g, =( —
g, +i', )/2, g, , ri, )0,

i = 1,2, . . . , N. With this choice the function F (z) is

I(, ()3)(x,y)= g [L (x)exp( —i gjy)+MJ(x)exp(ig& Y)], (3.12)

we obtain from the GLM equation (2.20) a system of linear algebraic equations for LJ (x) and Mi(x), j= 1,2, . . . , N. By
solving this system one can obtain
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N detW'J' det W (J+~'
u (x, t)= —2 g exp( —igt*x) +exp(i gjx)detA detA

(3.13)

where A is a 2X X 2N matrix of the form

P
p Q (3.14)

and P, Q are N XN matrices with the following elements:

(a;a*+b b,*)exp[i(2( —
g,

*. —g*)x]

(a, a*+b b,*)exp[i(2( —g;. +g )x]

+0, )

(a; b * +a b;* )exp [ i (
—2g" +g,*+g*. )x ]

(4" +0;)(0*+0,*)

(a, b" +a b,*)exp[.—i(2$* +g,*—
g )x]

(g* +g,*)(g* —
g, )

—6
7J ) (3.15a)

(3.15b)

for i,j =1,2, . . . , X.
Here the matrix A" is obtained by replacing the ith

column of the matrix A with [aiexp( —igix),
a~exp( ig—x), b, exp(ig, )x, . . . , b~exp(ig~x)]'.

Finally, the ¹oliton solution of Eq. (1.2) is obtained
from Eq. (3.13) by using the transformation (2.1).

For Eq. (2.2) we derive several conserved quantities in
Appendix B.

IV. CONCLUSIONS AND REMARKS

Using the IST, femtosecond solitons in optical fibers
have been found for an appropriate choice of the fiber pa-
rameters. The soliton solutions have been classified by
the positions of the zeros of the diagonal element a33(g)
of the scattering matrix o.. For the one-parameter
single-soliton solution an estimation of the threshold
power below which the soliton cannot be formed was
given. In addition, the four-parameter breather soliton
solution and the general ¹oliton solution were also
presented. Unlike the NLSE, where a single-soliton solu-
tion corresponds to only one zero of the diagonal element
of the scattering matrix, for our perturbed NLSE the
single-soliton solution corresponds to a pair of zeros of
the diagonal matrix element a33(g) located symmetrically
with respect to the imaginary axis in the lower complex
half plane g. The general solution is very rich in showing
qualitatively different behaviors. The classification is
made against the parameters

~ bo ~ /~ ao ~, tp„and
which are responsible for the multifarious nature of the
single-soliton solution.

Finally, we stress that Eq. (1.2) holds when the ratios
among the coefficients of the higher-order terms Pi.P2.P3
in the perturbed NLSE amount to 1:6:3. Hence, by prop-
erly tailoring the optical fiber this situation can be real-
ized in the femtosecond regime [24] and we expect that
the simplest single-soliton could be observed experimen-
tally.

APPENDIX A: ANALYTICITY
PROPERTIES OF JOST FUNCTIONS

AND SCATTERING MATRIX ELEMENTS

In this Appendix we show in detail the way to establish
the analyticity of one of the Jost functions, namely,
y"'(x;g)=—y"'(x;g)e'~ . From (2.3) we easily find that
the function y"'(x;g) obeys the following equation:

a
0 0 0

=2ig 0 0 0 y'"+Up'"
0 0 1

(Al)

where

0 u

0 0
—u —u 0

is the "potential" matrix of the IST problem.
From (A 1) we have the following integral equation for

~(&).

1

y"'(x;g)= 0 + I dy

0

( &(y)y" '(y) ) i

( &(y)y' "(y) )&

"(&(y)y' "(y) )

(A3)

0 0 1 (A4)

1 1 0
For g in the upper complex half plane, from Eq. (A3) it

is easy to obtain that ~y"'(x;g)~ is bounded by the fol-
lowing series:

Under suitable conditions, we can extend g"'(x;g) into
the upper half of the complex g plane. To see this, let A

be the matrix:

0 0 1
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~y'"(x;g)~ y, M"(x)A"1

0 n&

where M(x)= f" ~u (y)~dy.

0
(A5)



INVERSE-SCATTERING APPROACH TO FEMTOSECOND. . . 4707

Taking into account that
"+'=2"g, where

an
+(3)(x .g)—

n~l

g (n)
2

n
(82b)

1 1 0
X= 1 1 0

0 0 2
(A6) y(3)(x g)=1+ y

n~l

g (n)
3

we have that for g in the upper complex half plane, for
real x there exists ig'"(x;g)i is there exists the following
integral:

M(oo)= f iu(x)idx . (A7)

a;.(g)= lim pj(.')(x;g)e (A8)

In a similar manner one can show that the functions
y(2)(x .g)

—q)(2)(x .g)eigx and fl(3)(x .g)
—1it(3)(x .g)e

—(ax

can be analytically continued in the upper complex half
plane g, while 0"'(x;g) —=P'"(x;g)e'~", 0' '(x;g)
=g' '(x;g)e'~", and y' '(x;g)—:y' '(x;g)e '~" can be
analytically continued in the lower complex half plane g.

Next we establish the analyticity properties of the
scattering matrix elements a; (g). From Eq. (2.10) we
have

(83)

The functions yI )(x;g), i=1,2,3, obey the following sys-
tem:

ax(

(}x

(}Xz

= —2l'gg '+uy3 ',

(3)+ (3) (84)

(}X3
u e~(3) u~(3)

(}x

Next, taking into account the relations (82a) —(82c),
the system (84) becomes

From Eqs. (81) and (82c) it results that the conserved
quantities are given by" a(")dx

3 3

Taking into account the analyticity properties of the
functions y"(x;g) and 0"(x;g), i=1,2,3 established
above it results that a))(g), a(2(g), a2)(g), a22(g), and
a33(g*) can be analytically continued in the upper com-
plex half plane g and a()(g'), a)2(g'), a2i(p), a/2(g'),
and a33(g) can be analytically continued in the lower
complex half plane g if iud tends to zero sufficiently fast
as ~xi~ ~ such that there exists the integral (A7). with

BA'"'
2

Bx

3

Bx

=2l W("+"+u'A(")
2 u

= —u*A(") —uW(")
2

aw', "'
= —2l A '"+"+u A'"'

(85)

APPENDIX B: INTEGRAI S OF MOTION

From Eqs. (2.8) and (2.10) one can see that some of the
elements of the scattering matrix are time independent.
Expanding these time-independent matrix elements in
power series with respect to g

' we can find the infinite
set of conservation laws. In the following we will show in
detail the procedure of obtaining the conserved quantities
related to the power-series expansion of the diagonal ma-
trix element a33(g).

From Eqs. (2.8) and (2.10) it results that

I',"=i f" dxiui2,

I3 xu
c)0

(87a)

(87b}

W(' ———u W ———u (86)

From the system (85}, with the relations (86) one can
successively determine the unknown functions A "
(i = 1,2,3). Thus the first three conserved quantities are
given by

a33(g)= lim y3 '(x;g) . (81) f dxiui' ——f dx
2l —oo 2 —oo dX

It is a simple matter to show that the components of the
function g( )(x;g) can be expanded in power series with
respect to g

' as follows:
+—f dxiui2 (87c)

g (n)

x"'(
n)1

(82a)
In a similar manner we obtain the conservation laws re-
lated to the power-series expansions of the diagonal ma-
trix elements a22(g) and a»(g):

I(&) — ~ u 2

2l
(BSa}

f" dxu* + f dx f dyu* (x)u (y)+ —f dxiui (BSb)
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2

I',"=——j dx +2f dxiui + j dx u" f dxiui'

+—f dxiui + f dx f dy f dzIu(x)i u* (y)u (z)

+f dxu*(x) f dyu (y)

I(&) — I(&)* 1(2) —I(2) I(3) — I(3)*
1 2 ~ 1 2 ~ 1 2

f dy~u (y) ~ (B8c)

(B8d)

We note that the relations (B8d) can be obtained also from the symmetry properties (2.14).

*Permanent address: Institute of Atomic Physics, Depart-
ment of Theoretical Physics, P.O. Box MG-6, Bucharest,
Romania.
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