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Synchrotron motion with rf phase modulation was studied experimentally. Poincare maps in
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I. INTRODUCTION

Synchrotron motion occurs in two dimensions of the
six-dimensional phase space for particle motion in a cir-
cular accelerator. Therefore, longitudinal beam dynam-
ics studies associated with the synchrotron motion can be
as important as the transverse dynamics associated with
the betatron motion. An actual accelerator may contain
longitudinal or transverse error fields, which vary with
time randomly or sinusoidally and cause unpredictable
outcomes resulting in degrading the performance of col-
liders or storage rings. Indeed, emittance blowup and
beam loss due to rf noise have been observed in the Su-
per Proton Synchrotron at CERN [1]. Understanding the
eKects of these time-varying devices on beam dynamics
is important in setting tolerance levels during machine
design, construction, and commissioning. The studies
of longitudinal beam dynamics may also lead to a bet-
ter control of the time-varying components for emittance
dilution, super slow beam extraction, controlled phase
space manipulations, etc. [1]. Because of these possible
benefits to future accelerators, careful experimental and
theoretical studies of synchrotron motion with rf phase
modulation are needed.

The equation of motion for transverse oscillations of
a particle trapped in a one degree of freedom resonance
island, in the presence of betatron tune modulation, is
equivalent to that of synchrotron motion with phase
modulation. Studies of synchrotron motion with rf phase
modulation have added importance for understanding
the consequences of transverse betatron tune modulation.

The rf phase modulation may arise from rf noise, rf
power supply ripple, a driven rf phase shifter, or synchro-
betatron coupling. The synchro-betatron resonance may

be excited by a finite chromaticity, dispersion function in
rf cavities, transverse wake fields, a beam-beam interac-
tion, and a time-varying transverse dipole field located
at a nonzero dispersion region. In the latter case, the
path length that the particle traverses in one revolution is
modulated by AC = P.D;9, (t), where 0;(t) is the modu-
lation dipole kick angle and D, is the dispersion function
at the dipole location [2]. Therefore the arrival time of
the particle at the rf gap relative to the rf wave will be
modulated. The result is equivalent to that of rf phase
modulation on synchrotron motion [3]. Recently, experi-
mental measurements of the beam response due to the rf
phase modulation have been reported [4]. Although our
preliminary data analysis was shown to agree well with
single particle tracking calculations, data analysis based
on a Hamiltonian formulation was missing. This work
is intended to bridge the gap between the report of the
measured data and our understanding of particle motion
based on the framework of the Hamiltonian dynamics.

The plan of the paper is as follows. In Sec. II, we
discuss the properties of the Hamiltonian for the syn-
chrotron motion with phase modulation. The longitudi-
nal phase space will be transformed to action-angle coor-
dinates, where the Hamiltonian in the resonant rotating
frame will be derived. In Sec. III, the experimental proce-
dure and the data analysis using Hamiltonian dynamics
will be reported. The conclusions are given in Sec. IV.

II. HAMILTONIAN OF SYNCHROTRON
MOTION WITH PHASE MODULATION

The synchrotron mapping equations for a single parti-
cle, with rf phase modulation, are given by [5]
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where up is the angular revolution frequency, o. = 4'A,
and the derivative of the phase-modulation function,
v acos v 0, is used for (y +i —p )/2vr in Eq. (2.2).
Without external rf phase-modulation, the synchrotron
phase equation becomes

where (—") and P are conjugate phase-space coordinates
of the synchrotron motion describing the fractional mo-
mentum deviation and the synchrotron phase, respec-
tively, 6 is the harmonic number, g is the phase slip
factor, y = asinv 0 is the sinusoidal phase modu-
lation function, 0 is the cumulative orbital angle at the
nth revolution used for the time variable, v is the mod-
ulation tune or the ratio of the modulation frequency to
the revolution frequency, a is the phase error modulation
amplitude, V is the effective rf voltage, Pc and E are, re-
spectively, the speed and energy of an orbiting particle,
and A is the phase-space damping parameter related to
electron cooling at the IUCF Cooler Ring, or synchrotron
radiation damping in electron storage rings.

Defining the normalized momentum b as —""
(—"),

where v, =
2 &I, & is the synchrotron tune, the dif-

ference equations, Eq. (2.1), can be written as
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FIG. 1. The measured phase oscillation following a phase
kick. The damping coefFicient, obtained from the exponential-
folding time of the phase amplitude, is about 0.34 s.

F2 ($, 8) = (P —a sin v 0)b (2.4)

H = —v, b + v, [1 —cos(P+ asinv 0)].
2

' (2.5)

To study the resonant structure of Eq. (2.5), we trans-
form the phase-space coordinates (P, b) into the action-
angle variables (J,g), where the action of the Hamilto-
nian is given by

to obtain the coordinate transformation b = b,
asinv 0. The conjugate phase coordinate P is the phase
displacement Ineasured relative to the reference frame
at the Axed revolution frequency. The new Hamiltonian
becomes

+ 2n —+ w, sin P = 0,
dt2 dt

H = —v, b + v, [l —cosP] + v abcos v 0,=1 2

2
' (2.3)

where the perturbing potential created by the rf phase
modulation depends linearly on the momentum. To re-
move momentum dependence, we make a canonical trans-
formation using the following generating function:

where u, = upv, is the angular synchrotron frequency.
The exponential-folding time of the phase-space damping
is —.The damping parameter for the IUCF Cooler Ring
can be obtained from the damping of the phase amplitude
of the coherent synchrotron oscillation following a phase
kick. Figure 1 shows the measured phase of the bunch as
a function of the turn number after a phase kick. Mea-
suring the damping rates after phase kicks, the damping
parameter n was found to be limited about o. = 3.0 + 1.0
s during this experiment, which was much smaller than
the synchrotron angular frequency ~, = 3342 s . There-
fore the electron cooling is not very important to our data
analysis for the transient solutions of Eq. (2.2). Neglect-
ing the damping term by setting n = 0, Eq. (2.2) can be
derived from the following Hamiltonian:

J = — Sdg.
27r

(2.6)

In the limit of small action, i.e. , J & 2, the canonical
transformation can be accomplished by using the gener-
ating function

p2
Ei(g, g) = ——tan@ (2.7)

J
AHrj ——v, ——cos2$ —2) (—1)"J2I, (v 2J) cos 2k/

k=1

arises from the approximation of the canonical transfor-
mation by using Eq. (2.7) to obtain the action-angle vari-
ables. Here J 's are the Bessel functions of order n. With
a canonical transformation to the true action-angle vari-
ables, AHo will be independent of @, as shown in the Ap-
pendix. The unperturbed synchrotron tune is amplitude

to obtain P = v 2Jcosg, b = —+2J sin@. The new
Hamiltonian becomes

H = v, J sin @ + v, [1 —cos(V 2J cos @ + a sin v 0)]

k=p

(2.8)

where
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dependent and is given approximately by v, —v, (1 —
s ).

This is a good approximation to the exact synchrotron
tune, valid up to about J & 2.

The perturbed Hamiltonian arising from the external
rf phase modulation is given by

AH2k+i ——(—1) v, aJ2i, +i(V2J) sin[v 0 + (2k+ 1)g],

A. Tori at the Arst order synchrotron resonance

When the modulation frequency is near one of the har-
monics of the synchrotron frequency, the parametric res-
onance term in the Hamiltonian of Eq. (2.9) becomes im-
portant. Consider the resonance near the first harmonic.
The coordinate system of the resonant precessing frame
can be obtained using the generating function

P2(@,J) = (Q
—v I ——

) 1,
2

(2.io)

where the coordinates are transformed according to @ =
@—v 9 —2, J = J.The corresponding new Hamiltonian
becomes

v8 -2 v~a/2 JH = (v, —v )J ——'J — ' cosg+ AH(J, Q, O).
16 2

(2.11)

k = O, 1, . . . . (2.9)

Here the + components of the perturbing potential de-
pict, respectively, the oscillating components of the si-
nusoidal rf phase modulation in phase or out of phase
with the synchrotron oscillations. The external modula-
tion terms LH2&+& become important when the mod-(—)

ulation frequency is in resonance with a harmonic of
the natural synchrotron frequency of the system, i.e. ,
v (2k + 1)v, . These resonances, created by the ex-
ternal harmonic phase modulation, are called parametric
resonances [6].

which is an invariant. Hereafter, we drop the tilde
notation for simplicity. A particle trajectory will fol-
low a torus of the Hamiltonian flow. Figure 2 shows
tori of Eq. (2.13) for various Hamiltonian values with
v = 0.935v, and a = 0.02. The Hamilton's equations
of motion are given by

1J' = ——v, av 2Jsing
2 )

vs v, a
g = (v, —v ) ——J — cosa/.

2/2 J (2.i4)

v
g —16

~

1 —
~ g + 8a = 0.

vs )
(2.i5)

When the modulation tune is below the bifurcation tune
v„there are three solutions to Eq. (2.15), i.e. two stable
fixed points (SFP's) and one unstable fixed point (UFP),
given by

g (x) = — x cos—8

3 3
8

g (*)=
V~ &6 3)

g, (x) = x sin
~

—+ —
~(6 3)

(g = vr),

(&=0) (2.16)

where x = 1 — —", x = 1
1/~ Vs

arctan (—)s —1, and v„called the bifurcation tune,
C

is given by

v = v. [1 ——is(4a) ], (2.17)

The fixed points of the Hamiltonian, which characterize
the structure of resonant islands, are given by J = 0, g =
0. Using g = g2 J cos g, with g = 0 or 7r, to represent the
phase coordinate of a fixed point, we obtain the equation
for g as

The time dependent component of the perturbing Hamil-
tonian LH is a superposition of terms oscillating at fre-
quencies of 2v, 4v, . . ., given by

v.a&2J
2

cos(g + 2v 9)

v J2
[cos(2$ + 2v 0) —

4 cos(4@+ 4v 0)]12
+ 0 ~ ~ (2.i2)

2
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where the second term arises &om LHO discussed earlier.
In the resonant precessing kame, the time indepen-

dent part of the Hamiltonian contributes coherently to
perturbing kicks arising &om the stationary phase (or
resonance) condition

&&
0. Particle motion is there-

fore strongly perturbed by the external modulation when
v = v, . Particle trajectories in phase space can be de-
scribed by tori of the time averaged Hamiltonian

v8 -2 +v82aJ
(H) = (v, —v )J ——' J — ' cos g, (2.13)

16 2
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FIG. 2. The tori of the time averaged Hamiltonian at
v = 0.935v, and a = 0.02. The separatrix for two reso-
nant islands is the crescent shaped curve with cusps reaching
the unstable 6xed point.
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or equivalently x, = zz(4a) / . Here g and gb are, re-
spectively, the outer and the inner SFP's and g is the
UFP. The reason that g and gb are SFP's and g, is
the UFP will be discussed in Sec. IIB. In the limit that
v « v„wehave(~ z, thusg —+ —4x /, g -+4z /,
and gb M 0.

When the modulation frequency is approaching the bi-
furcation frequency from below, the UFP and the outer
SFP's move in and the inner SFP moves out. At the bi-
furcation frequency, z = x, and ( = 0, the UFP coincides
with the inner SFP with gb = g, = (4a) / .

Beyond the bifurcation frequency, v & v, (x & z, ),
there is only one real solution to Eq. (2.15) given by

B. Island tune

Let y, p& be the local coordinates about a fixed point
of the Hamiltonian, i.e. ,

y = v2Jcosg —g, p„=—V2Jsin@, (2.19)

v.a f g'l, , v, a,
(2.20)

where g is a fixed point of the Hamiltonian. Making a
local coordinate expansion, the Hamiltonian becomes

- 1//3(xl1-I —
/

+1
(zc j
(z l'
(zc

') (2.1S)

Therefore the fixed point g is a stable axed point if
(1 —g /4o, ) & 0. Because g /4a & 0 and 0 & gb /4a & 1,
g and gb are SFP's. On the other hand, g, /4a & 1, g, is
the UFP. Since the equilibrium beam distribution, which
satisfies the Vlasov equation, is in general a functional of
the local Hamiltonian, Eq. (2.20) can also provide infor-
mation on the local distortion of the bunch profile.

The island tune for the small amplitude oscillations is
given by

In particular, when x = 0 (v = v, ), we have g
(So)1/3

The particle motion in the phase space can be de-
scribed by tori of constant Hamiltonian around SFP's.
The phase amplitudes of the SFP's and UFP are marked
on Fig. 2. The solutions g, gb, and g, of Eq. (2.15) are
plotted in Fig. 3 as a function of the modulation fre-
quency in (—) / with v & v, . The torus that passes
through the 6FP is called the separatrix, which separates
two stable islands. The intercepts of the separatrix with
the phase axis, gq and g2, are also shown in Figs. 2 and
3.
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FIG. 3. The fixed points in unit of (4a) are plotted
as a function of the modulation frequency in (—),where

+C

z = 1 ——" and x, = —(4a) with a as the amplitude of the
phase modulation. The SFP's are represented by g /(4a)
and gb/(4a) ~ and the UFP is g /(4a) ~ . The intercepts of
the separatrix with the phase axis are shown as gI/(4a)
and g2/(4a)'~ .
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The island tune around the inner SFP given by gb at
v « v, is approximately given by v;, ~ „g—~v, (1—

2

~zz) —v ~. This means that the solution of the equa-
tions of motion can be approximated by a linear combi-
nation of the homogeneous and inhomogeneous solutions
[4]. When the modulation tune v approaches v, with
(1 —gb/4a) / ~ 0, the island tune for small amplitude
oscillation about the inner SFP approaches 0 and the
small amplitude island tune for the outer SFP at v = v

2
is v;, ~ „g= 3~v, (1—

zz)
—v ~. In this region of the modu-

lation frequency, the linear superposition principle would
fail. When the modulation frequency becomes larger
than the bifurcation frequency so that (1—s )~/2 ~ 1, we

2
obtain again v;, ~ „g= ~v, (1 —~zz) —v ~, and the linear
superposition principle is again applicable. The island
tune for large amplitude motion about a SFP can be ob-
tained by integrating the equation of motion along the
corresponding torus of the Hamiltonian in Eq. (2.13).

C. Separatrix of resonant islands

The equation for the separatrix of the Hamiltonian in
Eq. (2.15) is given by

H(J @) 1= —xg.' ——g4 —-ag„ (2.22)
2 64' 2

which intersects the phase axis at gq and g2 (see Figs. 2
and 3). Using the notation h; = g, /(4a) /3, we can ex-
press the intercepts of the separatrix as

2 2
h, = —h. —,h, = —h..+

h,
' 6

These intercepts, shown in Figs. 2 and 3, are useful in de-
termining the maximum phase amplitude of synchrotron
motion with external phase modulation.
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D. The torus that passes through the origin

For a beam with small bunch area, all particles can be
approximately described as having initial phase-space co-
ordinates at the origin. The torus which passes through
the origin is of interest in many problems related to phase
modulation. The torus which passes through the origin,
called the torus-O, satisfies the equation H(J, Q) = 0.
The intercepts Po of the torus-0 with the phase axis are
then given by

Pp((P~ —32xgp + 32a) = 0, (2.23)

(2.24)

At a higher modulation frequency with 2; ( x, there is
only one real root to Eq. (2.23) besides Po ——0. The
torus-0 is orbiting around the outer SFP. The intercept
is then given by

- 1/3
—1

1/2

x, )l

(2.25)

where x = 1 —"™.When x & xo ——2 / x, or v & vo ——
8

v, (1 —2i~sx, ), there are three solutions to Eq. (2.23)
besides the solution Po ——0. This means that there are
two nonintersecting tori with the same zero Hamiltonian
value. One of the tori is orbiting about the inner SFP,
which is the torus-O, and the other one is orbiting about
the outer SFP.

At x = xo, two solutions of Eq. (2.23) become degener-
ate. This means that the torus-0 is also the separatrix of
islands. When the separatrix passes through the origin,
the phase axis intercept of Eq. (2.23) becomes

was switched off in our experiment. The response time
of the step phase shift was primarily limited by the inertia
of the resonant cavity. At 1 MHz, the quality factor Q
of the rf cavity was about 40, resulting in a half-power
bandwidth of about 25 kHz. The corresponding response
time for a step rf phase shift was 40—50 revolutions.
In this experiment, the synchrotron oscillation frequency
was chosen to be about 540 Hz, or about 1910 revolutions
(turns) in the accelerator.

The subsequent beam-centroid displacements were
measured with beam position moiutors (BPM), which
had an rms position resolution of about 0.1 mm. By av-
eraging the position measurement without a phase kick,
the stability of the horizontal closed orbit was measured
to be less than 0.02 mm. The momentum deviation
is related to the off momentum closed orbit Lx~o by
Ax~o ——D~ ",where the horizontal dispersion function
D is about 3.9 m at the high dispersion BPM location.
The position signals from the BPM was passed through
3-kHz low pass filter before digitization to remove effects
due to coherent betatron oscillations and high frequency
noise. The BPM sum signal was used to measure the
relative phase of the beam. It was passed through a 1.4-
MHz low pass filter to eliminate the high harmonics of
the bunch and reduce noise before it was compared with
an rf signal in a phase detector. Details of our data ac-
quisition system were reported earlier [4, 7]. Two phase
detectors were used during this experiment [8], a type II
phase detector with a range of +90 and a type III phase
detector with a range of +180'. The type III phase de-
tector had a phase error of about +10 near 0, but was
adequate for measuring the synchrotron tunes. For more
accurate measurements of phase amplitude response, the
type II phase detector was used. To extend the range of
our beam phase detection, a type IV phase detector with

X 10 4

III. EXPERIMENTAL PROCEDURE
AND DATA ANALYSIS

The experimental procedure at the IUCF Cooler Ring
started with a single bunch of about 3 x 10 protons with
kinetic energy of 45 MeV. The cycle time was 10 s. The
injected beam was electron cooled for about 3 s. The
full width at half maximum bunch length was about 5.4
m (or 60 ns) and its revolution period was 969 ns with
an rf frequency of 1.03148 MHz. The low frequency rf
system of the IUCF Cooler Ring at h = 1 was used in
this experiment. A 150-W solid state power amplifi. er was
used to drive the rf cavity to obtain peak gap voltages of
up to 500 V, sufhcient to capture a beam with a typical
momentum spread of —"= +3 x 10 from the injectionp
cyclotron.

For the longitudinal rf phase shift experiments, the
beam was kicked longitudinally by a phase shifter while
the data acquisition system was started 2000 turns before
the phase kick. The principle of the phase shifter used
was reported earlier [4]. The phase lock feedback loop

0 50 ioo

P (deg)
i50

I' IG. 4. The dependence of the measured synchrotron
tune on the phase amplitude is plotted and compared with
theoretical prediction. The Poincare map in the synchrotron
phase space following a phase kick is shown in the top inset.
Here, the symbol b on the ordinate of the inset corresponds
to ~. The scale here is a factor of 2 larger than that of the
earlier published data [4], which was in error by a calibration
factor of 2.
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a range of +360' has been built for future experiments.
A total of 16384 points were recorded at ten turn in-

tervals. The top inset in Fig. 4 shows the Poincare map
in the longitudinal phase space, (P, —"). The fast Fourier
transform of the phase data is shown in the bottoxn inset.
The resulting synchrotron tune as a function of the peak
phase amplitude, shown in Fig. 4, is compared with the
theoretical prediction shown as a solid line.
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A. Sinusoidal rf phase modulations
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When the bunch, initially at P, = 0, b, = 0, ex-
periences the rf phase sinusoidal modulation with y =
asinv 0, where v is the modulation tune and the mod-
ulation amplitude a (( 1, the synchrotron phase satisfies
the difFerential equation
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Here the overdot corresponds to the derivative with re-
spect to the 0 variable and P is the particle phase angle
relative to the modulated rf phase. Since the measure-
ment time was typically within 150 ms after the phase
kick or the start of the rf phase modulation, the effect
of electron cooling was not important for these measure-
ments.

The upper left corner of Fig. 5 shows an example of the
measured P and h = —""—"vs the turn number at ten turn

&s P
intervals. The resulting response can be characterized by
the response amplitude and the response period. The
corresponding Poincare map is shown in the middle of
the figure. Transforming the Poincare map into the res-
onant precessing frame discussed in Eqs. (2.10)—(2.13),
one obtains an invariant torus-0 shown in the lower part
of Fig. 5. The winding motion around a smooth torus was
oscillating at the frequencies of 2v and 4v~, which re-
sults from the time dependent components of the Hamil-
tonian in Eq. (2.12). The time dependent winding motion
can be suppressed slightly by using the elliptical function
data analysis discussed in the Appendix.

It becomes clear that the measured response period
corresponds to the period of a torus-0 about a SFP and
the response amplitude is the intercept of the torus-0
with the phase axis. Figure 6 shows the measured re-
sponse period and response amplitude as a function of
the rf modulation &equency along with the prediction of
a single particle tracking calculation, which was found to
agree well with the experimental data [4]. The response
of particle trajectory will trace out a torus-O. At mod-
ulation &equencies below a characteristic &equency, i.e.,
v ( vp —(1 —2~~sx, )v„where 2,', is given in Eq. (2.17)
and vp is the modulation frequency that the torus-0 is
also the separatrix (see Sec. IID), the particle trajec-
tory orbits around the inner SFP. At modulation &equen-
cies beyond vp, the torus will orbit about the outer SFP.
The sharp rise in the observed spectrum at low frequen-
cies and the slowly decrease at high frequencies reflect
a characteristic transition of particle trajectories orbit-
ing around difFerent SFP's in the nonlinear parametric
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COS —V~
FIG. 5. The normalized ofF-momentum coordinate b and

the phase P are plotted as a function of revolutions. The data
was taken in ten turn intervals. The dead spot of the type III
detector is clearly visible. The corresponding Poincare map is
shown in the middle. The Poincare surface of section (torus-
0) in the resonant precessing frame is shown on the lower
part of the figure.
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the normalized longitudinal phase space at the top and
the corresponding Poincare surface of section in the res-
onant frame at the bottom. Note that the phase kick
took about 40—50 revolutions to reach its intended phase
kicked amplitude visible from Fig. 7. In this run, we used
the type II phase detector, which did not have the dead
area around 0 . However, this phase detector was limited
at +90 . The trajectory of beam bunch in the presence
of external rf phase modulation traced out a torus de-
termined by the initial phase-space coordinates of the
bunch. Since the torus, which passed through a fixed
set of initial phase-space coordinates, depended on the
rf phase modulation frequency, the measured tori would
depend on the driven frequency. Figure 8 displays a sam-
ple of invariant tori deduced from the experimental data.
The solid lines are invariant tori of the Hamiltonian in
Eq. (2.13), where the synchrotron frequency was fitted
to be about 535+3 Hz.

FIG. 6. The measured peak response amplitude and re-
sponse period are plotted as a function of the driving fre-

quency. Single particle tracking calculations are shown for
comparison.

resonant system.
The maximum amplitude response corresponds to the

rf modulation frequency where the torus-0 is also the
separatrix, which occurs at x = xo, i.e., the frequency
that g2 ——0 in Fig. 3. Thus the peak responses of both
the amplitude and the period will occur at the same mod-
ulation frequency (see Sec. IID) given by
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I I I I
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f, = 535 Hz ~ = 1.4S

(3.1)

with the peak phase amplitude ~P~
= 2 ~ (4a) ~ given

by Eq. (2.24). The peak response period is infinite when
the torus-0 is also the separatrix. This feature is visi-
ble from the single particle tracking calculation shown as
solid lines in Fig. 6.

It is worth pointing out that the above analytic solu-
tion is derived from the perturbative expansion in terms
of the action-angle variable which is limited to J & 2.
Therefore when the phase modulation amplitude is larger
than 5', particle motion cannot be described by the
method discussed in Sec. II at the modulation frequency
around v „ofEq. (3.1) because the maximum amplitude
will exceed this limit. At higher modulation amplitudes,
our numerical simulations show that particles can jump
outside the rf bucket (the stable region in the longitudinal
phase space) and then be recaptured in the same bucket
(6 = 1 rf system). When the bunch is moving outside
the rf bucket, beam decoherence also occurs. Some of
our data exhibited this decoherence at large modulation
amplitudes.

-2
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B. Invariant tori derived from experimental data

In one case, the beam was kicked with a phase shifter
of about 42 and the rf system was then modulated
with sinusiodal phase modulation with phase amplitude
a = 1.45 . Figure 7 shows the measured Poincare map of

FIG. 7. The Poincare map for the bunch experiencing si-
nusoidal rf phase modulation with amplitude 1.45 after an
initial phase kick of 42' is shown for f = 490 Hz in the
upper part of the figure. The corresponding Poincare surface
of section in the resonant frame is shown in the lower part of
the figure for comparison.
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0

f, = 535 H& f = 487.5 Hz

a = 1.45'
f =525Hz f = 764.66 Hz f, = 261 Hz

I
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f = 490 Hz'

E

0

f~ = 520 Hz f„,= 54O Hz

FIG. 9. The efFect of the rf phase modulation at the
third harmonic of the synchrotron frequency. Note here that
the synchrotron phase space in the resonant frame has three
SFP's and three UFP's besides the SFP at the origin.
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v 2J cos(g —v,„9)
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~27 cos(Q —L'~g)

FIG. 8. The Poincare surface of section at the resonant
frame for different modulation frequencies at a Axed initial
phase kick amplitude is shown in comparison with theoretical
prediction of the time independent Hamiltonian Eq. (2.13).

C. Experimental observation
at the third synchrotron harmonic

Prom the result of Sec. II, we notice that the phase
modulation at even multiples of synchrotron frequency
does not give rise to coherent parametric resonances. Our
experiemntal results verified indeed that there was no
apparant response at the second harmonic of the syn-
chrotron frequency. However, the theory indicates that
when the modulation frequency is equal to odd multiples
of the synchrotron &equency, the parametric resonance
becomes important. We have performed experimental
measurements for v 3v, .

Instead of measuring the transient solutions by using
our data acquisition system, we measured the steady-
state solution in this later experiment. The beam was in-
jected and modulated by the rf phase shifter in an 11-s cy-
cle time. The measurement was performed 7 s after injec-
tion. We chose the synchrotron frequency to be about 261
Hz with an rf phase modulation amplitude a of 6 . The
longitudinal beam distribution obtained &om the signal
of the BPM sum signal displayed on the oscilloscope trig-
gered at the rf frequency is shown in Fig. 9. Since the
damping exponential-folding time was about 0.34 s, suf-

ficient time was allowed for particles to damp into para-
metric resonant islands of the Hamiltonian. Therefore,
the beam was observed to split into beamlets as shown
in Fig. 9. The outer beamlets will circulate about the cen-
ter of the phase space at the frequency of v /3, which is
the synchrotron frequency at the island amplitude. De-
tailed information about these attractors (islands) could
be obtained by kicking a tightly bunched beamlet into
these resonance islands for Poincare map tracking. Such
a process becomes difIicult when the stable region of the
attractor is small. In such a situation, there is little in-
formation that can be gained from the digitized phase
information of our phase detector. We measured instead
the phase amplitude of attractors from the oscilloscope
trace of a BPM sum signal, the results of which are tab-
ulated in Table I.

The resonant Hamiltonian at the third synchrotron
harmonic is given by [10]

v v.J v, a(2J)s~2
V cos 3

3 16 48
(3.2)

QUFP

a2 + 64(l —"
) —a

(3.3)

TABLE I. The phase amplitude of outer beamlet mea-
sured from the oscilloscope.

f (Hz)

763.08
764.06

f. (Hz)

(P (deg)
(data)

41.0 + 2.0
39.0 + 2.0

260

36.9
35.9

gsFp (deg)
[Eq.(3.3)]

39.7
38.8

42.3
41.4

which has seven fixed points of which four are stable and
three are unstable. The phase amplitudes of these fixed
points are

a+ a2+ 64(l —"-
)
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0

I I I I I I I I I I I I I third synchrotron harmonic, the measured phase ampli-
tude of attractors agreed with the stable fixed points of
the resonance Hamiltonian. Better understanding of syn-
chrotron motion in circular accelerators will benefit the
design and operation of future storage rings and collid-
ers. These studies may also be useful in evaluating the
feasibility of using the rf noise for a superslow extraction
in high-energy colliders.
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APPENDIX: THE ACTION ANGLE
OF THE UNPERTURBED HAMILTONIAN

Let the Hamiltonian of Eq. (2.3) be divided into the un-
perturbed Hamiltonian Ho and the perturbation Hamil-
tonian Hi,

Ho ———v, b + 2v, sin
12' ' 2'

0~ ——v ab cos v 6t.

(A1)

(A2)

b
sin —= k sinn, —= k cos m,

2
'

2
(A3)

Here the unperturbed synchrotron phase-space coordi-
nates are relative to the fixed revolution frequency ref-
erence frame. However, the phase-space coordinates
(P, h) in Eq. (2.3) are referenced to the rf phase mod-
ulated coordinate system. When the amplitude of the rf
phase modulation is small, the reference frame with re-
spect to the revolution frequency and the reference frame
with respect to the rf wave are nearly identical, and the
method described here oQers the advantage of extending
the range of validity of the action-angle expansion.

Expressing the synchrotron coordinates in terms of the
parameters (k, tv)

IV. CONCLUSION

An experimental study of the rf phase modulation has
been carried out. When the phase-space motion is trans-
formed into the resonant rotating frame, the invariant
tori around fixed points of the Hamiltonian plays an es-
sential role in describing the dynamics of driven syn-
chrotron motion. The complicated phase-space motion is
replaced by a simple predictable invariant of the Hamil-
tonian How. The observed response amplitude and pe-
riod can then be calculated analytically based on the
time independent Hamiltonian. The remaining time de-
pendent components of the Hamiltonian are found to
create small winding motion around an invariant torus
dominantly at the &equency 2v . The orbit perturba-
tion arises mainly from the coherent perturbation of the
parametric resonance. We also observed that there was
no apparent response to the rf phase modulation at the
second harmonic of the synchrotron frequency. At the

one obtains Ho ——2v, k . Thus the action of the unper-
turbed Hamiltonian becomes

(A4)

where the complete elliptical functions are given by [9]

E(k) = 2

/1 —k2 sin tu dtv,

K(k) = 1
dtU

gl —k2 sin tv

IIo
OJ '2K' (A5)

The synchrotron tune is obtained from the Hamilton's
equation of motion, i.e. ,
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where we have used the identities to obtain

E(k) —K(k).

2k'"„„(,) = Z(k) —K(k),

2 dK(k)
dA. 2

J = 2k'
i
1+ —k'+ —k'+

8 64

k = — 1 ——J — JJ ( 1 1

2 i 16 256

(A7)

(A8)

The angle variable @, which is conjugate to the action J,
can be obtained by integrating Eq. (A5),

Thus the off-momentum variable b can be expressed as

(2J)s/2
2kcn(u~k) = (2J) / cos@+

64
cos 3$

v, (0 —Hp) = = 'tl —tLp,
b

where
'W

1
QtU,

gl —k2 sin uI
tUO 1

'tip
~

~dtU.
gl —k sin

Here the Jacobian elliptical function is then defined as

The task is to express the normalized off-momentum
coordinate b in the perturbed Hamiltonian Hi, in Fourier
harmonics of the conjugate angle @. Using Hamilton's
equation P = v, b, we can relate the orbital angle 0 to the
m parameter of Eq. (A3) as

+ cos5$+
4096

(A9)

$2
k = —+ sin

4 2
(Alo)

The action can be obtained from Eq. (A4) or Eq. (A7).
The synchrotron phase @ can be obtained from the ex-
pansion

Substituting the expansion of the elliptical cosine func-
tion into Eq. (A2), one obtains the Hamiltonian in terms
of action-angle variable similar to that of Eq. (2.8). The
leading order terms in these two expansions are identi-
cal. They begin to deviate from each other at the higher
order harmonics. The difference is small.

Using the elliptical functions for our data analysis, we
can calculate the A: value from the measured phase-space
coordinates (P, h) by using the relation of Eq. (A3),

sinus = sn(uik), cosuI = cn(u~k).

Thus the expansion of the 8 in Fourier harmonics of g is
equivalent to the expansion of cn(uik) in g = 2~. The
task can be achieved by using the formula of Eq. (16.23.2)
in Ref. [9], i.e. ,

vr 270——) sin 2ng.
j E 1+q2

(All)

2sr q"+'/2
cn(uik) = ),cos(2n+ 1)@,

p

where g is the synchrotron phase with the q parameter
given by

2

a = ]. 45' f = 490 Hz

e
— ~'/JI' +8

~
~

+84
~

k' / k2) (k2)
16 i16) i16)

f k25
+992

~

— +
(16&

/

I

I

with K'(k) = K(v 1 —k2). For synchrotron motion with
small action J ( 2, we use the power series expansion,
i.e.,

-2
-2

I I I I I I I I. . . , I

0 1

2 i2/ (2x4/
(1 x3x 5i+ i2x4x6)

fl x3x 5)'k'
E(k) = — 1 —

i
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~ ~ ~

2 i2) 1 (2x4x6) 5

~2j cos(Q —v~ 8)

FIG. 11. The Poincare map in the resonant precessing
frame obtained by using the elliptical function data analysis
is shown for an rf phase-modulation amplitud. e 1.45' at f
490 Hz following a 42 initial phase kick. The result should
be compared with that of Fig. 7 obtained from the Bessel
function data analysis of Sec. II.
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For synchrotron motion with a relatively large k, a better
approximation for the data analysis can be obtained us-

ing the polynomial approximation of Eqs. (17.3.34) and
(17.3.36) of Ref. [9] to evaluate K(k), E(k), and q func-
tions in order to obtain the action angle J and g. For
each data point (g'i, h), Eq. (A10) is used to calculate k.
The action J is then obtained from Eq. (A4). The cor-
responding angle variable @ is obtained from Eq. (All).
The Poincare map in the resonant frame is then given by

phase-space points in (v 2 1cos(rb —v 0), v 21sin(@-
v 0)) shown in Fig. 11 for the same data set as that of
Fig. 7. We found that the winding motion in the Poincare
map observed in Fig. 7 became less pronounced for large
amplitude oscillations shown in Fig. 11. This indicates
that the time independent Hamiltonian is suppressed in
the data analysis by using the elliptical functions. The
characteristic feature remains identical to the simpler ap-
proach discussed in Sec. II.
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