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Center-manifold theory for low-frequency excitations in magnetized plasmas
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For the dissipative trapped-ion mode, a simple one-dimensional nonlinear model equation, in-
cluding the efFects of instability, dissipation, and dispersion, is investigated. The center-manifold
theory is applied to the situation of more than one marginally stable mode, and the dynamics in the
neighborhood of the onset of instability is elucidated. Depending on the (three) relevant parameters,
stable solitary waves, mixed modes, heteroclinic orbits, etc. , can exist; a scenario for the nonlinear
dynamical behavior is developed. The bifurcation diagrams are drawn with quantitative predictions
in parameter space. An important conclusion is that the codimension-two analysis utilized can pre-
dict successive bifurcations which cannot be captured by simple analysis of one unstable mode. The
analytical calculations are checked by numerical simulations.

PACS number(s): 52.35.+z, 52.35.Mw, 47.20.Ky

I. INTRODUCTION

Many years ago [1,2] a nonlinear model of the colli-
sional trapped-ion mode was published. At that time,
nonlinear physics was not yet in a flourishing state, and
the mathematics needed for complicated nonlinear dy-
namics was not as developed as it is now. On this back-
ground, the simple-looking one-dimensional model [1,2]
was a significant contribution and it is one of the first
unstable, dissipative, and dispersive nonlinear systems
being proposed for wave-saturation processes in plasma
physics. Meanwhile it turned out that a great deal of fun-
damental physics and mathematics can be learned from
this model, which goes far beyond its initial intention.

The model was taken up by Kawahara and Toh
[3,4]. They noticed that for vanishing dispersion the
Kuramoto-Sivashinski equation [5—8] is obtained. It was
shown [9] that chaotic solutions can appear and that the
chaos consists of spatially localized structures. This has
some interesting consequences since it supports the idea
[10] that a few active modes on a low-dimensional chaotic
attractor of a partial difFerential equation are closely re-
lated to localized coherent structures and chaos may be
described with these structures in a dynamical sense [11].
In the strongly dispersive case, computer simulations
showed [3] that the growth of an initial perturbation is
followed by formation of a row of solitons, such that the
dispersive efFect brings a kind of organization into the
system that exhibits a turbulentlike behavior if the efFect
of dispersion is completely neglected. This aspect was
studied, mainly numerically, in a series of interesting pa-
pers by Kawahara and Toh [12—14], also when damping is
included. Two cases are of general interest: (i) solutions
near marginal stability and (ii) fully developed nonlinear
stages far from the onset of instability. In the latter case
(ii), also now, mainly numerical methods are available to
find out the dynamical behavior. In addition, techniques
related to (approximate) inertial manifolds are getting
more important for describing the global attractor (see,

for instance, the monograph of Temam [15]). On the
other hand, in the first case (i) during the past years
very efIicient mathematical tools have been developed,
one being the center-manifold theory [16]. Applications
to partial difFerential equations are discussed in Lanford
[17), Marsden and McCracken [18] and Carr [19]. Here
we apply this theory to the problem of saturation of the
dissipative trapped-ion mode.

To elucidate the plan and organization of this paper in
more detail let us start with the model equation

+p +oB, +pB, + B, +v&=0.
Ot Oy Oy By By

Here, all quantities are nondimensional and normal-
ized. The variable P measures the drift-wave potential,
y is the space coordinate in a slab model, and. t is the
time. The coefficient o. measures the unstable tendency
due to electron collisions in comparison to Landau damp-
ing (B P/By ), P is the dispersion coefficient, and v is a
damping coeFicient due to ion collisions. The coefficient
of the Landau term is normalized to one by appropri-
ate scaling of time t and potential P. All coefficients
n, P, and v are non-negative. Note that the dissipa-
tive trapped-ion mode is a drift wave driven unstable by
electron collisions. The wave is stabilized by ion colli-
sional damping and Landau damping due to both circu-
lating and trapped ions. In a series of papers [20—23] the
physics of this mode and its relevance for fusion devices
was discussed. Therefore we concentrate here more on its
mathematical properties which follow from Eq. (1). Note
also that the model (1) has more practical applications
in other disciplines [24,25].

An insight into the interesting behavior of (1) can be
obtained IIrom the linear dispersion relation, i.e., after
Fourier transforming the linearized equation (1) with P—:
0 as the equilibrium solution:

(u = —Pk„+i (—k„+nk„—v)

Here and in the following we take a unit cell of length
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2a with periodic boundary conditions. Linear growth can
occur for small wave numbers k&. A typical dependence
of the linear growth (or damping) rate p:= Im w is shown
in Fig. 1 for o; = 5.25 and v = 3.8. Small-amplitude
harmonic waves are growing for long wavelengths and
damped for short wavelengths. The energy input due to
self-excitation at small k„values is transferred through
mode coupling to small wavelengths and is expected to be
balanced by damping because of fourth-derivative dissi-
pation [3]. The existence of both, instability and dissipa-
tion, together with nonlinearity and dispersion, indicates
the possibility of existence of rows of stable pulses.

Here we are less interested in the variety of station-
ary solutions far from the onset of instability. Kawahara
and Toh [3,4,14] have already shown in the strongly dis-
persive case that numerically a row of pulses appears.
Approximately, these pulses can be found by perturba-
tion theory when the Korteweg —de Vries (KdV) terms
are considered to be dominant. A stability analysis fur-
ther shows that rows of pulses are stable when the dis-
tances between the pulses are not too large. Maxima and
minima of the pulse amplitudes were discussed and their
dependences on v have been reported [12]. In the disper-
sionless case (we have already mentioned its relation to
the Kuramoto-Sivashinski model) two-modes equilibria
and chaotic behavior have been demonstrated.

All the numerical investigations mentioned above can-
not, of course, claim completeness. Thus, for the latter
a systematic analytical procedure is necessary, which on
the other hand, when mathematical rigor is demanded,
will be practicable only in a small parameter regime. But
nevertheless we can address (and answer) the following
questions: (i) How do we understand the appearance of
chaos or coherence in the case P—:0 (dispersionless)?
(ii) Do we expect also chaos for large P? (iii) Are low-
dimensional models (ODE s) available which mimic cor-
rectly the dynamical behavior of the infinite-dimensional
(PDE) system (1)'? In contrast to previous investigations
we shall attack these problems close to the onset of insta-
bility for the cases when more (than one) unstable modes
are excited.

The paper is organized as follows. In Sec. II we de-
velop the general method and derive the amplitude equa-
tions. The dispersionless case (P = 0) is treated in
Sec. III whereas in Sec. IV specific aspects of the dis-

persion (P P 0) are discussed. The paper is concluded
by a short summary and discussion in Sec. V.

II. CENTER MANIFOLD THEORY FOR TWO
MARGINALLY STABLE WAVE NUMBERS

p~ l = siny, pl l = cosy,
2y, 0"=- 2y,

belonging to k„= 1 and k„= 2, respectively, are
marginally stable. Damping occurs for k„= 0 and
k„& 3.

We can introduce the four (real) amplitudes ai, n2, as,
and a4 for the four modes (3). In addition, we define

aq .——o. —o~, a6 .——v —v~ . (4)

In the following we treat P as a fixed parameter. The aim
is to derive a closed set of nonlinear amplitude equations

From the dispersion relation (2) [and Fig. 1] we can
recognize that many interesting cases are possible when
the stability of the P = 0 solution is considered: No, one,
a few, or many modes can be unstable. The first case
is trivial, the second one has either been done [14] (for
some special cases), or will follow from our calculations;
the case with two unstable k„values is already highly
nontrivial and will be investigated now. As a by-product
we shall gain also some neiv insight into the often treated
case of only one unstable mode Whe.reas an analysis
of one unstable mode can capture correctly only the first
bifurcation, the analysis of more than one marginally Sta-
ble mode al/ows the calculation of successive bifurcations
when one distinct parameter is varied and the others are
kept fixed This is. an important conclusion which follows
from the rather sophisticated mathematical treatment of
the more general case. We come back to this point at the
ends of Secs. III and IV.

The k„values in the dispersion relation (2) can take the
values k„= 0, 1, 2, ... because of periodic boundary con-
ditions with unit cells of lengths 2'. Let us now choose
o. = n = 5 and v = v = 4. Then the modes

which are valid in the neighborhood of the critical point
n„v, . [Note that we shall derive ordinary difFerential
equations (ODE's) and we abbreviate in the following
Oa /Ot = dn /dt = u .] We have f5 = fs = 0. The
other functions f are written as power series in a

f„= ) A„a +
1&m, &6

) A„"a o,„+ . . (6)
1&m&p&6

—30-

FIG. 1. The linear growth rate Imcu vs k„which follows
from (2) when a = 5.25 and v = 3.8.

The justification for this procedure is the center-manifold
theorem for 8ows [18] which proves that close to the criti-
cal point all trajectories converge to curves on the center
manifold. A short summary of the ideas used here is
presented in the Appendix.

Let us now proceed with the more or less technical
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steps. The dynamics on the center manifold is charac-
terized by ai, ..., as. Thus we can make the ansatz [26],
which is a direct generalization of the finite dimensional
case (see, e.g. , Carr [19]),

&(y t) = ). a-(t)&(")(y)
1&n&4

a-(t) -(t)4("-'(y) +

0 = ) vrA„"Pa„ap
1&n&p&6

+) ) aa„
1&m&4 1&n&4

+ ) a
1&m&4

dy(v)y(m) 4'

~y

+«P Idy (13)
( d2y(m)

1&n&m&6

wherethe (&) =21 newfunctionsP( ) and, ofcourse,
the next [(s) = 56 functions P( P), and so on, can be
chosen orthogonal to P( ),n = 1, ..., 4.

Introducing (7) into the PDE (1), we obtain to lowest
order (a )

0=
1&n&p&q&6

71 A anapaq

for 1 & r & 4. Collecting equal products of the am-
plitudes a we find the solutions for the coefficients A„p.
With these values we can solve for P( ). This procedure
can be continued, e.g. , in the next order we obtain

( ds()) ) A„a P(")+Pa„ (8) ) aaa„
1&m&4 1&n&p&6

Ai= —p, A2= p, As= —Sp, A4=8p. (9)

Introducing

d' d' d4

'dy2 dys dy4
(10)

the next order (a a ) yields in a similar way

1&n&m&6

gy(nm)

) a„(A"„a +A" a„)P("
l&p&6

) Anp y(m)

1&m&4 1&n&p&6

(n)+) a ay()
1&n&4

Here we have used Eqs. (5) and (6) to eliminate the time
derivatives. The 24 coefficients A are zero except y() y()y("~))g

dg
(14)

&p.4(y):= 4(y+ yo)

will fulfill (1), where yo is a real shift parameter. For P(y)
we made the ansatz (7), where the modes P(
and so on have to be determined from inhomogeneous
differential equations, e.g. , Eq. (11) for P( ). The in-
homogeneities contain (in nonlinear forms) the marginal
modes P('), p = 1, ..., 4. Thus the so-called slaved modes
can be written in symbolic forms as

and so on. Actually, when written explicitly we face a
huge amount of work [in second order we have to solve
for 84, in third order for 224 coefficients A„"', and so on].
Thus one should try to simplify by making use of sym-
metries.

Translational invariance of Eq. (1) allows us to shorten
the procedure considerably. If P(y) is a solution of
Eq. (1), also

f d2$(m)+a
~

a5 +as/( y(m. . . ) )(m. . .) (y(v)) (16)

In this equation we have to collect equal powers a„a„
the "coefficients" (being equated to zero) will determine
the unknown functions P( ) via ODE's. The latter con-
tain the difFerential operator 2. Taking into account the
(periodic) boundary conditions, we have to satisfy the
solvability conditions following from

y()gy(m')g f (p+y()) y(w)@ —o

for m, = 1, ..., 4. Because of the orthogonality of the
functions P( ) to all the functions P( "), the left-hand
side of Eq. (11) will not contribute and the right-hand
side of Eq. (11) leads to

e.g. , P( ) as solutions of (ll). Because of translational
invariance the following symmetry should hold:

)( " ) (y( )) )( " ) (g y( ))

4

p:= ) a„y(") = Irn (cie'"+ c2e'2") (18)

with the complex amplitudes cl .——al+ia2, c2 '.——a3+ia4.

To determine the consequences of this symmetry let us
combine the marginal modes to
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The (complex) amplitude equations [compare with (5)]
are

c„=g„(c„c2,a5, as), n = 1,2,

Re% = A»+ A» as+ A» a6 ——A2+ A2 as+ A2 a6

Im A = A2+ A2 as + A2 a6 —— —A» —A» as —A» a6,
pj —A3 + A3 as + A3 a6 ——A4 + A4 as + A4 a63 35 36 4 45 46

Imp = A4+ A4 as+ A4 a6 ———A3 —A3 as —A3 a6 )
3 35 36 4 45 46

a =0, m=56, (19)

and again, close to the marginal point (as ——as ——0)
the functions g» and g2 can be written as power series.
Without making use of the symmetry we have

g„= B„"~ ' c",F,c2c2, n = 1,2, (20)

Y„,p = Im (e'" cue'" + e* " c2e* ") (21)

we obtain from (17) [in its equivalent form for the com-
plex formulation]

e*""'g„( zc, c2, az, as) = g„(e'"'cz, e* "'c2, az, as) (22)

for n = 1, 2. The vector field (gq, g2) is thus equivariant
with respect to the operation

C») C2
2'JJo 2 2gp (23)

where the bar denotes the complex conjugate and each
p, q, r, or s can be 0,1,2, . . . . Now using the fact

Re'V = A3

Im'V = A4

ReF =A 1

ImE = A2

Re&= A 3

Im&= A 4

223= A3
223= A4

= A144
1
144= A2

A344
3

A344
4

A114 A224
4
A»4 — A»4

3 3
A233 A244

2 2

A233 A 244
1 1

A 334 A444
4 4
A334 A444

3 3 (26)

Note that the coeKcients A have already been eval-
uated; see Eq. (9). Previously we had to determine
(4 x 21=) 84 coeKcients A"' (since A ' = A'") for
m = 1, ..., 4 and r, s = 1, ..., 6. Now it is suKcient to de-
termine 12 independent ones (in second order). With re-
spect to the coefficients A"'& we have reduced the amount
from 224 to 8. This is a significant simplification.

A straightforward analysis leads to

Now, the most general vector fields being equivariant un-
der the operation (23) can be written in the form [26]

A = a, —as + iP, p, =- 4as —as + i8P,

= 1
2 )

(gx) g2) = (cxR + cxc2Q&~ c2P2 + cqQ2) (24) 3
4(20 —;9@))

where Pz, P2, Qq, and Q2 are polynomials in ~cq~, ~c2~

and Re (czc2); of course they can also depend on as and
a6.

Let us now proceed up to cubic order in the amplitudes.
The general form (19) then reduces to

~+I + Acl+2 + «i 1~ii + «i IC'I + O (l~l )

+2 V+2 + +&1 + ++2
I
+1

I
+ ~~~ I~~

I
+ o (l~l')

as = a6 = 0 . (25)

As mentioned already, the coefEcients A, p, Q, g, C, 1),f,
and T, in general, depend on as and a6. However, it
turns out that it is suFicient to take into account only
the following behaviors: (i) linear dependences of A and
p on as and as and (ii) evaluation of the other coefBcients
at as ——a6 ——0. These statements imply a scaling which
becomes obvious from the final equations.

Now comparing the system (25) with the set of equa-
tions (5) and (6), and making use of the relation (18) we
arrive at the following important simplifying expressions:

6=2D, 1
12(1S—'4P)

Combining all these results we obtain the relevant am-
plitude equations (correct up to the cubic order ~a~ ),

a, = (Re W) a, —(Im a) a,
+ (Res') a, [a,'+ a4,

a2 —(Re A) a2 + (Im A) aj

+ (Re F) a2 [as + a4

as ——(Re p, ) as —(Im p) a4

+ (Re17) as a, + a2]

+ (Re X) a, [a', + a', ]
a4 ——(Re p) a4 + (Im p, ) as

+ (Re 1)) a4 [a, + a2]

+ (Re X) a4 [as + a4]

+ (Re A) [alas + a2a4]
—(ImE) a2 [as+ a4

+ (Re A) [aqa4 —a2as]

+ (Im E) a, [as + a

+ (Re 8) a, —a2]
—(Im1)) a4 [a,'+ a,']
—(Im&) a4 [a', + a24]

+ 2 (Re 8) aga2

+ (Im 1)) a, [a', + a', ]
+(Im~) .[;+,'] . (28)

These are the basic equations for the marginally stable
modes. They show that all are coupled, and we have to
discuss in detail the consequences.
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III. DISPEKSIONLESS CASE (P = 0)

ag ——0) a2 ——0,
1f2 if2

G3 —cos(D) (
——), u4 = sin(8) (

——
) . (30)

This is what would be expected already from an analysis
of one unstable mode. The solution (30) is linearly stable
in the region II. This can be demonstrated by linearizing
the equations (29) with respect to the stationary solution
(30). The condition for stability (i.e. , the region II) is

For P = 0 the problem simplifies considerably. Due to
the mirror symmetry P(y) = P(—y), all coefficients (27)
become real, and the amplitude equations are

Ql ~Q1 + + [G1Q3 + Q2Q4] + ~Q1 [Q3 +
Q2 ——AQ2 + A [Qi Q4 —Q2Q3] + E'Q3 IQ3 + Q4]

Q3 ——PQ3 + 8 Qi —Qz + 'DQ3 Qi + Q2 + PQ3 Q3 + Q4],
2 2 2 2 2 2

Q4 ——~Q4 + 28QiQ3 + VQ4 [Qi + Qz + +Q4 [ 3 + 4]
(29)

Similar equations have been investigated for diferent
physical situations [26,27]. At (Qi, Q2, Q3, Q4, A, p)
(0, 0, 0, 0, 0, 0) we can have a codimension-two bifurca-
tion, i.e. , the bifurcation diagram has to be drawn in two-
dimensional parameter space. In Fig. 2, we have shown
the eight possible solutions in their relevant parameter
regions. First, the region A, p & 0 is trivial. Here, all the
modes are damped and we have the simple solution (I)
Qi ——Q2

——Q3 ——Q4 ——0. Already the next case (II) is
interesting. For p & 0 but A & 0, the mode with ky

——2
is linearly unstable, whereas the mode k„= 1 is linearly
damped. Saturation occurs for

incorrectly, the stability region of (30) would extend to
the whole region A & 0 and p & 0. However, the present
calculation shows that stability of the simple mode (30)
is only true if the growth (at k„= 2) is weaker than the
(heavy) damping of the neighboring mode (k„= 1). The
borderline is given by (31).

When the simple mode (30) becomes unstable, a quite
interesting scenario occurs. In the region III a mixed
mode (k„= 2 and k„= 1) appears, which for larger
p values becomes unstable. The new stable state is a
standing wave solution (IV). Particularly interesting is
the region V where chaos is possible. Before discussing
the latter let us have a look on the symmetry between the
ky —1 and ky: 2 modes. In the region VIII the mode
ky ——1 is unstable whereas the mode k„= 2 is stable.
However, the situation is not the same as in region II (of
course with k& ——2 and k&

——1 interchanged). A single
complex amplitude equation for the ky ——1 mode is not
appropriate in all of region VIII. That means that the
nonlinear description of an adjacent damped mode has
to be included to find the appropriate saturation. In the
bifurcation diagram, Fig. 2, this fact is expressed by the
observation that in region VIII a mixed mode (k„= 1
Qnd k„= 2) appears. Thus region VIII is comparable to
region III where a similar situation occurs. The difFer-
ences in the nonlinear treatments of the two wave number
modes k„= 1 and ky

——2 originates from the asymme-
try in the growth rate curve Fig. l. In the (A, )Q) plane
there exists a transition from the mixed mode (VIII) via
a traveling wave (VII) and a modulated wave (VI) to
chaos (V).

Let us now discuss the chaotic region V in more de-
tail. When the simple modes (30) are hyperbolic fixed
points, a heteroclinic connection can occur between two
solutions being oppositely situated on the "circle" with
radius ~c2~ = —p, /W. Let us consider the specific situa-
tion

If, for example, we would have reduced (29) by the Gd

hoc ansatz aq = a2 = 0 for A & 0, as it is often done (Qi, Qz, Q3, Q4)~ —
~

0, 0i + ——,0( )M

)
(32)

which is obtained from (30) for i) = 0 and vr. If we
linearize (29) with respect to (32), we find the eigenvalues

p
'gi = A ——)l+A

773 = —2p ) g4
——0. (33)

VII

FIG. 2. Existence and stability diagram of eight possible
solutions in the dispersionless case P ==0. In (I) only the triv-
ial solutions exists, whereas the other areas are the stability
regions of a simple mode (II), a mixed mode (III), a stand-
ing wave (IV), chaos (V), a modulated wave (VI), a traveling
wave (VII), and a mixed mode (VIII).

Armbruster, Guckenheimer, and Holmes [27] show for a
similar case that for g~ & 0 & g2 a heteroclinic connec-
tion exists between the (one-dimensional) unstable man-
ifold of (Qi, Q3, Q3, Q4)+ and the (two-dimensional) stable
manifold of (Qi, Q2, Q3, Q4), on a way lying first totally
in the (Qi, Q3) plane and going back in the (Q3, Q3) plane.
A sketch of this path is shown in Fig. 3. For the PDE (1)
it means that the solution oscillates (randomly in time)
between the two k„= 2 states (30) with i) = 0 and
8 = m, respectively. A typical result is shown in Fig. 4.
The same behavior is obtained &om the simplified ODE
model (29). We demonstrate this by plotting the solution
of (29) in the (Qi, Q2, Q3) space [see Fig. 5(a)] and com-
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a3 ble. For the general method we refer to the excellent and
comprehensive presentation of Arnold [28]. In the present
case one can prove that the second order terms on the
right-hand side of the system (25) can be removed while
the third order terms always survive. Instead of show-
ing the details of the strategy to remove the irrelevant
terms we present the result in the form of the nonlinear
transformation,

(Re A)
(Re p) + i6P

(Re 8)
(Re p) —2(Re A) + i6P ' '

FIG. 3. Sketch of the heteroclinic orbit connecting the +
states (32).

pare with the appropriate projection of the PDE solution
obtained &om direct numerical simulation; see Fig. 5(b).
As one can see, the agreement is excellent.

In closing this section we want to emphasize that for
the dispersionless case P—:0 the center-manifold theory
provides us with an eKcient and elegant method to cata-
log the complicated behavior of the PDE which otherwise
would be diKcult to disclose.

When using the new variables c~ and c2 instead of cq and
c2, the first two equations of (25) read

ci ——Aci + Ccilcil + fcilc2l + 0 (lcl )
c2 = uc2+&c2lcil +&c2lc21 + O (lcl )

the equations a5 ——a6 ——0 are unchanged. The new
coeKcients are

a3

IV. BIFURCATION PROPERTIES WITH
DISPERSION (P g 0)

0—

We have seen that in the dispersionless (P = 0) case
the system (28) simplifies considerably and it becomes
tractable. For P g 0 we intend to rewrite (28) in a more
transparent variant which allows some general conclu-
sions. We shall try to And coordinate transformations to
get the system in normal form which is as simple as possi-

0
al

24.75

a3

0

5.25

FIG. 4. Space-time plot of P as a solution of Eq. (1) when
we are in the region V of Fig. 2 for o. = 5.25, v = 3.8, and
P = 0. Note the random oscillations in time between oppo-
sitely phased k„= 2 modes.

al

FIG. 5. (a) Trajectory of the solution of the ODE's (29)
for the same parameters as in Fig. 4. (b) The corresponding
projection of the solution of the PDE (l).
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(Re A) (Re 8)
(Re p) + i6P '

2(Re A) (Re 8)
(Re p) —2(Re A) + i6P '

(Re A)2

(Re p) +. i6P '

(36)

One should note that at the marginal point Re p
Re A—:0 the transformation (34) becomes singular at
P = 0. That is the reason why we treat tiie cases P—:0
and P g 0 separately.

Now we can draw some general conclusions. Introduc-
ing

versus P. We clearly see that for P = 0 no stable attract-
ing regular solutions exists, and for finite P more and
more the situation depicted in Fig. 6 becomes typical.

V. SUMMARY AND OUTLOOK

In this paper we have investigated the nonlinear de-
velopment of a trapped particle instability. The trapped
particle mode is described by a self-consistently driven
and damped KdV-type equation. This equation looks
simple but contains a rich dynamics. The evolution in

Rep,

c =r e'+'
~ 1 c2 .= p2e (37)

the system (35) reads

e1 = tRBI)el + (Ret ) e, + (RBE) elec

', = (Re O) e. + (Re II) .', e, + (Re~) e,',
O, = (Im A) + (Im t-") e,' + (Im E) e, ,

tee = tim te i + (Im II) e, + (Im W) ee . (38)
ees coo.JJJ' OOOOIOIOIOOm

me eeoc eeoeoeo oyttRtte Re

Note that the equations for the magnitudes r and phases
p decouple. The first two equations of (38) represent a
closed two-dimensional system which only can have fixed
points and periodic orbits as attracting sets [29]. From
that we can conclude that the amplitudes aq, a2, a3, and
a4 cannot show for P g 0 (in the vicinity of the marginal
point Re tM = Re A = 0) any chaotic behavior.

When solving the amplitude equations (28) for P =
1.49 we obtain a behavior which is consistent with the
above general conclusion. The typical results are summa-
rized in Figs. 6(a)—6(c). We can distinguish three generic
types of attracting solutions: (a) A mixed mode (domi-
nated by k„= 1, but with additional contributions from
k„= 2) which exists in the shaded area of Fig. 6(a), but
is stable only in the darkly hatched area of Fig. 6(a);
(b) a single mode (k„= 2) for Re p, & 0 being stable
in the darkly hatched area shown in Fig. 6(b); and (c)
a mixed mode (dominated by k„= 2) existing in the
(Re A, Re@,) plane above the lower border of the marked
area of Fig. 6(c); it is stable in the darkly hatched area
of Fig. 6(c). When P:0 the point P moves closer to
the origin Re A = Re p = 0.

It is important to note that these predictions by the
center-manifold theory through ODE's are confirmed
by solutions of the PDE (I). In numerous runs we
have found the convincing agreement, but renounce the
demonstration by figures due to space limitation.

The dependence of the stability of the attracting so-
lutions on P is shown in Fig. 7 for the particular values
Re A = 0.45 and Re p = 1.2. The latter parameters cor-
respond to a point in the chaotic region V of Fig. 2. In
Fig. 7 the growth rates p of the solutions (a), (b), and (c),
corresponding to the cases (a)—(c) of Fig. 6, are drawn

1%% ee o

'- Rek,

(c) Rep,

t
jtj!

t
iti I

"
I'ji, i ijitr;ttj, !tj,:I,'jjji i

ijt "Itjt'ti ' jll'I'itj! 't:,„' ...tjtt;t, rttiiiit, ,
'ti t'. tifl

.

ij I, j I,
't

,t It

'
!ttt tttj

!jt'!tjj!II
'.

t t j!IIj t 'I
'I j'.t

I, t 'I
i),tt t I,' j t,t I 't !t'!

j,
't

t ", I!j; !'t I,' It!!I, I' t t t, It

' "I'e'' ,
''

t tii Itt't'I'hajj ttt;, lt 'tt Rjtt'jtj'Iitj 'tt t !jljitljtjt Iit t/&I tititilt

' It! tti
'
II II l Itjt'

,
'
tIt t t

'
j
I, i

t
,
' ' tilj t i!!!t, t

tt. I; t, t!Itt' tiij
I»' t, I!:;

Rek

FIG. 6. Typical attracting solutions for P g 0 (P 1.49).
(a) Existence region and stability region of a mixed mode,
dominated by k„= 1. (b) Existence and stability region of a
single mode with k„= 2. (c) Existence and stability region of
a mixed mode, dominated by A:y: 2 In all cases the modes
exist in the shaded areas, but are stable only in the darkly
hatched areas.
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these assumptions the center-manifold theorem provides
the following statement [30]:

There exists an invariant C" manifold W'
and aninvariant C" manifold W which are
tangent at (a, b) = (0, 0) to the eigenspaces
E' and E, respectively. The stable manifold
W' is unique but the center manifold W is
not necessarily unique.

FIG. 7. Growth rates p of (a) the mixed mode dominated
by A,'„= 1, (b) the single mode with k„= 2, and (c) the
mixed mode dominated by k„= 2 are shown vs the dispersion
parameter P, respectively.

time can be chaotic, but close to the onset of instabil-
ity it is determined by a few spatially coherent modes.
However, &om a systematic treatment with the center-
manifold theory very interesting conclusions result, e.g. ,
with respect to the number of modes and their interplay
in time. One interesting aspect is that the codimension-
two analysis can describe successive bifurcations of one
unstable mode which in some cases can lead to chaos in
time.

Although these findings have been obtained from a re-
stricted physical model, they have severe consequences
for more applied physical situations. We seem to be in
a position now to clarify some of the previous problems
where saturation by a simple one-envelope ansatz could
not be obtained. Works on multidimensional KdV equa-
tions are in progress.
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a = Ao + N (a, h(a) ), (A3)

Dh(a) [Au+ N(a, h(a))] = Bh(a) + M(a, k(o)) . (A4)
The solution h of Eq. (A4) can be approximated by a
power series. The ambiguity of the center manifold is
manifested by the fact that 6 is determined only modulo
a C nonanalytic function; so the power series approx-
imation of the function 6 is unique. The importance of
the center-manifold theory is reflected by the following
theorem [18]:

If there exists a neighborhood U' of (a, 6) =
(0, 0) on W', so that every trajectory start-
ing in U never leaves it, then there exists a
neighborhood U of (a, b) = (0, 0) in R x R
so that every trajectory starting in U con-
verges to a trajectory on the center-manifold.

Locally the center manifold W can be represented as a
graph,

W' = ((a, b) ~b = h(a)), h(0) = 0, Dh(0) = 0, (A2)

where the C" function h, is defined in a neighborhood
of the origin; Dh denotes the Jacobi matrix. Introducing
(A2) into Eq. (Al), we obtain

Therefore it is sufficient to discuss the dynamics on the
center manifold, described by Eq. (A3), and if all solu-
tions are bounded to some neighborhood of the origin,
then we have described all features of the asymptotic be-
havior of Eq. (Al). In order to fulfill the condition, the
function N(a, h(a)) has to be developed up to a suffi-
ciently high order. In the main part of this paper we
have seen that the third order is adequate.

Our problem contains parameters and is infinite di-
mensional. We have to generalize the theory presented
so far. We take into account the parameters by enlarging
Eq. (A1):
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APPENDIX: SUMMARY OF MATHEMATICAL
TOOLS

a = A(A)a + N(a, b, A),
6 = B(A)b+ M(n, b, A),
A=0, (A5)

where A = (a +i, ..., a +~) contains / parameters. The
center manifold now has dimension n+ l. The theory is
also valid in the infinite-dimensional case, if the spectrum
of the linear operator on the right-hand side of the equa-
tion (analogous to) (A5) can be split into two parts. The
first part contains a finite number of eigenvalues with real
parts equal to zero, the second part contains (an infinite
number of) eigenvalues with negative real parts which
are bounded away &om zero. In our case this condition
is fulfilled.

In this appendix we give a short review of the main
tools used from the center-manifold theory. First, con-
sider a system of ODE's,

a = Aa+ N(a, 6),
6 = Bb+ M(a, b), (A1)

describing the dynamics of the amplitudes a&, ..., a
and bi, ..., 6 of n linear marginal stable modes and
m linear stable modes, respectively [(ai, ... , a ) =:a,
(bi, ..., b~) =: b]. This implies that the real parts of the
eigenvalues of the matrix A vanish and the real parts
of the eigenvalues of the matrix B are negative. The
functions N(a, b), M(a, b) E C on the right-hand side
of Eq. (A1) represent the nonlinear terms Let E' .be
the n-dimensional (generalized) eigenspace of A and E'
the m-dimensional (generalized) eigenspace of B Under.
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