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Effective microscopic model for the dynamics of spreading

J. De Coninck, ' S. Hoorelbeke, ' M. P. Valignat, and A. M. Cazabat
Faculte des Sciences, Uniuersite de Mons-Hainaut, Place du Pare, 20, 7000 Mons, Belgium

Laboratoire de Physique de la Matiere Condensee, 11, College de France, Place Marcelin-Berthelot,
75231 Paris Cedex 05, France

(Received 22 July 1993)

An effective microscopic model for the dynamics of spreading is considered within the class of solid-
on-solid models. The dynamics is of Kawasaki type, which implies local conservation of matter. Experi-
mental results are presented and compared with microscopic simulations. The general agreement be-
tween the observations and this microscopic model is very satisfactory.

PACS number(s): 68.10.—m, 68.45.Gd, 05.50.+q

I. INTRODUCTION

The dynamics of spreading of a drop on top of a wall
has been a very active field of research during the last
years. Many recent experiments at the microscopic level
have revealed new phenomena as the appearance of a
monolayer in front of the drop [1,2], two diffusive re-
gimes for the radius of the drop as a function of the time
[3],stratified profiles [4], etc.

Several microscopic models have been considered
within the literature based on molecular [5,6] or
Kawasaki dynamics for a lattic.= gas [3]. Up to now, it
seems that the molecular-dynamical model, for which the
equations of motion are solved at each step for each par-
ticle, developed by Koplik and co-workers [5] and Abra-
ham and co-workers [6] does not lead to the recovery of
the main experimental observations possibly because of
the huge disproportion between the longitudinal scales
involved: in the model, thickness and longitudinal scales
are microscopic while in the experiment the longitudinal
scale is macroscopic. Kawasaki dynamics recovers the
experimental results but the great number of molecules
required for the numerical simulations does not allow a
more detailed study of the different parameters which ap-
pear within the problem.

It is therefore of interest to consider an effective model
providing a clear interpretation of the experimental ob-
servations in terms of microscopic considerations.

To reduce the greater number of degrees of freedom of
the problem, we consider an effective model of the inter-
face in terms of a solid-on-solid (SOS) approximation. A
few steps have already been performed in this direction
but without recovering the experimental observations:
SOS models and Langevin dynamics [7], SOS models and
Monte Carlo dynamics [8], etc. It is our aim here to de-
velop an approach of the SOS models using Monte Carlo
dynamics by imposing the local conservation of material.
In other words, we study here the Kawasaki dynamics
within SOS models.

Another advantage of the SOS model is that it allows
to study nonvolatile liquid drops: this model is thus
closer to the actual experiments than the "bulk models. "

Experiments deal with microdroplets of nonvolatile

liquids spreading spontaneously on smooth solid surfaces.
The liquids are nonvolatile at three dimensions, i.e., the
volume of the drops does not change with time, but also
at two dimensions. In these conditions, the drops take a
striking step-pyramidal shape [4], the height of each step
being the molecule size. The requirement of nonvolatility
at two dimensions ensures that the step edge is not
smoothed out by thermal motion. The droplet shape, i.e.,
the relative length of the successive steps, is largely con-
trolled by the behavior of the first monolayer. If this lay-
er develops rapidly, because of favorable energy balance
or especially low friction, the next layers will not grow:
all the drop will be emptied through the first layer. In
the opposite case, all the layers grow more or less at the
same rate, and up to seven steps are visible on the drop
profile [9].

The experimental setup is a modulated ellipsometer
with high lateral (30 pm) and thickness (0.2 A) resolution,
which has been described elsewhere [1,2]. The liquids are
light nonvolatile polydimethylsiloxanes (PDMS). Al-
though these molecules are (short) polymers, they mostly
behave like simple liquids in our investigations [2,4,9].
The successive steps are formed of molecules in a Aat
configuration, the thickness of the steps being the trans-
verse size of the monomer. No polymeric effects as en-
tanglements occur in our range of molecular weights.
The substrates are oxidized silicon wafers, which provide
smooth high-energy surfaces. In some cases, a low-
energy layer is grafted or deposited on the surface. Until
recently, we used layers which were less wettable than the
bare wafer, but still wettable by PDMS. This means that
the interaction between PDMS molecules and substrate
has a monotonous dependence in film thickness (i.e., in
distance to the substrate).

More recently, we have been interested in situations
where the thickness dependence of the interaction be-
tween liquid molecules and solid surface is not monoto-
nous: the long-range part of the interaction favors wet-
ting, while the short-range part opposes it. This is
achieved by grafting layers which are not wettable by
PDMS, while the bare substrate is wettable. If the graft-
ed layer is thick enough, or if its surface energy is very
low, the PDMS will not wet the grafted surface. A tran-
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sition takes place between a wetting situation (the bare
substrate wins) and a nonwetting one (the grafted layer
dominates). New features appear in the drop profile close
to the wetting transition: the first step becomes thicker
than the molecule size, and its thickness increases when
the transition is approached [10].

II. THE MODEL

Let us consider a drop of a liquid B in equilibrium with
a phase A on top of a substrate (wall: W). The corre-
sponding 3 /B interface may be described by a collection
of integers ho, h&, . . . , hL ~0, assuming no overhangs
(this is what is called a "SOS approximation"). A typical
configuration is given in Fig. 1.

The energetic cost of this interface is given by
I

L —1 L
H(ho& ' ' ' hL ) JAB & lh;+& h—; I+JAB & (1—

&h. Q)
i=O i=O

L L

BW X ( h, , O)+JAW g ~h. , O ~

i=O i=0
L —1

H(hQ hL)=JAB g lh;+i —h;I
i=0

L
+(JAw JBw —JAB)—X &h„o

i=O

+(JAB+JBw )L

where the different energetic constants J~z, Jz~, Jz~
have been introduced in Fig. 1. The associated free ener-
gies y ~~ and y ~~—yz~ are orientational dependent due
to the lattice approximation and are given by (more de-
tails are presented in the Appendix)

and

y „B(8=0)= ——lim —ln
1 . 1

AB p ho=0, h(&Z hL, , +Z, hl =0
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L m L
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hL CZ+

L
&&exp . P (JAW JBW JAB) y ~h Q+JABL
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We then let evolve the system according to a Monte
Carlo dynamics which preserves locally the volume of the
drop. At each step, we thus consider the possible
changes for i =0, 1,2, . . . , L —1:

(h, h +, )=(h;+l, h, +, —1)

(h;, h, +,)~ (h, h +. , )=(h;, h;+, )

(h, h +, )=(h; —l, h;+, +1) .

(4)

JAe

JAW

8
I I I

"BW
Wall

The transition probability is defined using the Boltzmann
factor corresponding to the Hamiltonian (1)

1

1 +e AH/kT

where k is the Boltzmann constant, T is the temperature

I

and

bH=H(h, h +, ) —H(h, , h;+, ) .

III. THE DYNAMICS

The choice of the dynamics remains on the Kawasaki
model and its convergence to equilibrium is discussed in
the Appendix.

As already pointed out in the presentation of the mod-
el, we have considered the Monte Carlo dynamics with a
local conservation of the volume applied to the shape of a
SOS drop. For a complete wetting regime, given by

y Aw YBw —y AB(8

where y~~ —y~~ represents the difference of wall free
energies and y AB(8=0) is the interfacial tension for a fiat
interface (8=0); we may thus study the time behavior of
the radius of the drop for different values of y „B( 8=0)
and different types of wall attractions contained in

y z~ —yz~. The general class of models we will consider
is given by the following Hamiltonian:

H(ho, . . . , hL)=J„Bg(lh, +, —h, l+1)

FICi. 1. A typical configuration showing the costs in energy:
Jzz for a horizontal or vertical portion of the 2/8 interface;
J&~ and Jz~, respectively, for the contact of 2 and B with the
wall. with

+JBWL+ g p(h;)
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/J(o) =J~ w JB—w J—~B

p(h;%0) =C(h; ),
where C(h;) describes the long-range part of the wall in-
teraction.

The connection with the disjoining pressure formalism
is given by the following development. Let us consider a
film of liquid B, of thickness h, in equilibrium with a
phase A on top of a substrate W. According to [11] we
have

1 . 1f= ——lim —lnpI. L
hpFZ

PH(hp . . hL)
~ ~ ~ e

h eZ+
L

terface, y „z(0=0) is the interfacial tension of the flat in-
terface (0=0), yBw is the free energy per unit area for
contact between the phase 8 and the wall W, and P (h) is
the "free energy" associated to the interaction between
the 2 /B and B/8'interfaces. Within our solid-on-solid
models, we have

f=)'Bw+r AB(~=0)+P(h» (9) (10)

where f is the free energy per unit area for the 2 /Win- which, by definition of H [Eq. (8)] can be rewritten as

1 . 1f=JBw —lim ——lnBW p ho=0 h1 EZ hL —1EZ, hL

exp —PJ~B y(lh;+, —h;I+1)

1 . 1+—lim —1Ilpl. mL hp=0 h1 'EZ hL —1EZ, hL =p

exp PJgB y ( Ih;+ i
—h; + 1)

1 . 1——lim —lnPr. L
ho ex+ h CZ+L

exp —PJ„Bg (Ih;+, —h, I+1)—P g)u(h;)

Since we do not take into account the internal structure of the liquid B, we have Jz& =yz&. This leads to

exp —PJ„Bg(Ih;+, —h;I+1)—Pgp(h;)
hp &Z+ hL &Z+ l l

f=yBw+y„B(0=0)——lim —ln

exp —PJ&B g( Ih,.+ &

—h, I+ 1)
hp:0 h

1
EZ hL —1EZ, hL

This can be written as

1 . 1 —Pp(h, )f=yen+yen(()=0) ——lim —ln ii e ' Y(h; )l,
l

BP(h)
Bh

1 a —Pp(h; )
lim —ln rie ' Y(h;)l . (14)

pBh I. mL

where the average ( ) has to be taken with respect to the
probability distribution induced by the Rat free interface.
The function Y(h, ) is a step function which takes the
value 1 if its argument is positive and 0 otherwise.

Then, comparing with (9), we find

1 . 1 —Pp(h, . )P(h)= ——lim —ln ii e ' Y(h;))pI. L

If we consider the complete wetting regime, it is ex-
pected that the most probable profile has to be a film of
uniform thickness h. Neglecting the Auctuations, we get

P(h)=tu(h) .

We also know [11]that

P(z)= f ~(h)dh,
Z

where m(h) is the disjoining pressure.
Then we have

Let us now consider different particular cases.

A. The contact wall potential

The contact wall model may be rewritten as

(u(0) =Jaw JBw JaB

p(1)=(M(2) =

For this model, we have performed several numerical
experiments using the same procedure. Starting from a
given initial drop of fixed volume, we have studied the
time evolution of the shape of the drop, i.e., as a function
of the number of Monte Carlo steps per site (MCS/site. )

Averages over the profiles corresponding to several ex-
periments lead to an estimate of the profile density of the
drop. For instance, we have reproduced in Fig. 2 the
density of the profile after different times. For this
short-range interaction model, we have observed the ex-



4552 De CONINCK, HOORELBEKE, VALIGNAT, AND CAZABAT 48

100—

80—
o+

60—

I j
i

l oj

f~
t
I

~ I

~ I

iI
I

40—

r~r e~r

~ \

I

-2
mm

~ '~t rat~ 0
~~( ~

= '00 1000 1180

FIG. 2. Time evolution of the averaged profile over five in-
dependent experiments of a drop with PJ„ii =4 and

p(Jqii —J~n 1=7, after (a) 6X 10 MCS/site, (b) 13X 106

MCS/site, and (c) 4X 10 MCS/site.

FIG. 4. Ellipsometric thickness profile of a PDMS drop
spreading on a cleaned bare wafer. The characteristics of the oil
are molecular weight M~ =9.7 kgmol ', viscosity 0.2 Pas, po-
lydispersity index 1.09, surface tension y» =21 mNm . The
top of the two first profiles is out of scale. First profile (dotted)
19 h after drop deposition, second profile (full line) 95 h, last
profile (dashed) 263 h. The step growing at the bottom of the

0

drop is a 7 A thick monolayer of molecules in a flat
configuration.

istence of a precursor film of one layer thickness. We
also observe in this case that the only layer which grows
is the first one, the length of which goes linearly with &t
as shown in Fig. 3.

The situation represented in Fig. 2 corresponds to the
case where the driving term for spreading acts only on
the first monolayer. This situation is recovered in experi-
ments when the first monolayer has a very strong interac-
tion with the surface. This is the case for the profile re-
ported in Fig. 4, where the PDMS drop spreads on a bare
wafer, cleaned by an oxygen fIow under uv illumination,
which provides a high-energy surface.

400

For different values of the microscopic couplings J~~
and J~~, Jz~, we have studied the diffusive constants D,
where D has been computed by a linear fitting of the ra-
dius of the first layer as a function of the square root of
the number of MCS/site. Out of these results, it seems
that the main parameter is the molecular-molecular in-
teraction typical of the viscosity of the Quid as observed
experimentally.

B. More general models

Let us now consider more general models to describe
the possible existence of a precursor film of two or three
layers thickness.

For that, we modify the Hamiltonian (8) by introduc-
ing a new wall interaction of the form

CD

300

CD

200

CD

100—

cg

.cP
P

0

1750 3500 5250 7000

(Time) t (MCS jsite)

FIG. 3. The time evolution of the length of the first layer for
the averaged profile of the SOS drop of Fig. 2.

p(1) =C, ,

p(2) =C2,

where
~ C, ~

)
~ Cz ~

)
~ C3 ~

) describe the long-range
part of the wall interaction with lim„C„=O in such a
way that limh „P(h)=0.

Clioosing, for instance, the wall interaction represented
in Fig. 5, the configuration which minimizes p(h) corre-
sponds to a profile with a precursor film of two layers
thickness. In Fig. 6, we observe this formation of a bi-
layer film which behaves diffusively as a function of the
time.

This is in agreement with the experimental observa-
tions reproduced in the following section and can be in-
terpreted as a result of a competition between a long-
range attraction and a short-range repulsion. It appears
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FIG. 6. Titne evolution of the profile of a drop with PJ„~=2,
P(J„ii —Jii~)=4 and for the potential of Fig. 5, after (a)
375 X 10 MCS/site, (b) 9 X 10 MCS/site, and (c) 15 X 10
MCS/site for 10 experiments.

10

FICx. 5. Wall interaction p and the corresponding disjoining
pressure ~ as a function of the height.

strates has to be in this range, if we want to cross the
transition by varying the chain length of the PDMS.
This can be achieved in the following two ways [10]:

(i) By grafting on the surface alkyl chains terminated
by methyl ends. For long enough chains, typically 12 or
16 carbons, critical surface tensions around 20.6 mN m
are obtained. We prepared such surfaces, according to
the procedure described by Brzoska [12].

(ii) By absorbing on the surface a layer of PDMS with a
given molecular weight. The critical surface tension of

that the different simulated profiles are very sensitive to
the choice of the wall interaction p. In particular, we can
also recover a step-pyramidal shape which is in agree-
ment with the experimental observations.

IV. EXPERIMENTAI. OBSERVATIONS

To investigate the vicinity of the wetting transition, we
have used two types of grafted layers, and on each sub-
strate a series of oils with different molecular weights. As
a matter of fact, the surface tension of PDMS increases
with the chain length of the polymer, at least for the
short chains. This allows us to cross the transition where

yAW t' BW AB
—y =y by combining changes in the surface

(y„II,—y~it, ) and in the oil (y„~). It is customary to in-
troduce here the common value of (y „ii,—y~ii, ) and y „~
at the transition, that is the critical surface tension y, of
the surface for the series of liquids investigated (here, the
various PDMS), which does not depend on the particular
oil in the series. If y AB & y„ the oil wets, if y AB & y„ it
does not.

The PDMS we use have molecular weights in the range
2 to 16 kg mol ', and surface tensions in the range 20.6
to 21.1 mN m '. The critical surface tension of the sub-
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FIG. 7. Ellipsometric thickness profile of a PDMS drop
spreading on a wafer bearing a grafted layer of met y-h 1-

terminated alkyl chains with 16 carbons. The characteristics of
the oil are: molecular weight Mp 2 kgmol ', viscosity 0.02
Pa s, polydispersity index 1.6, surface tension y» =20.6
mN m '. The top of the two first profiles is out of scale. First
profile (dotted) 2.5 h after drop deposition, second profile (full
light line) 20 h, third profile (dots) 44.5 h, last profile (full heavy
line) 93.3 h. The thickness of the step at the bottom of the drop
is 23 A (approximately three times the molecule size).
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is angular dependent due to the lattice approximation
and can be computed as
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y(O, P) = ——lim ln=(N, O, P),1 . cosO

Px- N
(15)
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FIG. 8. Ellipsometric thickness profile of a PDMS drop
spreading on a wafer bearing an anchored layer of hydroxyl-
terminated PDMS. The thickness of the absorbed layer is 70 A,
the molecular weight of this oil is 8 kgmol ' (viscosity 0.18
Pas, polydispersity index 1.14, surface tension 20.9 mNm ').
The characteristics of the oil in the drop are: molecular weight
6.7 kg mol, (viscosity 0.12 Pa s, polydispersity index 1.06, sur-
face tension yz&=20. 9 mNm '). The top of the two first
profiles is out of scale. First profile (dotted) 16 h after drop
deposition, second profile (full light line) 46 h, last profile (full

heavy line) 281 h. The thickness of the step at the bottom of the
0

drop is 42 A (approximately six times the molecule size).

the substrate is close to the surface tension of the grafted
PDMS: lighter oils will wet, because their surface tension
is lower than the one of the absorbed layer, the heavier
will not. In practice, we use hydroxyl-terminated PDMS
(PDMS-OH), because of the strong anchoring of the hy-
droxyl ends on the clean wafers, allowing to obtain well
defined layers [13].

Figures 7 and 8 provide examples of drop shapes close
to the wetting transition: the microscopic model ac-
counts satisfactory for the thick first step at the bottom
of the drop, the thickness of which diverges at the transi-
tion. Moreover, interaction parameters can easily be ad-
justed to mimic any particular drop shape. This model is
potentially more quantitative than the ones using approx-
imate formulae for the long-range part of the disjoining
pressure [10].

where =(N, O, p) is the partition function corresponding
to an interface with an angle 6I with respect to the hor-
izontal plane.

The corresponding equilibrium shape is given by the
Wulff construction modified by the interactions with the
wall. For completeness, let us here present the result.
The equilibrium shape of a drop, up to a dilatation, is
given by the Legendre transform of the interfacial tension
as a function of tanO [14].

The Laplace transform of:-(N, O, P) is defined by

1 . 1
y = ——lim lnB(N, —x,P) .Px- N

(17)

For the considered model defined in Eq. (1), this function
can be easily computed and the result is given by

Slilllp/ gsy=J„,——ln
P coshPJ„~—coshPx

To obtain the shape of the droplet, up to a dilatation, we
draw the crystal shape given by (18) and fix the wall at
height yz~ —y~~ from the plane of symmetry of the
crystal shape.

To compute the wall free energy y~~ —yz~, we use
the results of [15].

h(i)

B(N,x,P) = g e ~ ""=(N, O, P),
N tanOEZ

where the condition of a fixed slope is replaced by an
"external field" associated to the x coordinate.

Then the corresponding Legendre transform of y(O, p)
is given by the y coordinate
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APPENDIX: THE VALIDITY OF THE DYNAMICS

To check the consistency of the dynamics, we focus on
the partial wetting regime given by y ~ ~—y~~
(y„~(8=0). Indeed, for these conditions, we must re-
cover, at equilibrium, a drop of a certain shape on top of
the substrate. This shape is exactly computable from the
interfacial tension associated to the model. This tension

1800 2000 2200

FIG. 9. Equilibrium profile for partial wetting of a triangular
drop which volume = 20000 [PJ&~=2, P(J&~—JBp )=&].
The dashed line represents the corresponding Wulff shape.
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with H(ho, . . . , hL) defined in (1). This leads to

X~w=(J»+ Jaw)
where A, ,„ is the largest X solution of the following two
equations:

1 1w+ —=2(coshJ» ——sinhJ» ),

1 . 1
lim —ln

PL, ~I.
ho ez+

PH—( ( h,. ) )

(22)
—[J~w Jaw J~a ']

e —n, +e —J
1 —e '~m

where H( t h; ] ) has been defined in (20).

with a contact wall potential given by
L —1

i=O

1X~w=J»+Jaw ——»~ ..
The wall free energy y~~ being equal to the constant
J~~, we then have

L
+(J~w Jaw —J»)—X &h„o .

i=O
(20)

1
7'ww 'Yaw=J» ——ink, „ (24)

If we consider the Hamiltonian (1) we have here

1 . 1
y = ——lim —lnZAw p L L

where

pH(ho, . . . , hL )

L e
h eZ+ h ez+

0 L

(21)

with (18) and (24), we can draw the equilibrium shape of a
drop on the top of a wall in the partial wetting regime.

We have considered an initial triangular drop
(V=20000) which we let evolve as a function of the
number of Monte Carlo steps per site to the Wul6'shape.
Figure 9 represents the final profile after 100X 10
MCS/site. As can be easily seen, the agreement between
the simulated profile and the computed one (dashed line
in the figure) is quite satisfactory.
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