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Concentration dependence of long-time tails in colloidal suspensions
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Long-time tails in the velocity autocorrelation functions of colloidal particles immersed in Quid have
been predicted for some time, and recently observed in experiments using diffusing-wave spectroscopy.
We compute the linear effect of finite concentration of particles on the low-frequency (cu' ) correction to
the mobility of one colloidal particle, and hence the effect on the long-time tails, using a reAection
method. The results are consistent with general arguments for the form of long-time tails in an effective
medium.

PACS number(s): 82.70.Dd, 05.40.+j, 47.90.+a

INTRODUCTION

Colloidal particles moving under the action of random
thermal forces in viscous fluids exhibit Brownian motion,
at sufficiently long times. That is to say, the growth of
the mean-square position (5r (t) ) is diffusive and grows
as 6Dt, while the velocity autocorrelation function (VAF)
(v(t)u(0)) is often assumed to have only short-time
correlations well represented by a delta function.

At shorter times, however, the behavior of such col-
loidal particles is richer. Hinch [1] and others [2,3] have
shown theoretically that the VAF of single particles im-
mersed in Auid have long-time tails which decay as t
by relating the VAF to the mobility of the colloidal parti-
cle by Auctuation-dissipation arguments. The long-time
tails may be regarded as a result of the hydrodynamic
coupling of the colloidal particles to long-lived viscous
diffusion modes in the Auid.

Recently, experiments have been performed using
diffusing-wave spectroscopy [4,5] to probe early-time
behavior of (5r (t)) in colloidal suspensions of latex
spheres at a range of moderate concentrations and for
varying particle radii [6]. It was found that for times less
than the time r, =(a p/q)'~ for vorticity to diffuse a
distance of order the particle radius a, the random
motions of the particles are not measurably affected by
hydrodynamic couplings to other particles; the growth of
the mean-square displacement was independent of con-
centration. In this time regime, the Hinch results [1]pre-
dict a characteristic crossover from ballistic motion to-
wards diffusive behavior, which is observed [6]. At the
longest times, when the particle motion is simply
diffusive, a self-difFusion coefficient D(P) depending on
the volume fraction P of particles was obtained in good
agreement with predictions of Batchelor [7,8].

We are concerned with the concentration dependence
of the long-time tail in the VAF, or equivalently with the
power-law approach of ( 5r (t) ) to a diffusive law. Previ-
ous calculations [9] of mobility tensors in colloidal sus-
pensions have carried out expansions in (a/r) to third or-
der, which is not sufficient to see the effect of a second
particle on the mobility of a test particle (i.e., the
response of its velocity to an external force acting on it

alone).
In this paper, we employ a reflection method [10] ade-

quate to compute the first-order correction in volume
fraction of particles P to the O(co' ) term in the low-
frequency expansion of the self-mobility. We do this by
computing [in a certain approximation sufficient to ex-
tract the O(co' ) term; see below] the shift, due to the
presence of a sphere Sz, in the velocity of a sphere S„to
which an external oscillating force F is applied. We may
then average over the uniformly distributed locations of
S2 to get the desired O(P) correction. We neglect here
small effects on particle mobilities, etc. resulting from
small deviations of the particle distribution from random
isotropy caused by the drift of the test particles [7,8].

The reflection method consists of trying to find a Aow

field which may be added to that of a single oscillating
sphere SI at the origin, which satisfies the no-slip bound-
ary conditions on a second stress- and torque-free sphere
Sz at a position R. If the second sphere Sz is far away,
the unperturbed Aow from the first sphere S, near Sz
may be expanded in a Taylor series about the location R
of S2. At zero frequency, we know the flow u' '(r) falls
off as 1/r, the gradients V'U' '(r) as 1/r, and so forth.
Each successive term in the Taylor series evaluated on
the surface of S2 is smaller by a factor of a/R.

We truncate the series after the first gradient, and seek
a solution of the linearized incompressible Navier-Stokes
equations which, when added to the truncated series,
satisfies the no-slip and stress-free boundary conditions
on Sz. This flow perturbation v" '(r) is related to the flow

around a sphere in a simple shear flow, and falls off as
(a/r) . Back at Sl, we approximate this flow perturba-
tion as a uniform flow (we take no gradient terms in a
series about the location of S, ). This uniform-flow
correction at S| is then of order O(a/R); it gives no
change in the Auid stresses acting on S&, but alters its ve-

locity.
When this procedure is extended to finite frequency, an

additional length scale enters, namely the viscous wave
number k such that k =icop/g. As we shall consider
spheres at separations R large and small compared to
k ', we make no assumption about the magnitude of kR.
(Essentially, we assume k ' and R are comparable in
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magnitude, so that ka and a/R are equivalently small
quantities, as in Ref. [9].) We calculate the shift in mobil-
ity of the test sphere to order (a/R) with a coefficient
that is a function of kR.

For example, at finite frequency, the second sphere S2
does not quite follow the mean unperturbed Bow due to
the first sphere. Inertial terms of 0(k ) cause S2 to lag
this mean unperturbed fiow a bit (if the sphere is denser
than the fiuid). The result is that Sz moves relative to the
mean How from S&, which creates a Sow perturbation of
order 1/R back at S&. This gives a shift in the velocity
of S, of order 0 (k a /R ). We write this as
0 ( ( kR ) ( a /R ) ) and see that it contributes at the order
of our approximation.

Higher-order terms in a/R may be obtained in princi-
ple by considering both higher-order rejections, and
higher-order gradients in the series expansion of the How
from one sphere at the location of the other. Higher-
order terms in the volume fraction P of the spheres re-
quire considering more than two spheres in a sequence of
rejections. We shall not pursue such a systematic expan-
sion. Rather, we show in the Appendix that the 0(P)
correction to the 0(co' ) term in the self-mobility de-
pends only on the leading reflection, i.e., the
0(f (kR)/R ) term.

This simplification works even though the 0(P)
correction to the zero-frequency mobility has significant
contributions from pairs of spheres that are too close for
an expansion to some leading order in a/R to work. The
intuitive reason for this is that spheres much closer than
k to the test sphere alter its mobility as if the frequen-
cy were zero; only spheres at distances of order k ' con-
tribute to the 0 (k) mobility correction. At low frequen-
cies, k is large, and these contributing spheres are far
enough away from the test sphere to be treated by the
refiection method (expanding in a /R ).

Our result at 0 (P) for the amplitude of the long-time
tail in the VAF is the same as that for a single particle
immersed in fiuid with viscosity q(P)=go(1+5$/2) and
density p(P) =po[1+P(pz —

p&) /pI ]. We speculate in the
Conclusion that the concentration dependence of the
long-time tail may be given at higher concentration in
terms of the properties of the effective medium, again be-
cause only distant (R -k ') particles alter the 0(k) mo-
bility correction. At such distances, the surrounding
Quid looks like an effective medium.

CALCULATION

The linearized Navier-Stokes equation for an in-
compressible fiuid with velocity v(r) and pressure p(r)
may be written

(k +V )v(r)=Vp(r), V u=0, k =iso . (1)

(We have chosen units in which the fiuid density, parti-
cle radius, and fiuid viscosity are equal to unity. ) We
construct solutions appropriate for spherical boundaries
with the scalar wave solution f (r;k) =exp(ikr)/r. Using
linearity of the velocity field in the velocity u of the test
sphere S, (located at the origin), the general homogenous
solution of Eq. (1) for the sphere S, oscillating with ve-
locity u (and frequency co) may be written

p(r)=Cu V(1/r),

leading to a particular solution of Eq. (1),
u (r) =Vp (r)/k

(3)

Enforcing incompressibility leads to 3 =8k; enforc-
ing the no-slip boundary condition v' '=u on r =1 leads
to

2 =
—,'e '", C= —

—,'(1 ik ——k /3) . (5)

The force computed from Fh„z= Ja hdS, . with stress
tensor o.= Vv+(Vv}~—pl, leads to the well-known re-
sult

Fz„d(k)= —6mu (1 ik ——k /9) .

Now consider the second sphere S2, at location R; near
it, the unperturbed Aow v' ' from the first sphere S, may
be expanded in a Taylor series,

v '(r)=v '(R)+EJ(r —R) + (7)

where E/=V'Ju, ' '(R) is the velocity gradient (unsym-
metrized) at R. We now construct the fiow field u

' "
which satisfies Eq. (1) and no-slip, force-free boundary
conditions on S2 when added to the fiow Eq. (7). We do
this in two parts; first, we consider the How perturbation
v'" which results from the presence of the gradient flow
and the balance of torques on S2. Then we shall consider
the balance of forces on S2 and the resulting motion of S2
relative to the surrounding mean How, which generates
an additional Bow v' '.

The flow v'" is determined in a manner similar to that
used in computing v' '. We write the general horno-
genous and particular solutions of Eq. (1}linear in E;J in
terms of the scalar wave solution f (r;k) The ho.mo-
genous solution is

v "(r)=GE~/VJ f (r;k)+GEJ;V f (r;k)

+HE&I, V~VI, V,f(r;k),
with particular solution

u,.'"(r)=V;p (r)/k, p (r) =JE, V;V (1/r) . ".(9)

Incompressibility leads to the condition 6+6=Hk .
Constraining the velocity on the surface of S2 to be that
of a rotating sphere with its angular velocity in the ap-
propriate direction leads to

5(1—ik —2k /5+ik /1
3(1 ik)— 3(1—ik)

(10)

By symmetry, there is no hydrodynamic force on S2
from the gradient Aow; we compute the torque in the usu-
al way, and enforce the rotational equation of motion to
obtain an equation for G —6, evaluated at r = 1,

(G —G)(f"+f'/r) = —(icop/5)[1+(G —G)f'] .

u' '(r)= Auf (r;k)+Bu.VVf (r;k),
with the general solution for the pressure (which satisfies
the Laplace equation) being
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V, V Vkf (r. ;k)=a(r;k)n;n nk

+b (r;k)(5~nk+5;I, nJ+5/kn; ), (12)

with n; the radial unit vector, and a(r;k) and b(r;k)
defined by

(Here p is the mass density of the sphere, and primes indi-
cate differentiation with respect to r). When G —G=O
(e.g., at co=0), we have the sphere S2 rotating with pre-
cisely the angular velocity determined by the shear veloc-
ity of the flow of S, .

Now we evaluate the gradients E;. at sphere S2 from
the flow v' ', and the resulting flow v"' back at sphere
S„in more detail. It is convenient to expand the third-
order gradient off (r;k) as follows: +Hb(r;k)+Jb(r;0)lk ]

(E, —E,")—m [—,'(G —G)f'(r;k)]

Ekm—, m mk[Ha(r;k)+Pa(r;0)/k ], (14)

where m; is the unit vector pointing from S& to S2. We
evaluate the gradient factors using the Row v' ' of Eq. (2)
as

a (r; k) = —15 ' (1 ik—r —2k r /5+ik r /15),f (r;k)
r 3

(13)
b(r;k)= ' (1 ik—r —k r /3) .3 (r;k)

r3

Then we may write

v,
'"= (E—; +E. , )m [—,'(G+G)f'(r;k)

(EJ +El, )mj =u; [ Af'(r;k)+2[Bb(r;k)+Cb(r;0)/k ]J

+uimim; [ Af'(r;k)+4[Bb (r;k)+Cb(r;0)/k ]+2[Ba(r;k)+Ca (r;0)/k ]],
(E~I EJ; )mJ = A—f '(r; k)[u; uIm—im; ], (15)

E kmimk=ulmI I Af'(r;k)+3[Bb(r;k)+Cb(r;0)lk ]+[Ba(r;k)+Ca(r;0)/k ] j .

The change v'"(0) in the velocity u of Si must be averaged over the direction and position of the second sphere S2 to
obtain the shift in the mobility 5p=5v IF. Observe that (G —G)f '(r;k) is 0 (k IR ) and (Ei EJ, )mi is O{(a—/R) ).
Thus, we drop the second term of Eq. (14), as it is of order (kR) /R . We then average the velocity correction at the
location of the sphere Si, denoted v"'(0), over the direction m;, and expand to leading (fourth) order in a /R where re-
quired, to obtain

T

& vI "(O) )m, =u, (1 ik) 75—+R4 x4
150 150i 60
x4 x3 x2

10i
x

e lx

75
x4

150i
x

135 + 70i 45 . 5x
51x ex2 x 2

(16)

where x =kR.
Finally, we integrate over the distance R between S&

and S2, and multiply by the concentration c of spheres
(/ =4m.c/3 since a = 1) to obtain, to order k,

&v "(0))= —u;(1 ik)P +— +0(k )

Recall that at finite frequency, the second sphere does
not quite follow the mean flow generated by the motion
of the first sphere; this relative motion of S2 to the mean
background Qow near it generates another flow perturba-
tion back at S, which contributes to the velocity shift of
S&. The balance of forces on Sz reads

icomu2=—Fh d
= —6m(1 —ik)[u2 —v' '(R)]

absence of S2 would accelerate the fluid as its uniform ve-
locity oscillates. ) Hence we have

5u2=—u2 —v' '(R)= —95pk v' '(R)(l+ik),

where 5p=p —1 is the difference in mass density of the
sphere and Quid, relative to the fluid density.

This relative motion induces a flow at S, of the form

v,
' '= A (5u2), f (r; k)+B (5u2), V(V,f (r;k)

+Ck 3(5u2), V, V, (1/r),
with A, B,C as for the flow v' '. Evaluating the deriva-
tives and substituting for 5u2 in terms of v' ', then
averaging over the direction of m; as before, gives

&5v '(O))
—4vricov' i(R), (18)

where m =4mp/3 is the mass of the sphere. (The first
term on the right-hand side is the drag [to 0 (k) ] on Sz as
it moves relative to the Bow v' '(R). The second term is
the force due to the pressure gradient at S2, which in the

=u; [2+( 4+4ix+4x—/3)e'5p(1 —ik)
r4x2

+(2 4ix —lox —/3+4ix /3

+2x /3)e '"] . (21)
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Again we average over the distance between the two
spheres and multiply by concentration to obtain

(5v,' '(0)) =u;(1 —ik) +O(k ) . (22)

DISCUSSION

The velocity autocorr elation function
S;i(t)= (v;(t)vi(0) ) is obtained from a fiuctuation-
dissipation relation [1]of the form

S,, (t) = T5,,p(t), (24)

where P(t) is the Fourier transform of p([ice]' ) The.
long-time tail in S (t) comes from the low-frequency limit
of p obtained in Eq. (23); the power-law decay is t be-
cause the low-frequency correction in p is O(ai' ). The
power-law behavior is not cut off, nor is the exponent
changed, by the presence of other colloidal particles.

We may de6ne a time-dependent diffusion coefficient
D (t) by the slope of the mean-square displacement as a
function of time 6D (t)=B(5r (t) ) IBt. Using the VAF
and the Auctuation-dissipation relation, this gives

D(t)=D 2 f d—t'p(t') . (25)

The limiting value D of D (t) for times long compared to
r, (and short compared to the time between collisions [8])
is just p(0); performing the transform in the long-time
limit yields

p( t) =
[ T I(12m. pa ) ] [r((t ) lt]

D (t) =D(p) [1 [47(p)l~t]'"]-,
D (P) =(6m. ) '[1—15$/8],
~($)=r, [1—(15/4 —5p)P] .

(26)

The above result for D (p) from a single-reflection calcu-
lation is rather close to the result D (P)
=(6m) '(1 —1.83$) of Ref. [7] (15/8=1.875).

The result, Eqs. (23) and (26), for the concentration
dependence of the long-time tail agrees with the following
argument. With the factors of viscosity and particle ra-
dius made explicit, the result for D(t) at /=0 is
D(t)=(6m ilo)a'[1 —(4a pal~riot)' ), where go and po
are the solvent viscosity and density. If we now replace

Now the hydrodynamic force on S& is just
F; = —6m.u;(I —ik) to O(k} [we are not concerned with
O(k } corrections to the mobility, so we may neglect
inertial terms on S, ]. The mobility shift is given by the
sum of the velocity shifts at fixed external force (which
balances the hydrodynamic force). So we replace
u, (1 ik—) in Eqs. (17) and (22) with F;/(—6m); then we
obtain our Anal result for the mobility to linear order in
concentration P and viscous wave number k,

p(k) =(u+ &5v'")+ &5v"') }/F
1 [(1—15$/8)+ik (1—[15/4 5pl2)—P)] .

6m.

(23)

with the Einstein result for suspension viscosity
71($)=go[1+5//2+O(P )] and p with the solution den-
sity p(P) =p(1+$5p), the overall coefficient of the t
term in D (t) would be proportional to
( I+$5p)'~ ( I+5//2) =(1—[15/4 —5p/2]P), as it is
in Eq. (26).

It may seem surprising that macroscopic parameters
il(p) and p(p) could appear in the context of the long-
time tail in the VAF of a small particle. After all, the
self-diffusion of a particle in the suspension is not given
by D(P)= 1l[6vrg(P)a] T.he difference between these
two quantities is (as discussed in the Introduction and
Appendix) that while D (P) depends strongly on nearby
pairs of particles, the long-time tail of a test particle is
affected mainly by distant particles. The self-diffusion of
a large sphere of radius A in the suspension, for which
the characteristic length scale of Qow (the sphere radius}
is much larger than the particles in the suspension, is
indeed given by D(P)=1/[6m'(P)a]. For such a large-
scale Aow relative to the particle size, the suspension
looks like an effective medium.

Likewise, the O(P) calculation explicitly shows that
distant particles affect the frequency dependence of the
mobility of a test particle by responding to the How gra-
dients set up by the moving test particle. Since their
behavior in a Aow gradient is directly related to the mac-
roscopic suspension viscosity, it is not surprising that the
suspension viscosity should enter into the result for the
long-time tail. We may speculate that the long-tine tail
will have a coeflicient proportional to p(P)' g(P) at
higher concentrations as well.

In fact, a rather general argument can be given to pre-
dict the form of the long-time tail in the VAF, on the
basis of momentum conservation. The VAF has been
shown in Ref. [1] to be just the response of the system to
an initial condition in which the sphere is moving with a
thermal initial velocity, v —Tlm —T/(pa ) (this is a
consequence of the Quctuation-dissipation theorem). In
their original discussion of long-time tails in simple Auids,
Alder and Wainwright [2] pointed out that since momen-
tum is conserved and propagates diffusively a length
(rit/p)'~ in time t, the momentum originally confined to
a volume of order a is spread at long times over a
volume (re/p) ~ . Hence the velocity of the sphere
should be reduced from its initial value by a factor
a (rit lp), and the VAF should be of order
Tp' (hatt)

~ at late times.
This result should hold even in a concentrated suspen-

sion, with q and p replaced by the macroscopic suspen-
sion viscosity g(P) and density p(P}, when momentum
has diffused a sufficient distance from the sphere. For a
single sphere this is clearly a sphere radius (the charac-
teristic time is r, ); for a concentrated suspension in
which the sphere spacing is comparable to the sphere ra-
dius, the same length and time scales must emerge.

Note that the long-time tail of the VAF, in Eq. (26), is
independent of sphere radius, since (r, )

~

=(pa /g) ~ ~ a . This suggests we may think of apply-
ing Eq. (26) either to large spherical regions of Quid, or to
rather small particles, down to nearly molecular size.
Indeed, Alder and Wainwright were concerned with the
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VAF not of colloidal particles but molecules in a single-
component (simulated, two-dimensional) fiuid.

Thus it is noteworthy that in simple incompressible,
viscous Auids described by linearized hydrodynamics
with Gaussian fluctuations, the autocorrelation function
of the space- and time-dependent velocity field,
(v(rt)v(00)), also has long-time tails. For r ((alt/p it
is easy to show [11] that ( v;(rt)vi(00) )
=[T/(12m p)](gt/p) 5;, which agrees exactly with
Eq. (26). In this context, the long-time tails arise because
the VAF of nearby points in space has contributions from
shear modes with long wavelengths and hence long decay
times.

Again, we may think of the velocity field autocorrela-
tion function of a suspension, and replace g and p by
g(P) and p(P) in the above expression. The connections
between long-time tails in simple Auids and colloidal sus-
pensions are then the following: (i) at sufficiently long
times, the momentum diffusing away from a colloidal
particle moving in a suspension behaves as if it were in an
effective medium; (ii) the long-time tail in the VAF of a
colloidal particle is independent of its size, suggesting
that the description may apply to rather small particles
( = molecules); and (iii) a continuum calculation of the
correlation function of a simple Quid at nearby points and
long-time delays is consistent with the long-time tail of
spheres moving in such a Quid.

The arguments presented in the Appendix suggest that
the present calculation of the linear dependence on P of
the long-time tail amplitude is exact, despite the fact that
a far-field expansion was used to calculate it. In the limit
of low frequencies, only far-away spheres respond to the
motion of a driven sphere in a way different from their
zero-frequency response, and so a far-field expansion is
valid for the present calculation, even though it is not
valid, e.g. , for computing the zero-frequency mobility of a
test sphere in a suspension [7]. The present calculation of
concentration-dependent long-time tails may be com-
pared both to a recent calculation of mobilities in dilute
colloidal suspensions [12], and to recent experiments [6]
that employ diffusing-wave spectroscopy [4,5] to deter-
mine the mean-square displacement (r (t)) of particles
in a colloidal suspension.

The experiments of Ref. [6] were performed using
micrometer-sized polystyrene latex particles, with volume
fractions ranging from /=0. 02 to 0.3. The experimental
results for D(t) cover a temporal range of roughly two
decades above and one decade below ~, . Data at both
the earliest and latest times is less reliable, because of
poor counting statistics and baseline subtraction uncer-
tainties, respectively. The data appear to collapse for all
volume fractions, over the entire temporal range, with a
scaling like Eq. (26), except that the characteristic time
r(P) is reported to be consistent with
r(P)=a po/q(P)=r, [1—5$/2+O(P )], rather than the
expression in Eq. (26). The master curve is in good agree-
ment with the calculated D (t) curve for a single sphere in
fiuid, based on the results of Ref. [1]for the VAF.

It is worth noting that the best data of the experiments
correspond to intermediate times, at which D(i) is not
well described simply in terms of a power-law correction
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APPENDIX

Consider the shift in velocity of a test sphere S& at
fixed external force due to the presence of a second
sphere S2 at a distance r. When expanded in powers of
a/r and averaged over the direction from S, to S2, we
have some expression

5v(k)=4ncu f dr r g (a/r)"f„(kr) .
2Q n=4

(A 1)

[We have computed explicitly f4(kr). ] It appears that
for kr ~0, all the f„(kr) begin as f„(0)
+ —,'f„"(0)(kr) + . . Then for n )4, the expansion to
O (k ) may be carried out under the integral sign without
creating divergent integrals (up to the logarithmic diver-
gence for n =5). Hence, for n )4, the small-k limit of
the contributions to 5v begins at 0 (k ).

Now consider n =4. We cannot expand to O(k ) as
we did for n & 4; we may instead rescale the integral as

k f dy y [fz(y) —fz(0)]+—,'f2(0)a' . (A2)
2ka

to the long-time value. It is thus possible that the charac-
teristic time ~(P) extracted by collapsing the data is
biased by early times, at which the data should not scale
the same way as at long times.

Clercx and Schram [12] compute the mobility matrix
by expanding the Qow field around the two particles in
vector spherical harmonics centered on the two particles,
relating the two sets of basis functions, and enforcing the
boundary conditions on the spheres to some finite order
in the expansion. The result is a numerical calculation of
the mobility p(co), which the authors present (after nu-
merical Fourier transforms, etc. ) in terms of D ( t )
=B(r (t))/dt. Analytical results for the concentration
dependence of the long-time tail are not presented.

Numerical results are given in Ref. [12] for
/=0, 0. 1,0.2, 0.3, and mass density ratios 0.1,0.2, 1,5, 10.
The numerical results cannot be collapsed into a single
master curve throughout the temporal range, in contrast
to the experimental data. In particular, for volume frac-
tion /=0. 3, D(t) is not monotonic increasing (which
may be the result of difticulties with the numerical
Fourier transform [12]). We find that the portion of the
D(t) data reasonably well described by a long-time tail
(sufficiently late times) appears to scale as in Eq. (26), for
all mass density ratios presented, and for the lower con-
centrations (P ~ 0.2). Thus the two theoretical ap-
proaches seem consistent where both are expected to ap-
ply, but neither appears to agree with the experimental
data obtained so far. It would be interesting to pursue
experiments in which the particles are not so closely den-
sity matched, as in Ref. [6] to study the experimental
dependence on 6p of the long-time tail.
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5U(k)=4srcuk f dy y [f2(y) —fz(0) j .
0

(A3)

We may ask about the self-consistency of keeping only
the (a/r) term in another way; namely, where in the
domain of integration does the largest contribution to

Now f2(y) —fz(0) goes as —,'fz'(0)y for small y, so we

may take the lower limit of integration to zero without
trouble. Hence the O(k) contribution to 5v (k) is

5U(k) come from?
For small k, we may choose a length L much greater

than a but much less than k '; for r (L, we may expand
f2(kr). The domain of integration f 2 gives only con-
stant and O(k ) contributions to the integral. Beyond
r =L, expansions in a!r are justified. The 0 (k) contribu-
tion to Eq. (29) comes from a range of integration rough-

ly J z, as we anticipated in the Introduction.
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