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Pretransitional orientational ordering of rigid-rod polymers in shear How
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We present the results of our experimental and theoretical study of the orientational ordering of
rigid-rod-like polymers in the presence of shear How. Shear-induced birefringence was measured to
determine the dependence of the orientational order parameter S = (3 cos 0—1 ) /2 on the shear rate for
rod volume fractions below the critical value at which spontaneous ordering at zero shear appears. Ex-
perimental results are discussed in terms of an approximate solution of the rotational diffusion equation
in the presence of shear Aow based on the construction of the effective interaction energy.

PACS number(s): 82.35.+t

I. INTRODUCTION

Recently there has been increasing interest in the prob-
lem of the ordering of the rigid-rod particles in Aow fields
due to its similarity with other problems in nonequilibri-
um phase transitions [1—5]. It is known that orientation-
al order of concentrated rigid-rod suspensions can occur
spontaneously due to preferential packing. Near the crit-
ical concentration one also could expect a drastic effect of
the Aow on the particle alignment, especially at low shear
rates where there exists an intriguing cooperative effect
between the interparticle interaction (excluded-volume
effect) and their interaction with shear liow.

Although the number of theoretical works devoted to
this subject continues to increase [6—8], until now no ex-
perimental attempts were made to study the effect of the
shear Aow on the rigid-rod polymeric particles, where
contrary to thermotropic liquid crystals [9] the particle
density rather than temperature is the driving parameter
of the phase transition.

The effect of shear Aow on the ordering of the rigid-rod
suspension is currently less understood than that for
elongational Aow. The latter can be described by the po-
tential field that apparently leads to the similarity of the
elongational-flow-induced phase transition with the effect
of the magnetic or electric field.

For shear Aow, there is no simple analytical steady-
state solution of kinetic equations that describes the prob-
ability distribution of the rod alignment. Because of this,
Doi and Edwards [3] (DE) proposed an approach based
on the nonequilibrium kinetic equations for the moments
of probability distribution. Using a decoupling approxi-
mation, they solved these equations and found the
steady-state orientational order parameter. However,
comparison of the decoupling approximation with the ex-
act steady-state solution for elongational Aow clearly
shows that its accuracy is limited. In particular, the
decoupling approximation cannot reproduce even the
mean-field value of the critical concentration of the rods
which characterizes their spontaneous ordering in the ab-
sence of the Aow.

In the present paper we report the results of experi-
mental and theoretical studies of the effect of shear Aow

on the orientational ordering of monodispersed rigid
polytetrafiuoroethylene (PTFE) rod suspensions. We
measured shear-induced birefringence, which is propor-
tional to the orientational order parameter. The experi-
mental results are compared with the theory based on the
approximate solution of the steady-state diffusion equa-
tion in the presence of shear Aow, which predicts the
shear-induced nonequilibrium phase transition from
"paranematic" state to nematic state, characterized by
different values of orientational order parameters.

II. EXPERIMENT

We use rodlike PTFE rigid particles in aqueous
suspension (Ausimont Group, Montedison Specialty
Chemicals, NJ) with L =(0.39+0.08)%%uo pm and
b =(0.16 +0.03)%%uo pm determined by transmission elec-
tron microscopy (TEM) of dry samples. The polymer
chains in the rod are partially crystalline and aligned
along the long axis. The index of refraction is n~~

=1.391
along the long axis and n~=1. 368 along the short axis
[10]. The stock suspension has solid content of 32% with
approximately 3%%uo surfactant used for colloidal stabiliza-
tion. We change the concentration by adding deionized
water or evaporating excess water to proper concentra-
tions. The highest solid content we are able to prepare is
38 fo, above which we found the sample less homogene-
ous and dificult to Aow through the cell. We did not at-
tempt to remove the surfactant from the solution.

We use 0.9-cm-wide rectangular quartz cells with
0.02-cm gaps (NSG Precision Glass). The broad sides of
the cell are optically polished. The dc shear was generat-
ed by a syringe pump (Sage Instruments, Model 351).

The flow cells were placed between two crossed polar-
izers with an axis at 45 from the direction of the Aow
(defined as the z direction), as shown in Fig. 1. An Ar-ion
laser beam, polarized along the first polarizer and with
intensity Io, is pointing along the dominant velocity gra-
dient of the Aow, i.e., the narrow gap of the cell or the x
direction. A photodetector (Hamamatsu 1P28A) located
at the other side of the second polarizer thus measures
the light transmission I, induced by the birefringence in
the sample,
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FIG. 1. Optical arrangement of the experiment.
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FIG. 3. Measured orientational order parameter 5 vs shear
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where the phase shift between the y and z directions of
polarization is

An= 2~d

that promotes their orientational order. In what follows
we consider this cooperative effect in more detail.

III. THEORY

and A, is the laser wavelength in vacuo, d is the cell gap.
Experimentally measured birefringence An for the
geometry of the described experiment can be presented in
the form

=( „in)(—(1,') —(1,') )C, (3)

where I is the unit vector along the long axis of the rod
(see Fig. 2), ( ) is the thermal average over rod orienta-
tions, and C is the rod volume fraction.

Neglecting a small difference between (1„) and (I )
[11] we can express Eq. (3) in terms of the orientational
order parameter S=(3(1,) —1)/2,

Z (Flow)

bn =C(n~~ —n )S .

The experimental results are presented in Fig. 3, where
we plot the dependence of S=b n l [C( n

~~

n~ ) ] versus—
shear rate for different values of the PTFE volume frac-
tion.

One can see that although at higher values of shear
rate the order parameter has the tendency to saturate, the
absolute values of 5 differ significantly for different rigid-
rod volume fractions. Such a behavior clearly shows that
the interaction between rods causes a cooperative effect

To consider the effect of shear Row on the rod align-
ment we start from the simplest model of long and thin
rods in a velocity profile with constant velocity gradient

av,k=k, =

Due to symmetry, the orientational order parameter

S=S„=—,
' I J (31, 1)g(8,y)s—in8d8d(p

depends only on ~k~, therefore only positive values of k
need to be considered. The function P(8, y) is the orien-
tational probability distribution of the rod in spherical
coordinates (with polar axis z, polar angle 8, and azimu-
thal angle p). If a rod follows a macroscopic velocity
gradient, its angular velocity co is equal to [3]

r0=1X(k 1), (7)

where k is the velocity gradient tensor. For the geometry
of the flow given above, Eq. (7) can be reduced to the
form

cug=k sin Ocosg, co =0,2

where coz=dO/dt, co =dip/dt.
Condition co =0 means that fIow does not change the

orientation of the rods in the y direction.

A. Dilute solutions

For dilute solutions, neglecting the interaction between
rods, we can write the following rotational diffusion equa-
tion for %(8,y),

1 8 . 8%' D 0 'Il

sinO BO BO sin O 8

FIG. 2. A rigid rod in a shear How field.

Let us consider the steady-state solution of this equation.
In the case of shear Aow co& depends on y as well as on O

according to Eq. (8). In this case, there is no simple
analytical steady-state solution of Eq. (9).
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To simplify Eq. (9) we notice at first that, for the pur-
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By integratin E . ',9
'

g q. ( ) over y, the second term on the
right side of Eq. (9) drops out, and we obtain

ae & a
Bt sinO 00 Qg

sin6 D —Q
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where we used a decoupling approximation

'II(g, y) =@(8)g(y),
leading to

~g —k»n 8I&y g(y) cosy =k sin28 cos@ .

(12)

(13)

4 6
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FIG. 4. The theoretical values of S vs reduced shear rate ob-

tained from Eq. (22) for various parameters m.

The n«mahzed steady-state solution of E . (11) ac
ing to (13), has the form

q. , accord-

@(g) exp[ U(g)/D]

I d 8 sing exp[ —U( g) /D ]

with the effective potential

k
U(g) = ——cosy'(g —

—,
' sin28) .

(14)

(15)

It should be mmentioned that a steady-state solution E
(14) exists on

e sou ion q.

0 & 0 & ~. There
'

on y if we restrict ourselves b ths y e region

the re ion —~
ere is no steady-state solution of E (11' '

region —~ &8& ~, because U(g) has no absolute
minimum. Because of this propert of U(g) h
a ion o the rods in the Row. But in order to find the or-

I which is a
der parameters we should calcul t hcu a e t e average value of
, w ich is a periodic function with respect to I9. For

averaging such periodic functions, it is sufficient to
the region 0&0& m. w

, i is su cient to use

(14) exists.
n. w ere a steady-state solution of E7TW 0

To estimate the unknown parameters coscosy we compare
e va ue of the order parameters given by Eqs. (6), (12,

and (14) with that determined b DE
~ ~

e y usmg a different ap-

shear rates
proximation. One can expect [3] that at hia at igher reduced

where I (x ) is a
(18) gives

gamma function. Comparing (19)

cosy=0. 4 . (20)

This value of cocosy is not very different from the value of
cosy for an isotropic distribution of th d

e x-y p ane. In the inset of Fig. 4, we present the values
of S(g) obtained from (6), (12), and (14) with cosy=0. 4
and compare them with SDE(g) [Eq. (18)]. One can see
that our approximation (16) is in reasonablna e agreement

e approximation. The maximum ratio be-
tween two curves has a value of (S /S—

at g —+0 as follows from the explicit forin of E
(6) and (14)].

orm o qs.

Althou h we do
case of s

g o not know the exact values of S '
th

f shear Aow, the data presented in Fi . 4 h
o in e

tendenc to be
e in ig. ave the

y o e less than SDE values. We note that the ex-
act values of S for elongation 1 0 1a ow are ess than corre-
sponding SDE values [3].

So we can say that Eq. (14) is a reasonable approxima-
tion for the probability distribution 4&( 8 ) of orientation of

f
rigi rods in shear How in dilute limits d 't ban i can e used

e p enomena in concen-or analyses of more complicated h
trate so utions.

(16) B. Kft'ect of rod-rod interaction

the DE a rpproximation is close to exact. In Ref. '3' it
was found that

n e . , &, it

g (1—SDE) =54SDE,

which gives, at g ))1,

(19)

2'
SDE —+1—3

g2/3
(18)

From (6) (12), and (14) at g)) 1, we have (taking the lim-
it 8~0 while integrating)

S~1—1 (~4) 1

2f'( 2
) 2/3 g2/3

To take into account the effect of rod-rod
'

we will use the m
o ro -ro interaction

we wi. use the mean-field approximation for excluded
volume potential in the form [7]

U = ——'m,„=—6mki3 T g (31~—1)S~~—:—,' mki3 T(31 ——1)S.2

a

(21)

m is the parameter proportional to nV, „, where n is the
number density of the particle and V is the
vo ume.

(14) the self-consistent meanAccording to (21) and

h 6
e er in t e presence of

s ear owis given by
fie equatio~ for order paramet S h
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,' —f d8sin8exp[ —0.2$(8—
—,'sin28)+ —3mS cos 8](3cos 8—1)

n

f d 8 sin8 exp[ —0.2$(8—
—,
' sin28)+ —,

' mS cos 8]
(22)

The numerical solution of Eq. (22) is presented in Fig. 4
in terms of the phase diagram in the (S,g) plane. Dashed
lines indicate the unstable solutions for which BS/Bg (0.

One can see that shear Aow induces a nonequilibrium
first-order phase transition from "paranematic" phase,
where S ((1, to nematic phase (in the region where two
stable solutions for S coexist) in a manner quite similar to
the effect of elongational Qow [7]. The important
difference, however, is that the two stable regions of S in
Fig. 4 extends to much higher values of reduced shear
rate (g-1) compared with the rate of deformations for
elongation flow ($-0.05) [7]. Such a difference can be
explained by the fact that for small values of g we have
S=g /100 for shear Row, and S=g/15 for elongation
flow in dilute regions. Because of this the same orienta-
tional effect can be achieved for much smaller values of
the rate of elongational deformation compared to the
shear rate.

At /=0, the solution of Eq. (22) gives the value m ' =5
as a limit of stability of the isotropic phase, while the
phase transition appears at a lower concentration
m, =4.49. These values cannot be obtained by the
decoupling approximation of DE (see also Ref. [7)). The
latter gives the value m*=3. The DE approach also has
another restriction S (&1 because it deals only with the
first three terms of the expansion of the Landau free ener-

gy in a power series with respect to S whereas Eq. (22)
contains infinite series in S.

IV. DISCUSSIQN

In the preceding section we have developed a simple
approach, which reproduces the main features of the ex-
periment presented in Sec. II, namely, a sharp increase in
the orientational order parameter with a shear Qow, if the
concentration of the rods is slightly below its critical
value corresponding to zero-shear isotropic-nematic
phase transition.

A question arises, however, as to what extent a quanti-
tative agreement can be achieved between the theory and
the experiment, and why there is no clear evidence in the
experiment that shear Aow indeed can induce nonequili-
brium orientational phase transition from a paranematic
(S ((1) to a nematic (S ~0.5) state, as it follows from
the theory.

In answer to these questions we should notice, first of
all, that according to Fig. 4 the bistable region where
shear-induced transition does exist is extremely narrow
(4.49)m )4.4). This means that to observe a phase
transition one should be able to change the rod volume
fraction by no more than 2 fo. This makes it dificult to
check the predicted transition experimentally.

Second, for quantitative comparison of the theory with
the experiment we should take into account that in Sec.
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FIG. 5. Comparison between the theory and the experiment
based on Eq. (23). Solid lines correspond to the following
values of parameters m and D: (1) m =4.47, D=17 sec ', (2)
m =3.76, D =13 sec '; (3) m =2.82, d =21 sec '; (4) m = 1.88,
D =21 sec

III only a case of constant velocity gradient was con-
sidered, while a parabolic velocity profile is obviously
more adequate for the experimental situation. A parabol-
ic velocity profile results in the distribution of velocity
gradients between k =0 and k with average shear rate
k =k /2. In order to include such a distribution in our
consideration we should compare with experiment the
average value of the order parameter

f S(g)dg
S(k,D)= (23)

k

Such a comparison is presented in Fig. 5, where the fol-
lowing fitting procedure was used. Curve 1, correspond-
ing to c =38%%uo, was calculated using two fitting parame-
ters m and D. The best fit corresponds to m, =4.47,
D, = 17 sec '. The values of parameters m; for curves
2—4 were calculated using the obvious scaling relation
m, =miC;/Ci and rotational diffusion coefficient D as
the only fitting parameter. One can see from Fig. 5 that
there is a reasonable agreement between the theory and
the experiment for not very large shear rates. The fitted
diffusion constants D obtained for different rod concen-
trations are within a narrow distribution all lower than
the value of the estimated free rotational diffusion ( —50
sec '), indicating a hindered rotation in concentrated
suspensions.

It is important to note that at the volume fraction of
3g%%uo the fitted excluded volume parameter m, is very
close to the predicted value for the shear-induced nemat-
ic transition (m =4.487, see Fig. 4) and is only slightly
below the spontaneous nematic transition at m =5.0.
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For large enough shear rate there are additional factors
that make the effect of the shear on orientational order-
ing more complicated than predicted by the simple
theory presented above. (i) As shown by Peterlin and
Stuart [12], who considered a limit of very dilute solu-
tions of rod particles, a saturation value of order parame-
ter should depend significantly on the rod aspect ratio,
and in general is less than S=1, as one can expect from
DE and the present approach. (ii) Inertia effects in rod
rotation also should be taken into account at high shear
rates. In fact, the reduced shear rate can also be referred
to as the Peclet number, i.e., a scale to gauge the relative
importance of the effect of inertia versus thermal
diffusion. Only at low reduced shear rates, when the
behavior of the rods in shear Aow is governed by diffusion
rather than by convection, should our analytical ap-
proach using Eq. (9) be valid.

there is no spontaneous ordering at zero shear. We attri-
bute this effect to the incipient orientational phase transi-
tion from isotropic to nematic phase caused by the ex-
cluded volume effect. This experimental observation
makes concentrated suspensions of PTFE a potentially
interesting candidate for nonlinear optics applications
where suspension systems should be just below the criti-
cal concentration.

Developed theory predicts also that in addition to
spontaneous ordering at zero shear there is a possibility
to observe in a very narrow concentration range non-
equilibrium phase transition from "paranematic" to
nematic phase induced by shear Aow. However, in our
experiment we have not found unambiguous evidence of
the existence of such a phase transition.
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