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Taylor vortex formation in axial through-fiow: Linear and weakly nonlinear analysis
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To describe the pattern formation just above the first instability of the rotating Couette-Taylor
system in the presence of an externally imposed axial through-How, an amplitude equation has
been derived for the case of a stationary outer cylinder. All linear and nonlinear coefBcients of this
complex Ginzburg-Landau equation have been calculated numerically and are expressed for a wide
range of radius ratios as a function of through-Bow strength for small Reynolds numbers. A shooting
method has been used to obtain the critical properties of the system. Also, the boundary of the
convectively unstable regime has been determined.

PACS number(s): 47.20.Ky, 47.60.+i, 47.32.—y

I. INTRODUCTION

Open-How instabilities have always been attracting a
lot of research activities. For an introduction and exam-
ples see [1—4]. Recently there has been an increasing in-
terest in those arising as primary instabilities from homo-
geneous basic states [5—20]. In particular, the Rayleigh-
Benard and rotating Couette-Taylor systems are very
attractive examples oKering the possibility of well con-
trolled experimental and theoretical conditions to study
pattern-forming instabilities in externally tunable Bows.
In the absence of How these systems show a forwards bi-
furcation into a stationary, spatially periodic dissipative
structure.

To understand the growth behavior of the secondary
Aow structure out of perturbations of the basic state
in these systems in the presence of through-flow it was
appreciated only recently that one has to distinguish
[5,14—16,21—23] three regions [(i)—(iii), cf. below] in the
control parameter plane spanned by the through-Row
rate and the driving strength. Miiller et al [5] have dis. -

cussed the necessity of this distinction for understand-
ing convection in the Rayleigh-Benard system subject to
a horizontal Poiseuille How. They have determined the
boundaries of the regions while Babcock et al. [14] deter-
mined them for the Couette-Taylor system. The regions
are classified by the spatiotemporal behavior of diferent
infinitesimal deviations from the basic homogeneous flow
state, i.e. , the classiflcation [1,24—26] is based on a linear
analysis, as follows.

(i) In the absolutely stable regime any perturbation
spatially localized as well as extended decays. Region
(i) is located in the control parameter plane at small driv-
ing. Its boundary can be computed by standard growth
analysis of plane wave perturbations.

(ii) In the convectively unstable regime a spatially lo-
calized perturbation with an envelope decaying to zero
cannot propagate upstream. While being advected down-

stream it can grow but eventually is blown out of the
system. Thus, in the absence of a permanent source of
perturbations the system returns to the basic state every-
where. However, a persistently operating source of per-
turbations that emits u —A: modes which can grow will
generate downstream from its location a source-sustained
secondary flow structure [21]. This source-sustained flow
pattern rejects and sensitively depends on the source
properties. In the control parameter plane the convec-
tively unstable regime is located at larger driving and
smaller through-flow than region (i). The boundary be-
tween (i) and (ii) is determined by a particular saddle
point in the complex A: plane of the dispersion of infinites-
imal perturbations of the basic state.

(iii) In the absolutely unstable regime a spatially local-
ized perturbation grows and expands in the downstream
as well as in the upstream direction. Thus, on the bound-
ary between (ii) and (iii) the upstream facing front of
the localized perturbation is stationary in the laboratory
frame. Or, equivalently, the upstream &ont velocity in a
frame comoving with the wave packet is equal in size to
the packet's downstream group velocity. The growth of
the secondary flow structure in region (iii) continues until
nonlinear saturation occurs. Then a final nonlinear Row
state is reached where for not too large driving and
through-flow rotationally symmetric Taylor vortices
or convective rolls, respectively, are propagating down-
stream under a stationary intensity envelope. Structural
and dynamical properties of this nonlinear state, e.g. , the
streamwise profiles of intensity, wave number, and phase
velocity and the frequency seem to be uniquely selected
and seem to depend only weakly on boundary conditions
at the inlet or outlet and on perturbations [5,14,16,27].

The Couette-Taylor setup [28] is besides the Rayleigh-
Benard system a prototype example for studying for-
wards bifurcating, stationary, spatially periodic dissipa-
tive structures. Small-amplitude expansions around the
threshold (i) of linear stability lead to Ginzburg-Landau
equations [29—32] which provide an appropriate quantita-
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tive description of the properties of the primary patterns
in the weakly nonlinear domain. Therefore we found
it worthwhile to derive the complex Ginzburg-Landau
equation for rotationally symmetric Taylor vortices in ax-
ial through-flow in close analogy to previous work on the
Benard system [5].

The Couette-Taylor system with axial through-flow
has been the subject of research ever since the early theo-
retical [33] and experimental work [34,35]. In particular,
the stability behavior of the basic state has attracted
theoretical [14,19,36—44] and experimental [13—20,45—48]
interest. Historically, the first theoretical stability anal-
yses were based on various approximations such as, e.g. ,
simplified axial through-flow profiles [36—38,42] or the
narrow-gap limit [39—41]. Furthermore, prior to 1989
the significance of the convectively unstable regime in
the Couette-Taylor system was not generally appreci-
ated. In fact, Tagg et al. [22] used this concept in
the Couette-Taylor system first without through-flow for
counterrotating cylinders. Also the earlier experiments
[13,17—20,45—48] did not distinguish between convectively
and absolutely unstable regimes so that deviations from
theoretical results are not surprising. Only recently the-
oretical [23] and experimental [14—16] investigations have
addressed the problem that the convectively unstable
Couette-Taylor system with through-flow acts as a se-
lective amplifier [21] of perturbations and noise.

In this work we present all the theoretical quantities
that are needed for a quantitative linear and weakly
nonlinear description of the spatiotemporal properties of
Taylor vortices in axial through-flow. For the critical
quantities as well as for all linear and nonlinear coe%-
cients of the amplitude equation we provide fit formulas
covering through-flow rates up to Be = 20 and a wide
range of radius ratios, g, of the rotating cylinders.

After describing the system in Sec. II we present in Sec.
III the results of a linear stability analysis of the basic
state against axisymmetric perturbations. The computa-
tion is done numerically by means of a shooting method
for 0.1 & g & 1 and 0 & Be & 20. The weakly non-
linear analysis presented in Sec. IV leads to a com-
plex Ginzburg —Landau equation which governs the spa-
tiotemporal evolution of the envelope of the most unsta-
ble mode. Details of this derivation are outlined in the
Appendix. The actual results, i.e., the numerical values
of the coefFicients, are compiled in Tables I and II.

II. THE SYSTEM

1 —rt (0 rid bt
'

)
(2.1)

We consider the axisymmetric flow of an incompress-
ible fluid in the annulus between two concentric cylinders
of inner radius rq and outer radius r2 with a gap width
d = r2 —ri [28,49]. The restriction to axisymmetric flow
is justified by experiments for weak through-flow [14—20].
With infinitely long cylinders the only relevant parameter
characterizing the geometry is the radius ratio g = ri/r2.
The outer cylinder is at rest while the inner one rotates
with constant rate O. We use the Taylor number

to measure the driving, where v is the kinematic viscos-
ity. Furthermore, in our system there is an externally
imposed axial flow measured by the axial Reynolds num-
ber

tUdBe = (2.2)

The mean axial velocity m, averaged over the annular
cross section, is in our parameter range independent of
time and axial position and given by the total through-
flow.

We also use the relative control parameters

T T
T,(Be) ' T, (Re = 0)

(2.3)

measuring the distances from the critical Taylor numbers,
T„ for onset of Taylor vortices in the presence (Be g 0)
and in the absence (Re = 0) of through-flow, respectively.
In this notation

(2.4)

is the reduced, Be dependent critical threshold for onset
of vortex flow, i.e. , the boundary between regions (i) and
(ii) described in the Introduction.

In the absolutely stable regime (i) below the stabil-
ity boundary e, (Re) the flow field U(r) is rotationally
symmetric, axially homogeneous, and constant in time.
It consists of a linear superposition of circular Couette
flow (CCF) in azimuthal direction, e~, and of annular
Poiseuille flow (APF) in axial direction, e, ,

U(r) = Vcgp(r)e~ + W~pp(r)e, (2.5)

without any radial component. Here

V~~p(r) = A r + I3/r

with A = —(i+ )
and B = (i )(i )

while

(2 6)

r +C ln r+D
APF Be (2.7)

u(r, z;t) =u e„+v e~+ur e, (2.8)

withC = +" D = +"" "— E =
(1—rJ) 1n g ' (1—v7) ln g (1—v7)

——[1+ (
" +

& ~
"l)]. Here and in the following we

scale positions by the gap width d, time by the radial
momentum difFusion time d2/v, azimuthal velocities by
the rotational velocity of the inner cylinder 0 rj, and
radial and axial velocities by v/d. The radial profiles of
CCF and APF are presented for difFerent radius ratios in
Fig. 1.

At the stability threshold e, (Re) to be determined in
the next section, the basic flow state (2.5) becomes un-
stable against axially extended perturbations. A stable
nonlinear solution of rotationally symmetric Taylor vor-
tices propagating in the downstream direction branches
ofl' the basic solution (2.5) of the Navier-Stokes equations.
We take the axisymmetric deviation
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of the velocity field &om the basic flow (2.5) as the order
parameter field to characterize the secondary flow struc-
ture. Furthermore, we define auxiliary fields [19,50]

equations into a system of six coupled equations being of
erst order in 0„

(2.10a)
(x= /0„+ — /u —p,

v=
I
~. +-

I
~,(

r)

(2.9a)

(2.9b)

for the vector Y

Y(r, z, t) = (u, v, to, x, y, z) (2.10b)

z = B~to (2.9c)

all depending on r, z, t. They are introduced to elimi-
nate the pressure p and to transform the Navier-Stokes

Having only erst order radial derivatives is necessary
for solving the linear equations ZY = 0 by a shooting
method in Sec. III.

The linear operator l. is given by

0
0
L

v + VCCF

O„WAPF

0
1—6
7

0
T V~cp

1—rl r
L

—Bz
0

—B~

0
0

L —8,

0 0 0
0 1 0
0 0 1

0 0
0 —f9„0

0 —0, —-')

(2.10c)

where

L = Og —0 + WAPFt9~ (2.10d)

contains the time derivative. Note that the first row of 8 refiects the incompressibility condition (8 + 1/r)u+ 0, tU = 0,
the second and third one relate y and z to v and tv, respectively, and the last three rows contain the linear parts of
the Navier-Stokes equations for u, v, ts. The nonlinear part of (2.10a) is

u + i Tv
0, 0, 0, uO m —wO, u+ tI toz v

y
uz tU&9z QJ l ~ (2.11)

Equations (2.10) have to be solved subject to the bound-
ary conditions u = v = tu = 0 at the inner and outer
cylinder.

III. LINEAR STABILITY ANALYSIS

In this section we present the results of a numerical sta-
bility analysis of the basic flow state against axially ex-

I

tended and localized perturbations. Restricting ourselves
to small through-flow, 0 & Be & 20, we consider only ax-
isymmetric perturbations in the range 0.1 & g ( 1 of
radius ratios. Note, however, that for the larger g values
the growth threshold for nonaxisymmetric disturbances
lies, e.g. , for Be = 0, just above that one for axisymmet-
ric perturbations [51,52].

A. The problem

1.6

1.4

1.2

We solve the linear problem

ZY =0
with 8 given by (2.10c), (2.10d) with the ansatz

(3.1a)

0.8

0.6

+

Y (r, z, t) = Y (r)e'"'+" + c.c., s = cr —iu. (3.1b)

0.4

0.2

0 0.2 0.4 0.6
r r1

0.8

FIG. 1. Radial pro6les of the circular Couette Bow,
Vooi;(r), and annular Poiseuille flow, W~pF(r), defining the
basic state for diferent radius ratios g.

Here k is the axial wave number of the perturbation.
The real part a = Re(s) of the complex characteristic
exponent is the growth rate of the perturbation while

ur = —Im(s) characterizes its oscillation frequency. Y(r)
is a complex amplitude function. Equations (3.1) are
a linear eigenvalue problem with the boundary require-

ments on the eigenfunction Y(r) making the eigenvalue
spectrum discrete. The eigenvalues 8 are functions of the
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parameters A:, T, Be, g appearing in the equations. We
are here interested only in the dispersion relation s(k,
T, Be, g) of that eigenvalue with the largest real part o.
This eigenvalue characterizes the most dangerous pertur-
bation of the basic state, i.e. , that one with the largest
growth rate. In our system this eigenvalue is simple, i.e.,
nonde generate.

To solve the eigenvalue problem we used a standard
shooting method [53—55]. Therein the system of 6 x 6 or-

dinary difFerential equations for Y(r) is integrated by a
fourth order Runge-Kutta method from ri to r2 starting
at r~ with u = v = m = 0. This is actually done three
times with three different linearly independent "initial"
conditions on x, y, z. The resulting three fundamental

vectors Y(r) can be linearly combined to the eigenvec-
tor that satisfies the required boundary condition on u,
v, m at the upper integration end r2. This gives rise
to a solvability condition the complex determinant of
the 3 x 3 matrix consisting of u, v, m at r2 from the
three "shots" has to vanish —which in turn determines
s(k, T, Be, q). To that end we used a two-dimensional
Newton-Raphson algorithm with a Richardson extrapo-
lation based on Runge-Kutta step sizes hi ——0.01 and
6, = 0.005.

The complex dispersion 8 and the associated eigen-

vector Y(r) contain all the relevant information on the
linear spatiotemporal behavior of small perturbations.
The condition o. = Re 8 = 0 corresponds to neutral
stability and determines the neutral curve T,& b(k, Be, g)
above which an axially extended, axisymmetric pertur-
bation e'" can grow. The minimum of the curve of
T,«b(k, Be, g) versus k gives the critical Taylor num-
ber T, (Be,g) and the critical wave number k (Be, g)
and the corresponding critical frequency w, (Be, g)—Im s(k„T„Be,g).

Lerma et al. [56] for 0.1 & q & 0.975 with the same accu-
racy. With through-flow we confirm results of Takeuchi
and Jankowski [19] for g = 0.5. These results difFer from
those of Chung and Astill [44] and of Hasoon and Martin
[42] which demonstrates that the use of an averaged axial
velocity profile [42] causes errors. Finally we reproduced
the q = 0.738 through-flow results of Babcock et al. [14].

C. Boundary between convectively and absolutely
unstable regime

Re s(r. , T) = 0, (3.2a)

where r(T) is the saddle position of s(k, T) determined
by solving

0 s(K, T)
8 K

(3.2b)

in the complex k plane. Here we do not display the de-
pendence on Be, g to avoid clumsiness.

We have determined T, „or equivalently

Tc
pcnnv = 1~ ~can~ = ~c+ (1+ ec)penn~ ~ (3.3)T.

for small p, „«1 by expanding the dispersion relation
around the critical point k, T for fixed Be, g:

The knowledge of the complex dispersion relation
s(k, T, Be, g) allows us not only to determine the criti-
cal threshold T„ i.e. , the border between region (i) and
(ii) as discussed in the Introduction but also T; „,the
boundary between the convectively uiistable region (ii)
and the absolutely unstable region (iii). T, „ is given by
the condition [1,24—26]

B. The critical values

We have evaluated the critical values for many radius
ratios in the range 0.1 & g ( 1 and we have fitted for each
g the Be dependence by a power law expansion in Be that
represents our data quite well in the range 0 & Be & 20.
The coeKcients of these expansions are presented in Ta-
bles I and II. The expansions are based on the follow-
ing symmetry properties of the system: When reversing
the through-flow direction the growth rate o of perturba-
tions remains unchanged while the phase velocity w/k of
the downstream propagating disturbance wave changes
its direction. Thus o and with it T is for fixed k an even
function of Be whereas u is odd. For small Be one finds
that T and k grow quadratically with Be, albeit with
difFerent curvature, so that axial through-flow stabilizes
the basic state. On the other hand, cu varies linearly
with Be and vanishes at Be = 0. The g dependence of
the expansion coefIicients presented in Tables I and II is
generally stronger at small g than at large g.

As far as possible we have compared our results with
those available in the literature: We have reproduced
the highly accurate Be = 0 critical data of Dominguez-

s(k, T) = s, + (k —k, ) i „ i
+ —(k —k, )

fBsl 1,(8'sl

+(T —T,) ~ ~
+ h.o.t. ,

/Bs)
&»).

(3.4)

(Os/Ok),
(8's/Bk'), (3.5)

and T; „ then follows from (3.2a)

( Bs ) 1 (Bs/Ok)2
) ~ aT ' 2 (a2s/ak2). (3.6)

where h.o.t. denotes the higher-order terms. Prom the
neutral stability curve T, (k) it follows that for slightly
supercritical drive, 0 & p « 1, only wave numbers out of
a band of width k —k, ~p can grow. Hence h.o.t. in

3
(3.4) effectively covers terms at least of order p~. Thus
T; „resulting from (3.4) can be expected to be a good
approximation of the exact boundary (as obtained, e.g. ,
by Babcock et at. [14] for g = 0.738) only for small p', „.

The saddle of (3.4) lies at
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TABLE I. Even critical values and coefBcients of the amplitude equation for difFerent g. The coeKcients have been fitted in
the range 0 & Be & 20. Terms marked by + contribute with a difFerent sign. p depends on the normalization of the critical
linear eigenfunction u(r) (4.1). We used ]u(r = rq + 0.5)

~

= 15.2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.738 0.75 0.8 0.9 0.975

ao
ag

T, = ao[1+ (Re/a2) + (Re/a4) ]
177644 31073.6 12510.4 6996.58 4649.33 3428.73 2708.02 2509.08 2452.51 2243.59 1924.69
43 81 40 2 38 42 3743 36 82 36 45 36 22 36 16 36 14 36 08 36 00
103 9 74 23 69 26 67 23 66 24 65 71 65 45 65 39 65 37 65 33 65 31

1746
35.97
65.34

ao

a4

k, = ao[1+ (Re/a2) —(Be/a4) ]
3.3393 3.2632 3.2149 3.1835 3.1625 3.1483 3.1389 3.1362 3.1354 3.1326 3.1288 3.127
133.1* 866.4 269.8 213 191 180.3 175 173.9 173.6 172.8 172.6 173.5
74.76* 152.8 118.5 114.4 114.9 116.9 119.4 120.4 120.8 122.1 124.8 126.9

ao 0.123
53.9
55.3

0.131
47
48

0.136
43.4
44.9

(o = ao[1 —(Be/a2) + (Re/a4) ]
0.14 0.142 0.144 0.145
41 4 40 2 39 5 39 1
43.2 42.3 41.7 41.4

0.145
39

41.3

0.145
39

41.3

0.145
38.9
41.2

0.146
38.8
41.2

0.146
38.8
41.2

ao 0.0651
48.6
49.7

0.069
44.8
47.1

0.0716
42.6
45.4

ro ——ao[1 —(Re/a2) + (Re/a4) ]
0.0733 0.0744 0.0752 0.0757 0.0759
41.3 40.5 40 39.7 39.7
44.3 43.7 43.3 43 43

0.0759
39.6
43

0.0761
39.6
42.9

0.0763 0.0764
39.5 39.4
42.8 42.8

a2
a4

7.96
22.5

8.01
21.4

8.
20.7

e', " = (Re/a2) + (Re/a4)
7.99 7.98 7.97 7.96
20.2 19.9 19.7 19.6

7.96
19.6

7.96
19.6

7.96
19.5

7.95
19.5

7.95
19.5

ao

a4

11.2
38.7
43

10.9
36.4
40.2

10.6
35.5
39.2

p = ao[1 —(Re/aq) + (Re/a4) ]
10.1 9.48 8.84 8.17
35.1 35 35.1 35.5
38.8 38.8 38.9 39.3

7.92
35.6
39.5

7.84
35.7
39.5

7.5
35.9
39.8

6.83
36.6
40.6

6.34
37.2
41.3

TABLE II. Odd critical values and coefBcients of the amplitude equation for difFerent g. The coefBcients have been fitted in
the range 0 & Be & 20. Terms marked by + contribute with a difFerent sign.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.738 0.75 0.8 0.9 0.975

ay

a3
4.236
258.1'

3.994
420.0*

3.863
529.9

~, = a, Re[1 + (Re/as)' ]

3.784 3.735 3.703 3.682
307.4 254.1 231.3 220.3

3.676
217.9

3.675
217.2

3.669
215.4

3.661
214.3

3.658
215.3

a3
1.33
459

1.28
732

1.26
748

v~ =—aq Re [1 + (Re/as) ]
1 25 1 24 1 23 1 23
652 576 527 495

1.23
486

1.23
484

1.23
475

1.23
461

1.23
453

282
145

185
66.9

160
59.4

co = (Be/aq)[1 —(Be/as) ]
149 144 140 139
56 54 1 52 9 52 1

139
51.9

138
51.8

138
51.6

138
51.2

138
51.0

ay

a3
60

90.5
50.6
85.9

46.1
80.2

c, = (Re/a, )[1+(Be/as) ]

43 7 42 3 41 4 40 9
76.4 73.8 72.1 71

40.8
70.6

40.7
70.5

40.6
70.2

40.5
69.6

40.4
69.3

a3
-79.9
53.1

-144
47.7

-251
40.4

cz = (Re/az)[l —(Be/as) ]

-527 -4990 762 362
31.5 12.2 42.3* 322*

302
111

287
97.8

237
73.3

173
57.6

143
52.3
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Using the data from our shooting method we have eval-
uated numerically the derivatives entering (3.6). The re-
sults are displayed in Tables I and II. There we have rep-
resented the derivatives in terms of the quantities that
enter also the amplitude equation (see below)

of 0 vary Re whereas v~, cp, cq being derivatives
of cu vary Be so that p, „grows ~ Re . Figure 2
shows e', „according to (3.3) and e, as a function of Be.

(Bs) . t'Ru)
qBk), (Bk),

f Bs l f Bo-5 . (Rul 1+ icp

(BT) i BTj (BTf AT

(3.7a)

(3.7b)

IV. WEAKLY NONLINEAR ANALYSIS:
AMPLITUDE EQUATION

Close above the threshold of linear stability the critical
mode saturates and the nonlinear state can be described
by

Y(r, z, t) ='(u, v, io, x, y, z)

= A(z, t)Y(r)e'("" ') + c.c.
(4 1)

(3.7c)

Here vs is the critical group velocity, 1/Tp = T (Bo/BT),
measures the linear increase of the growth rate with p,

z2T (k) is the curvature of the neutral sta-
C C

bility curve at its minimum, cp ———AT, (Bcu/BT), and
82

cq ——
&, &&, . In 3.7c we have used the relation 57

fB'o i /Bo O'T, t b(k))
(Bk ), (BT dk ), (3 8)

to relate the second k derivative of the growth rate to the
critical curvature (p. Inserting the expressions (3.7) into
(3.6) one finds the boundary between the convectively
and absolutely unstable regions

The fields (4.1) describe a downstream propagating Tay-
lor vortex pattern that in the absence of through-flow

would be stationary. Y(r) is the complex eigenvector
of the linear problem (3.1) at T, . An upstream traveling
wave does not appear in (4.1) since only one eigenvalue of
(3.1) becomes critical. A(z, t) is the saturation amplitude
determined by the nonlinearity in the field equations. For
slightly supercritical driving (0 & p « 1) a small band
of axial wave numbers with ~k —k,

~

& ~p is excited giv-
ing rise to slow spatial and temporal modulations of the
vortex structure. To accommodate these variations the
complex amplitude A is supposed to vary slowly in z and
t. We therefore adopt the method of multiple scales [59]
to obtain an amplitude equation from the Navier-Stokes
equation. The computation yields a complex Ginzburg-
Landau equation of the form

V 7p
2 2

I conv 4(2(I + 2)
(3.9) rp(B, + vsB, )A(z, t) = [p(1+ icp) + (p(1+ ici)B,

[1,5,21,22,58]. The Be, il dependence of the quantities
entering (3.9) as well as that of p', „can be seen from the
tables. For small through-ffow rp, (p being derivatives

0.02

I 0.015
CO

II

0.01

0.005
Ev

II

0.5 1.5
Re

2.5

FIG. 2. Convective vs absolute instability for axisymmetric
perturbations. The basic Bow state is absolutely stable in the
region (i) below the curve e„convectively unstable in the
region (ii) between the curves e,' „and e„and absolutely
instable in the region (iii) above the curve e, „.Here the
radius ratio is g = 0.75 but the curves practically do not vary
with g in the plot range shown.

—p(1+ ic2) ~A~']A(z, t).
(4.2)

Details of the derivation are outlined in the Appendix.
For zero through-flow the Landau equation for a spatially
homogeneous Taylor vortex amplitude was determined
by Davey [60] and the Ginzburg-Landau equation with
spatial derivatives was given by Yahata [32] and Graham
and Domaradzki [31].

Since the system is invariant under simultaneous re-
versal of the z coordinate and the through-flow direction
the coefficients vs, cp, ci, c2 are odd while 7p Q, p al'e
even functions of Be. This can easily be seen by apply-
ing the symmetry transformation (z -+ —z, Be ~ —Be,
A ~ A*) upon Eq. (4.2) and by comparing with the com-
plex conjugate of (4.2). Note that the coefficients vs, cp,
cz, c2 in the amplitude equation appear only for nonzero
through-flow, i.e. , for propagating Taylor vortices. We
have calculated all the coeKcients assuming an annulus
of infinite axial extension. Best fit formulas for them that
are valid up to flow rates Be = 20 are given in Tables I
and II.

The linear coefficients can be expressed [57] by certain
partial derivatives since the linearized amplitude equa-
tion reflects the lowest order terms in an expansion of
the dispersion s(k, T, Be, rI) around k, and T, for a given
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through-flow. But they can be obtained also by special
scalar products over eigenfunctions (cf. the Appendix).
We calculated them both ways. The deviation between
both methods was about 10 —10 %. For ci it was
10 2%.

vg = (&&) is the group velocity of the traveling wave
at the critical point. It grows almost linearly with Be.
The relaxation time wo is defined by 7o ——T, (&&)
It has a constant value without through-flow and de-
creases quadratically with Be. The correlation length (o
is given by the curvature of the marginal stability curve,

8 T&~)2™b . With through-flow (o decreases
C C

which means that the bandwidth of growing modes in-
82creases. The coefIicient ci —— &'2 &, contributing2/2

linearly to the dispersion increases linearly with Be as
the frequency shift co —— &OT, (—&&) . We reproduced
the linear coefIIcients obtained by Dominguez-Lerma et
al. [56] without through-flow. Babcock et al. [14] did the
linear stability analysis for g = 0.738 in the presence of
How and their results for the linear coeKcients are in very
good. agreement with ours.

We obtained the nonlinear coefFicients p and c2 by
calculating special scalar products of the eigenfunctions
(see the Appendix). Note that p depends on the nor-

malization of the critical eigenvector Y (r) of the linear
problem. In this work the modulus of the eigenfunction

n(r), i.e. , the first component of Y (r), has been nor-
malized to the value of 15.2 in the middle of the gap,
~u(r = ri+ 0.5)

~

= 15.2. This scaling allows an easy com-
parison with the first axial Fourier mode uq of the radial
velocity field obtained &om numerical simulations of the
full Navier Stokes equations without through-flow [61,62].
The comparison was based on the small-e extrapolation
[61,62] of the scaled numerical Fourier modes ui/v e. In
the presence of a driving ramp extending to subcritical
values at one end of the system the numerically obtained
ui [61] was suppressed by about 1% relative to our ampli-
tude equation result. Simulations with axially periodic
boundary conditions, on the other hand, gave ui/v e ex-
trapolations that were 0.6% above our result. A com-
parison with experimental results [63] gave about 0.5%
greater value than ours. p is decreasing quadratically
with increasing through-How. The coefFicient c2 intro-
duces a nonlinear amplitude dependent correction to the
phase velocity [cf. Eq. (4.3) below]. It is linear in Be
and has to our knowledge not been measured yet.

When bound. ary influences may be ignored the am-
plitude equation (4.2) allows a one-parameter family of
solutions

depend on the wave number displacement q = k —k, . The
solution (4.3) exists for arbitrary ~q~ ( gp/Q. How-
ever, not all of them are stable, e.g. , unstable due to
the Eckhaus mechanism. By virtue of (4.1) the solu-
tion (4.3a) describes a chain of Taylor vortices with wave
number k = k + q traveling downstream with a phase
velocity v~i, „——[~, + O(q)]/(k, + q). Similar nonlin-
ear behavior can be observed in experiments [14,16] and
numerical simulations [5,27] in the absolutely unstable
regime (iii) with long cylinders far away from inlet and
outlet, where the bulk dynamics is unafFected by the axial
boundary conditions. Approaching the ends of the cylin-
ders the structural properties of the propagating vortices
are changed at inlet and outlet difFerently relative to the
bulk behavior. Investigations of the efFect of various in-
let and outlet conditions on A are presented in [5] for the
Benard system and in [27] for the Couette system and
will be reported elsewhere.

V. SUMMARY

The Couet te- Taylor system subj ect to an axial
through-flow is considered in this article. We have in-
vestigated the vicinity of the primary transition from the
basic Couette-Poiseuille How to a downstream traveling
chain of axisymmetric Taylor vortices. A complete linear
and weakly nonlinear analysis of this structure forming
bifurcation is presented for a wide range of radius ratios
as a function of the two control parameters, T and Be.
Among the various linear properties we have determined
in the T Be plane th-e boundary T (Be, g) between the
absolutely stable region (i) where no perturbation can
grow and the convectively unstable region (ii) as well as
the boundary T; „(Be,g) between region (ii) and the
absolutely unstable region (iii). A nonlinear analysis of
the Navier-Stokes equations in the vicinity of the thresh-
old, T, for onset of vortex How leads to an evolution
equation for the envelope of the most unstable mode
the amplitude equation. It yields a quantitative linear
and weakly nonlinear description of the spatiotemporal
dynamics of vortex How close to the threshold. The nu-
merical values of the linear as well as of the nonlinear
coefIicients appearing in the amplitude equation are eval-
uated for a wide range of radius ratios and for flow rates
up to Be = 20. The results condensed in Tables I and
II open the opportunity for further theoretical work and
quantitative comparison with experiments and numerical
simulations.
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which is constant in space and time and the frequency

APPENDIX: DERIVATION OF THE
AMPLITUDE EQUATION

(q) = [ 9 oq+ ~oq (ci 2) —p(co —c2)] (4.3c)
70

The amplitude equation results from a weakly nonlin-
ear perturbation expansion of (2.10) above the threshold
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of linear stability. We expand 2, Y, and N in powers
of ~p. Since for supercritical systems there is a band
of k modes that can grow, there will be a slow varia-
tion of the critical order parameter fields, which will be
expressed by introducing additional slow multiple scales
[59] for the space Zi ——p, ~ z; Z2 ——pz; . . . and for the

1
time Tj ——p2t; T2 ——pt; . . ..

Then the partial derivatives become

p'Bz, + pz
1

Bg W le+ p2BT + pBT +
(Ala)

(Alb)

With
+ 1 3

Y = p ApYp+ pYj ++@ Y2+' (A2)

one has to solve the following set of equations at p = 0:

l.pAp Yp

l.p Yj ——

l.p Y2 ——

= 0 O(p')
—l.j Ao Yp + Nj,
—l.j Yj —l'-2Ap Yp + N2)

O(p)

O(p ).

(A3a)

(A3b)

(A3c)

Here

11. Lowest order p &

In this order one has to solve the linear equation at
criticality and gets the critical radial eigenvector Yp of
the linear stability analysis which was denoted in Sec. II
by Y(r). For the solvability condition in higher orders
we need the adjoint solution. We define a scalar product
by

=MOT,

+Mezz,

, (A3d)

l:2 = Mi~T, + M2~z, + M.~~, + M4, (A3e)

and M, = (m~y) are matrices resulting by inserting (Al)
into l: (2.10a). The matrix Mi is m&A, = 0 except for
m41 m52 —m63 = 1. For M2 one obtains m~ k ——0
except for m4j ——m52 ———28 + TVApF, m63 = —40' +
TVgpp, m j 3

——m64 ———1. M3 is m~ k ——0 except for
2&ccFm4j ——m52 ———1 and m63 ———2. m24 ——— is the

only nonvanishing element for M4.
The boundary conditions for Yo, Yj, and Y2 are the

same as for Y (3.1b) in the linear stability problem. The
system (A3) is only solvable if certain conditions are ful-
filled. These solvability conditions yield the nonlinear
amplitude equation (4.2) for A.

1 + 1
(f ~g):= lim dz2I I 2T

T w oo

+T F2

dt rdr f'. g.
—T &1

(A4)

The adjoint operator l:o defined by (f~l:o g) = (l:o f ~g)
is obtained by transposing l'.p and by replacing 0& by
—8&, 0 by —t9, and —O„by —+0„.The adjoint solution
defined by l.p Yp+ ——0 has the form

~ +
Yo+(r, z, t) = Yo (r) e*~"" 'l + c.c., (A5)

where the adjoint radial eigenfunctions have to fulfill the
boundary conditions x&

——yp: zp: 0 at p: pj T2.
This follows from the partial integration that leads to
the adjoint operator. There the integrated terms have to
vanish at the radial boundaries and this can only be ful-
filled with the above boundary conditions for the adjoint
solutions xo, yo, and zo .

0 = Yp+ l oYj = — Yo+ l jApYp + Yp+ Nj A6

or explicitly after inserting l.j

j.T'1 Ap + I20z1 Ap = 0. (A7)

Expressions for the integrals Ij, I2 are given below. The
scalar product with Nj vanishes since Nj contains only
terms of the form oc e and oc e+ '~" ~. Using the
solvability condition (A7) in (A3b) one can calculate the
radial eigenfunctions Yj numerically. This is done with
the ansatz for the eigenfunction

Yj. = z, AoW + Y (A8a)

where W is a function proportional to e+'~ ~ and

~ nlin ~ nlin
Yi" '" —

~AO~ Yio (r) e + Ao Yi2 (r) e '~"" + c.c.

(A8b)

Note that the contribution (A8b) to Yi comes from the
inhomogeneity Nj. The latter can be divided into two
parts, Njo e and Nj2e+ '~" ~. They have the fol-
lowing form:

2. Order p,

The solvability condition of the inhomogeneous Eq.
(A3b) reads

Nip ——2iAoi Re up

A

Qp
Z~cte +c p

9o
A—z0

+ Skctuo
A

tLo
A

vo
+ Tc

1 —rl

A A

Vp Vo
(A9)

and
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%12 ——Ap up
2

Qp
zkc'wo + r—gp

Zo

zkcmo tip

Vp

o)

A

+ 7j Vp
Tc

1 —9 r + c.c. (A10)

Here the three dots (:) denote the first three components being zero.

S3. Order p, 2

We do not have to calculate the solution Y2. Equation (A3c) is used only to get from the solvability condition in
order p2 the amplitude equation (4.2). The scalar product with the adjoint solution Yo yields

Y,+ C,Y, + Y,+ C,Y,"'" + I,a, +I,e, + Y,+M, Y,

=0 =0

FI2Y+IM, Yo — Y
i

—M, —M,
i

W
)

Bz Ao — Yo+ N2 = 0. A11

The first term vanishes because of the definition of the adjoint solution. The second one vanishes since Y1"'"contains
only terms which, being proportional to e or e+ '~" ~, are out of resonance with the critical mode e'~""
of Yo+. With A(z, t) = p2Ao(Zi, Z2, . . . , Ti, T2) = p2 Ao(z~p, . . . , t~p) we obtain after multiplying the difFerent
solvability conditions with their respective p order and adding them:

Ii Ii Ii )
(A12)

with

I1 — Yp+ ™1YO& I2 — Yp M2+0
&

I3 — Yp M3YO & I4 — Yp M4YO

I = Yp+ I'M1 —M2 lV —I3 and I~ ——— Yp+ N2
(A13)

To evaluate I~ we write N2 in the form

&2 ——Ao~Ao~ N2i e'i"" ' l + (ofF-resonant terms). (A14)

Only the &rst term containing the critical mode oc e'~". ~ ~ contributes to the scalar product I~
vector %21 has the form

A

%21 ———uo
~12—2tkctU12 —2
r

g12

Z12

kcn)12 —xk tUo
2V12

( ~» )

—1O
kcmo

gp

z.

—VLp

10 + tkcto10r
@10

Z10

—2" T VOV10 + Vp V121-9- r
tk12go + lkct010Vp —ZkcQJ12VO

A

tl12ZO + 2kcQJ] pl80

(A15)

Rearranging Eq. (A12) we get the amplitude equation
(4.2) where the coefficients are expressed by special scalar
products:

1 I4—(1+ico) = —,
7 p I1'

—(1+ ic, ) = —,Q . I
70 I1 '

—(1+ic2) =
70 I1
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