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Onset of convection for autocatalytic reaction fronts in a vertical slab
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A fully three-dimensional linear stability analysis shows that ascending autocatalytic reaction fronts in

vertical slabs are unstable to convection for large-wavelength perturbations at all finite values of the di-

mensionless driving parameter S =5ga /vD&. This parameter involves a fractional density difference 6
between the unreacted and reacted Auids, the acceleration of gravity g, the slab width a, the kinematic
viscosity v, and the catalyst molecular diffusivity Dc. Buoyancy dominates over the competing curvature
dependence of the front velocity in a band 0&q &q, of unstable dimensionless wave numbers, with

q, —+S/24 as S~O and q, ~(S/4)' ' as S—+~. As S~O, the perturbation with wave number

q =q, /2 has the maximum dimensionless growth rate 0. =D&S /48v. For general S, the cutoff wave
number q, is calculated using exact analytical solutions for the perturbed Quid velocity. The calculated
results should be observable in experiments.

PACS number(s): 47.20.Bp, 47.70.Fw, 03.40.Gc

I. INTRODUCTIQN

Recent experiments observe steady axisymmetric con-
vection near iodate —arsenous acid reaction fronts in vert-
ical capillary tubes [1,2]. This convection is driven by the
buoyancy of the lighter reacted Auid below the ascending
front; descending fronts involve no convection. Descend-
ing fronts are Hat and propagate at a fixed speed which is
independent of the tube diameter. When the tube diame-
ter is less than a critical diameter d, of about 1 mm, the
upward propagation speed and the corresponding curva-
ture of the front are the same as for the descending front,
indicating the absence of convection. However, when the
tube diameter is raised above d„ the upward propagation
speed increases and the curvature of the front becomes
nonzero, indicating the onset of convection. In these ex-
periments, the tube diameter strongly restricts the possi-
ble wavelengths of the front perturbations. In contrast,
for a vertical slab, the horizontal freedom parallel to the
slab allows unrestricted perturbation wavelengths in this
direction. Thus, experiments in this geometry might be
expected to reveal rich information about wavelength
selection in chemical waves. The purpose of this paper is
to anticipate such experiments by studying the linear sta-
bility of three-dimensional Aows in a vertical slab.

The reaction kinetics of a propagating front of iodide
in iodate —arsenous acid solution can be accurately de-
scribed by the oxidation of iodide by iodate and the
reduction of iodine by arsenous acid [3]. The iodide is
generated autocatalytically at the reaction front and
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diffuses ahead of the front. The coupling of the corre-
sponding chemical reaction-rate equations with the cata-
lyst diffusion equation governs the spatiotemporal evolu-
tion of the iodide concentration and the propagation
speed of the iodide front. A simple autocatalytic
reaction-diffusion equation was derived from these equa-
tions. In the absence of convection, this equation suc-
cessfully describes one dimensional propagation of the
iodide front in a vertical capillary tube. This front is very
thin and is Bat in the tube. The calculated propagation
speed of the front is in good agreement with experiments
[3].

A hydrodynamic stability theory of convection near
autocatalytic reaction fronts [4] treats the thin chemical
reaction front as a moving surface which consumes un-
reacted fIuid of uniform mass density p„ to produce
reacted Quid of lower uniform density p„ thereby relegat-
ing all chemical reactions to the surface. In this "thin-
front" approximation, the reaction-difFusion equation
reduces to a simple "eikonal" relation [5] between the
front velocity and the front curvature. In a reference
frame stationary with respect to the Auid, the eikonal re-
lation gives the normal component of velocity of the reac-
tion front c =cz+D&K, where co is the Aat front speed,
Dc the molecular diffusivity of the catalyst, and K the
front curvature. Here X is measured as positive when the
center of curvature is in the unreacted Quid. This curva-
ture correction tends to lower peaks and to raise valleys
in the front surface, thus flattening the front. For as-
cending fronts, buoyancy competes with this curvature
effect and tends to destabilize a Oat front in favor of con-
vection. The relative strength of buoyancy is measured
by a dimensionless driving parameter appropriate for
vertical slabs and cylinders iRef. [6]),
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II. EQUATIONS OF MOTION

The fiuid velocity v(x, t ) and the reaction front height
z =h (x,y, t) evolve according to the dynamical equations
[4]

+(v V)v= pk VP+V v, — —
Bt

(2a)

This parameter involves a fractional density difference
5=(p„—p„)/p„, the acceleration of gravity g, the slab
width or cylinder radius a, and the kinematic viscosity v.
The small chemical concentrations typical of experiments
imply small 5=10 and negligible differences in v and
Dc between the reacted and unreacted Auids. The densi-
ty difference 6 can be due to differences of both tempera-
ture and chemical composition. However, the thermal
difference can be neglected because the thermal
diffusivity is eff'ectively infinite [7]. Linear stability analy-
ses in the thin-front approximation performed for two-
dimensional fiows [6] in vertical slabs and in vertical
cylinders show that convection occurs only above a finite
critical value S„where curvature effects and buoyancy
exactly balance each other and the system is marginally
stable. The predicted critical diameter for onset of con-
vection agrees with the observed critical diameter for as-
cending reaction fronts in vertical capillary tubes filled
with iodate —arsenous acid solutions. Furthermore, these
results obtained using the thin-front approximation agree
with results based on the autocatalytic reaction-diffusion
equation [8].

In this paper, a linear stability analysis of three-
dimensional Aows in vertical slabs using the Navier-
Stokes equations and the thin-front approximation shows
that the freedom afforded by horizontal motion parallel
to the slab, neglected in the previous two-dimensional
calculations, renders S, =0 in this geometry. For finite S,
perturbations with wave numbers satisfying 0&q (q„
where q, is a cutoff wave number, are unstable to convec-
tion, with q, ~0 as S~O. A relation obtained between S
and q, is universal, being independent of the slab width
and any Quid parameters, and therefore applies generally
to experiments. In Sec. II, we outline the basic equations,
boundary conditions, and reaction front jump conditions.
We obtain the general analytical solutions of three-
dimensional fIows in vertical slabs in Sec. III. For gen-
eral S, both approximate and exact results for the mar-
ginal state are given and discussed in Sec. IV. In Sec. V,
we study the limit of S—+0, the Hele-Shaw limit, in
which the Na vier-Stokes equations are replaced by
Darcy's law. In Sec. VI, we discuss the laterally un-
bounded (S~~ ) limit, construct a useful approximate
analytical result for the marginal state, draw conclusions,
and discuss implications for experiments.

B"' B'"=—v,
" = —VP("+V'v(" (zoo),

Bt Bz

V, v(&) 0

Bh"'
Bt

(3a)

(3b)

(3c)

where n"'= —Vh'" and ~'"=V h'". Continuous Auid
velocity v, tangential stress e;~knjnj Tki, and normal stress
n, n T; at the front and the continuity equation require

[v "] =0, (3d)

B (&)
Bzv (3e)

(i)]+ — gh (i)Dc

to first order in the perturbations. Here, [q ]+
= lim, p (q l, =+,—q l, , ) is the diff'erence between the
values of.a quantity q above and below the front, which is
located at z =0 for terms already first order in the pertur-
bations.

To state the final form of the equations to be solved, we
first define the coordinate system of the vertical slab by
lxl —, in dimensionless units, with z up. For the margin-
al state, the perturbations neither grow nor decay with
time so that (3/(it=0. Setting v"'=(u, v, w) and taking
the curl of Eq. (3a), we have

and where we have neglected the small density difference
between the reacted and unreacted fluids by setting
p=p, /p everywhere except in the large gravity term [the
first term on the right side of Eq. (2a)], consistent with
the Oberbeck-Boussinesq approximation [9]. The first
two equations express conservation of momentum and
mass. The third is the dimensionless eikonal relation,
which involves a dimensionless Hat-front speed
vp =cpa /v and a dimensionless curvature (r. Again
neglecting the density difference, the matching and
boundary conditions include continuous Quid velocity v
and continuous stress nj Tj'at the front as well as vanish-
ing velocity at the no-slip impenetrable sidewalls. Here,
the n are the cartesian components of the normal
vector n pointing into the unreacted Quid and
T; =P6, —Bv, /Bx —Bv /Bx, is the dimensionless stress
tensor.

To study the onset of convection, it is convenient to in-
troduce a reduced pressure p =P+pz and to allow small
perturbations about an ascending convectionless Aat front
described in the comoving frame by v' '= —voz, h ' '=0,
n' '=z, and v' '=0. Linearizing in the perturbations
yields

V v=0,

Dc
n z vl, =h =v()+ a,

Bt ' v

(2b)

(2c)

2

By Bz

Bz Bx

(4a)

where length, time, pressure, and density are measured in
units of a, a /v, v p„/a, and p=v p, /ga, respectively, Bx By

(4c)
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The second term in Eq. (3a) leads to corrections in S, of
relative order 10 for two-dimensional fIows in vertical
slabs and in vertical cylinders [6]. We expect that this
term leads to corrections of the same order for three-
dimensional Rows in vertical slabs. Thus, this term is
neglected. The vanishing velocity at the no-slip im-
penetrable sidewalls requires the six independent bound-
ary conditions

u = A &+ A2x+ A3x + A4x

The boundary conditions u(+ —,')=u'(+ —,')=0 lead to a
set of four homogeneous linear algebraic equations for
the coefficients, which yields only the vanishing solution
u =0. When p %0, the general solution of Eq. (7) is

u = A
&

cospx + 3 z sinpx + A 3x cospx + A4x sinpx .

ul. =+»,——0, ul. =+„,——0, and wl =+~~~=0. (4d)

[u]+ =0, U

az
=0, [w]+ =0,

Bw

Bz
=0, w

az2
=0,

Equations (3) yield the six independent matching condi-
tions

This solution is valid for both real p (k & q ) and
imaginary P (k (q ). The boundary conditions
u (+—,

'
) = u '(+—,

'
) =0 yield a set of four homogeneous

linear algebraic equations for the coefficients. For a non-
vanishing solution of these equations, the determinant of
the coefficient matrix must vanish. This leads to the con-
dition

+
0 w

and
Bz

l

=Sw lz —0

III. ANALYTICAL SOLUTIONS

(4e)

sin P=/3 (10)

Equation (1) has no solution for p WO, hence u =0 if k is
real. Since u =0, the corresponding motion of the Quid is
restricted to the y-z plane parallel to the slab, and Eqs. (6)
reduce to

The unboundedness in the y direction allows the per-
turbation wavelength to be chosen freely in this direction,
so we write v as

u (x,y, z) = u (x)e "'sinqy,

u (x,y, z) =u(x)e"'cosqy,

w(x, y, z)=w(x)e"'sinqy .

(5b)

(5c)

Substituting Eqs. (5) into Eqs. (4) gives two independent
ordinary diA'erential equations

and

U=qw
k

d w =0, (P =0),
dx

d2
+P w=O, (P WO) .

dx

(12a)

(12b)

q +P w —k +P u=0,d
dx dx

(6a)
Subject to the boundary conditions w(+ —,') =0, we have
the general even solutions

d2 6
dx2 dx dx2

(6b)
A (x —

—,
' ), P=O;

We =
A„cos(2n + 1)vrx, P = (2n + 1)rr, (13a)

where /3 =k —
q . The continuity equation (3b) yields and the general odd solutions

du —qU+kw =0 .
dx

(6c) wo =B„sin(2n +2)7rx, P=(2n +2)n, (13b)

Equations (6) are invariant under even reAection of the
velocity vector about the x =0 plane; u( —x)= —u(x),
u( —x) =u(x), and w( —x) =w(x). They are also invari-
ant under odd reAection; u( —x)=u(x), u( —x)= —u(x),
and w( —x)= —N(x). These properties will allow us to
study even and odd solutions separately for this linear
problem.

Equations (6) have solutions for both real and complex
k. We first prove that u =0 if k is real. Simplifying Eqs.
(6) yields

@2q2k 2p2
Simplifying Eqs. (6), we have

2d'
u =0,

dx

(14)

(15)

where A, A„, and B„are arbitrary coefficients, and
n =0, 1,2, . . . .

We now look for solutions for complex k. It is con-
venient to define

d2
+P u=O.

dx
(7)

whose general solution is

:E&e ~"+E2e +E3xe~ +E4xe (16)

When /3 =0, the general solution of Eq. (7) is The boundary conditions u (+—,
'

) = u '(+—,
'

) =0 require
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—y/2

y/2

y/2

—y/2

—y/2
2

1 ey/2
2

y/2
2

—y/2
2

For odd reAection symmetry,

y = —sinhy,

ye
—r/2 —ye

ye —ye

—y/2
2

1+~ e&"
2

1+—er/
2

1 ——ey — /2

2

u0 =coshyx —2 coth x sinhyx,

k
w0 =—coth coth sinhyx —2x coshyx

y 2 2

(21)

X

Ei 0
0
0

V =
CO0 k 0 '

Setting

y=(y„y, )=y, +&—ly, (22)

For a nonvanishing solution, the determinant of the
coefficient matrix in Eq. (17) must vanish, yielding

reduces Eq. (18) to

y =+sinhy .

A little algebra then yields the corresponding coefficients
in Eq. (17),

sinhy y —e y sinhy2—
y y+ e y sinhy

or

y~ =sinhy~ cosy~,

yi =coshy~ sinyi,

y~ = —sinhyz cosyi,

yi = —coshy~ sinyl .

(23a)

(23b)

and E =2 sinhy —ye
y+er sinhy

Finally, for even reAection symmetry, we obtain

y =sinhy,

u, =sinhyx —2 tanh —x coshyx,

Cu, =—tanh —tanh —coshyx —2x sinhyx
k y y

2 2

q
V = We k e

(19)

(20)

Equations (23) are invariant under yz ~—yz and under

yI —+ —yi, so that if (y~, yl ) is a solution of Eqs. (23),
then (yz, —yI), ( —yz, yl), and (

—yii, —yi) are also
solutions of Eqs. (23). The first few solutions are
(2.250 728 6116, 4.212 392 2305), (2.768 678 2830,
7.4976762778), (3.1031487458, 10.7125373973),
(3.352 209 8849, 13.899 959 7140), . . . .

Equations (13a) and (13b) for real k and Eqs. (20) and
(21) for complex k are exact analytical solutions of Eqs.
(6). Numerical solutions of Eqs. (6) obtained using a
shooting method agree with these analytical solutions.

IV. MARGINAL STATE FOR GENERAL S

It is instructive to first obtain an approximate analytical condition for the marginal state. Retaining only the two
lowest real values of k, the vertical velocity takes the form

w (x,y, z) = ( A —C)(x —
—,
' )e ~'+ ( Ao —Co )cosa.xe ' sinqy, (z )0),

kizw(x, y, z)= (A +C)(x —
—,')e~'+(Ho+Co)cosvrxe ' sinqy, (z (0),

(24)

where ki =+sr +q and A, Ao, C, and Co are four arbitrary coefficients. Since u (x,y, z)=0 for real k, the continuity
equation (3b) eliminates two matching conditions in Eq. (4e). Substituting Eq. (24) into Eq. (4e), multiplying by cosvrx,
and integrating over I

—
—,', —,

' ] produces

8

8q —~ k,
0

0

0
0

—eke8q

8(q +S/2) —m (k i+S/2)

0
C0 0

0
A0 0

(25)
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The first two equations yield C=co=0. The nonvanishing solution for the coe%cients A and Ao requires the deter-
minant of the coefficient matrix in Eq. (25) to vanish, which leads to

S=2q, (rr +q, +q, i/ vr +q, ) . (26)

Equation (26) is an approximate condition between the driving parameter S and the cutoff perturbation wave number

q, at the marginal state; the ascending Aat front is linearly unstable to convection for q (q, at fixed S. Since q, 0, Eq.
(26) cannot be satisfied for S &0 (downward propagation of the reaction front). Thus, convection is forbidden for des-
cending fronts. Eq. (26) shows that the cutoff wave number q, of the perturbation is uniquely determined by the driving
parameter S.

The general even solution of Eqs. (6) for the marginal state can be written as a linear superposition of even solutions
with both real and complex k:

k2„+&
v, (x,y, z) = —A (x —

—,
' )e i' —g A„

n=o

q
—k z

cos(2n +1)vrxe '"+' —g A(y) w, (x, y)e r +c.c. cosqy,
r r

(z ~ 0), (27a)

—k z
w, (x,y, z)= . A(x ——')e q'+ g A„cos(2n+1)irxe '"+' +g [A(y)w, (x, y)e r +c.c. ] .sinqy,

n=0 r

k2 +i q k z
v, (x,y, z)= C(x ——')e~'+ g C„cos(2n +1)irxe '" ' +g C(y) w, (x, y)e r +c.c. .cosqy,

n=O r 'r
(z & 0), (27b)

k z
w, (x,y, z)= -C(x —

—,')e~'+ g C„cos(2n+1)axe '" ' +g [C(y)w, (x, y)e ' +c.c. ] .sinqy,
n=0 r

where

k„2+, =+(2n +1) ~ +q, n=0, 1,2, . . . ,

kr =+q —y with Rekr )0,
k

w, (x, y ) = tanh tanh coshyx —2x sinhyx
y 2 2

(27c)

(27d)

(27e)

Here, A, C, A„, C„, A(y), and C(y) are arbitrary coefficients, c.c. denotes the complex conjugate, and we have re-
quired the velocity to vanish at z~+ oo. These solutions must satisfy the six independent matching conditions in Eqs.
(4e). Accordingly, substituting these solutions into Eqs. (4e), multiplying by cos(2m +1)vrx, and integrating over
[ ——,', —,'] yields an infinite set of linear homogeneous algebraic equations for the coefficients. These equations can be
decoupled into two subsets of equations. One subset involves only the combinations A —C, A„—C„, and A (y )

—C(y ),
is independent of S, and yields the unique solution A =C, A„=C„,and A(y)=C(y). The other subset is

2

b (y)A(y)+c. c. =0,
r 'r

2a qA+k2 +, A +g [2krb (y)A(y)+c. c. ]=0,
r

a (2q +S)A+(kz +, +S/2)A +g [(2k +S)b (y)A(y)+c. c. ]=0,

(28)

where

a =4( —1) +'/(2m +1) ir
(29)

b =8( —1) (2m +1)mk sinh [(2m+1) ~ +y ]

and I=0, 1,2, . . . . Requiring the determinant of the

coefficient matrix in Eqs. (28) to vanish yields the general-
ized marginal condition between S and the cutoff wave
number q, . To determine the numerical relation between
S and q„we truncate the infinite expansion in Eqs. (28) to
a finite number N of terms. A one-term truncation (a
3X3 matrix) recovers the approximate analytical rela-
tion, Eq. (26). For larger N and a given value of q„we
adjust S numerically to make the determinant vanish. To
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test the convergence for increasing N, we obtained
S =34.0795, 34.1214, and 34.1351 for the 20-, 30-, and
40-term truncations for q, =1.0, indicating good conver-
gence of these successive truncations. The resulting rela-
tion between S and q, for N =40 is plotted in Fig. 1. Us-
ing the same technique, we constructed the general odd
solution and the marginal condition between S and q,
(Fig. 1). Clearly, the even solution is encountered first as
S increases from zero. Hence this even solution governs
the onset of convection.

Whereas descending fronts are stable against any small
perturbations, ascending fronts are unstable to long-
wavelength perturbations due to the buoyancy of the
lighter Auid below the front. Accordingly, for any
specified value of the driving parameter S in Fig. 1, wave
numbers satisfying q (q, are unstable to convection. The
physical source of this instability is embodied in the driv-
ing parameter S, which measures the strength of the de-
stabilizing inhuence of buoyancy relative to the stabiliz-
ing influence of curvature. For a given initial perturba-
tion amplitude, the smaller the perturbation wavelength,
the larger the curvature. Curvature effects therefore sta-
bilize small-wavelength perturbations.

The unique even solution 3 =C, A„=C„, and
A(y)=C(y) guarantees that the velocity is vertical at
the front. This is also true for the odd solution. These
solutions correspond to two different types of quid Aow.
For the even solution, v, and w, are symmetric about the
x axis. Furthermore, numerical results show that u, is
very small for reasonably small q, (~u, ~

=0.005~w,
~

for

q, = 1.0) and that the corresponding convection pattern is
composed of a roll structure of wave number q, in the y-z
plane parallel to the slab (see Fig. 2). For the odd solu-
tion, the projection of the pattern on the x-z plane per-
pendicular to the slab is made up of a roll structure

700

600

2

N
0

20

~/" J'

~r/'
/
/ t

t

r

I i

1.57 3.1

horizontal

/ j
t

l

i

I

4 471
(y) axis

6.28

whose wavelength is fixed by the slab width a, and the
projection on the y-z plane is also made up of a roll struc-
ture of wave number q, . Thus, the combined pattern for
the odd solution is rather complicated.

The limit of q —+0 reduces the odd solution to two-
dimensional Aow in the x-z plane perpendicular to the
slab. A previous calculation using a similar technique [6]
in two dimensions yielded S, =371.5 for this Aow. This
is in good agreement with our q ~0 limit S=371.1.

V. HELE-SHAW CELL (S —+0 limit)

Simple instructive results can be obtained in the S~0
limit, where the system is effectively two-dimensional.
One way to have small S=5ga /vDc is to have a narrow
"Hele-Shaw" slab [10] with small a. In the S~O limit,
the Navier-Stokes equations are replaced by Darcy's law
[11],

FIG. 2. Velocity field at the onset of convection for perturba-
tion of wave number q =1.0 about a flat ascending horizontal
reaction front in a vertical slab, showing that the vertical extent
of the flow pattern is comparable to one horizontal wavelength.
The sinusoidal trace represents the position of the perturbed
front.

500

400

300

a
v(y, z) = — V (p +pgz ),

12p
7' .v=0

(30)

(31)

200

100

where Vii=(O, B/By, B/Bz) is the gradient parallel to the
slab. Substituting Eq. (30) into (31) yields the Laplace
equation. In our dimensionless units, we can write this
equation as

0
0

V' +=0
II

where N=(P+a pgv z)/12.
We also require Eq. (2c),

(32a)

FIG. 1. Convective stability diagram for flat ascending reac-
tion fronts in a vertical slab. Marginal stability traces are
shown for even and odd flows about the midplane parallel to the
slab. The exact analytical Hele-Shaw (S~O) limit S=24q, for
even flow is shown. The dashed trace is from an approximate
analytical form, Eq. {40). For a particular value of S, the band
0(q (q, of perturbation wave numbers is unstable to convec-
tion.

Bh Dc
n z —vi =U +

Bt z ——a o (32b)

DcS[@]+=— h .
12v

(32c)

and the jump condition [P]+=0, which can be written as
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The normal component of velocity is continuous across
the front [11]. To study the onset of convection, we in-
troduce small perturbations about the Oat front as men-
tioned in Sec. II. I.inearizing in the perturbations yields

y2@(1) 0 (33a)

Dc 8 h'" a+[']
+

'v Qy Bz

[@())]+ h (i)DcS
12v

z=0
(33b)

(33c)

After writing the perturbed front position as

g (1) ~ qy+ t (34)

we find the solution of Eqs. (33a) and (33b),

N("(y, z, t) = ——(o +D q /v)e' ~'+ ' (z ~0)
q

c

@("(yz t) = (o +D q2/v)e ~)'+q'+~'
( &0)

q

(35)

Finally, the jump condition Eq. (33c) yields a telling
analytical result for the growth rate;

Dc S
(36)

Accordingly, the Rat front is unstable (cr )0) for pertur-
bations with wave number q satisfying S)24q. The
cutoff wave number q, is given by the marginal condition

S=24q, (37)

for the vanishing growth rate, which agrees well with the
S~O limit of the even solution (see Fig. 1). Thus, the
Hele-Shaw cell is indeed a good approximation for small
driving parameters S. By setting the derivative of Eq.
(36) with respect to q equal to zero, we obtain the
wave number q =q, /2 of maximum growth rate

2cr =DcS /48v. For the laterally unbounded system,
the ratio q /q, depends on the molecular diffusivity and
the viscosity [4], whereas here for a vertical slab with
small S, the maximum growth rate occurs at exactly half
the cutoff wave number.

S=4q, . (38)

favorable, the experimental uncertainties are so large as
to render the comparisons only semiquantitative; the ex-
perimental critical diameter for onset of convection is
known only to within a factor of two. Thus, careful ex-
perimental tests of the linear theory, either in cylinders or
in the slab geometry discussed in this paper, are needed.

Experiments designed to test the predicted cutoff wave
number q, as a function of the driving parameter
S=6ga /vDc might be carried out by varying any of the
parameters in S, such as the density jump 5 (through the
various chemical concentrations) or the slab width a. To
introduce perturbations of a specified wavelength A, mea-
sured in conventional units, the chemical reaction could
be initiated (a) at an electrode whose top horizontal edge
has a sinusoidal shape or (b) at the bottom of the slab
simultaneously at several points separated by this wave-
length. If A, & A,, =2~a /q„where q, is taken from Fig. 1

based on the value of S, the perturbations should decay
with time, whereas if A, )k„ they should grow with time.
For example, Fig. 3 shows k, for the even solution in Fig.
1 as a function of the slab width a for the typical values
[1,2] 5=0.90X10, g =980 cm/sec, v=9. 2X 10
cm /sec, and Dc =2.0X 10 cm /sec; the Hele-Shaw re-
sult A,, =48~vDc/5ga obtained from Eq. (37) is also
shown. The solid trace divides the phase space of pertur-
bation wavelengths A, and slab widths a into two regions;
the region including (excluding) the origin is stable (un-
stable) to convection. Note that whereas Fig. 1 is univer-
sal, the details of Fig. 3 depend on the type of the reac-
tion, the initial chemical concentrations, the Auid viscosi-
ty, etc.

The cutoff wavelength k, in Fig. 3 seems to approach a
constant limiting value as a ~~, the limit of large slab
widths. We now show that this limiting value is simply
the cutoff wavelength for a laterally unbounded slab, as
might be expected. After rewriting in the present units, a
relation between the cutoff wave number and the driving
parameter for a laterally unbounded slab [Eq. (40) of Ref.
[4]] reads as

VI. DISCUSSION AND IMPLICATIONS
FOR EXPERIMENTS

The fully three-dimensional linear stability analysis of
ascending autocatalytic reaction fronts in vertical slabs
shows instability for large-wavelength perturbations at all
finite values of the dimensionless driving parameter S.
This instability is driven by buoyancy, which dominates
over the competing curvature dependence of the front ve-
locity in a band 0&q &q, of unstable dimensionless wave
numbers. The cutoff wave number q, is determined only
by S according to Fig. 1, and should be observable in ex-
periments.

To date, the theory of convection in autocatalytic reac-
tion fronts has been compared only with experiments on
vertical cylinders [6]. Although these comparisons are
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FIG. 3. Cutoff wavelength k, versus slab width a for the
iodate —arsenous acid system (solid trace), including the Hele-
Shaw and laterally unbounded limits.
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This result implies a relation for the cutoff wavelength
1/34»c

g6
A' =2& (39)

S=2q, (12+q, +q, +18+q, ) . (40)

We have also replaced the second appearance of ~ with
the number 18 to obtain the best overall fit to the even
solution data, resulting in differences between the approx-
imate and exact conditions within 2.5% over the whole
range of S. The corresponding fit shown in Fig. 1 is for
small q, only; the maximum difference occurs at q, =6.

Experiments designed to carefully test the present
theory should involve (1) slab widths a and perturbation
wavelengths A, that are small compared with the long
horizontal dimension I of the experimental slab, (2) per-
turbations which are sinusoidal and of small amplitude,
and (3) perturbed fronts which are several wavelengths
away from the bottom of the slab when their stability is
being analyzed. These requirements might be realized by
using a wedged slab whose width a varies slowly with
height in such a way that the marginal-stability height,
where A. = A,,(a ), would occur a few wavelengths or more
above the bottom. Such a geometry would allow the per-
turbation amplitude to decay with time (while the pertur-
bation wavelength remains constant) until the front
reaches the marginal stability height, where the perturba-
tion would be of small amplitude and of approximately
sinusoidal shape. A single experimental apparatus may
be sufricient to test a range of experimental wavelengths,
especially if the chemical concentrations (and hence 5)
are varied. The variation of a with height should be slow
enough to be considered constant over a vertical distance
of one wavelength.

For a nonsinusoidal but still periodic perturbation,
higher spatial harmonics would have smaller wavelengths
A,„—=k/n than the fundamental wavelength A, , where
n =2, 3, . . . . Figure 3 shows that these higher harmonics
will not become unstable before the fundamental wave-
length itself becomes unstable, consistent with the idea
that velocity effects stabilize short wavelengths. Thus, a
sinusoidal perturbation may not be essential. Undesired
perturbations with wavelengths larger than the desired
perturbation wavelength, which generally render the per-
turbation nonperiodic, are ubiquitous in experiments
even though care in preparing the initial state can ensure
that their amplitudes are small compared with the ampli-

which is manifestly independent of a. This relation gives
A, , = 1.27 mm (dotted horizontal line, Fig. 3) for the fiuid
parameters specified above; this value evidently agrees
well with the even solution in the limit a ~~.

An approximate analytical marginal condition relating
S and q, may prove useful when preparing plots like Fig.
3 for different experimental situations. To construct such
a condition, we modify Eq. (26), which already satisfies
the S~~ (q, ~ ~) limit [Eq. (38)], to enforce agreement
with the S~O (q, ~O) limit [Eq. (37)]. This is done sim-

ply by replacing the first appearance of sr~ in Eq. (26)
with the number 12, yielding

tude of the desired perturbation. The growth rates of
such undesired wavelengths will typically exceed those of
the desired perturbation wavelengths near the cutoff.
Whether or not the amplitudes of these undesired wave-
lengths become appreciable, it may be useful to record
the full evolution of the entire front to allow a spectral
analysis of the wavelength-dependent growth rate. Two
properties of iodate —arsenous acid reaction fronts are
helpful here. First, the front is observable optically (and
visually), being the interface between two different colors
of unreacted Quid and of reacted Quid. Second, typical
front propagation speeds co=3X10 cm/sec are very
slow because of the slow molecular diffusion of the cata-
lyst, leaving time even to scan the front surface before it
moves appreciably.

In experiments, Auids must be bounded in both hor-
izontal directions. If the horizontal dimensions of the
slab are a and l & a, the maximum possible perturbation
wavelength is 2l which corresponds to one roll in the cell.
Thus, wavelengths k&2l and dimensionless wave num-
bers q (q;„=era /I are inaccessible experimentally.
Consequently, finite slabs have a nonzero critical driving
parameter for onset of convection given approximately
by S, =24q;„=24~a /l, below which such slabs are
stable to convective perturbations of all wavelengths.
Even though using the S~0 limit and ignoring the
boundary conditions at the narrow sidewalls render this
critical driving parameter approximate, we nevertheless
expect such boundary-induced criticality to survive in
calculations in which these assumptions are relaxed.

In previous experiments on this system, a reaction was
initiated at one end of a vertical tube and allowed to
propagate through the tube, consuming the reactants.
Such experiments were necessarily time-limited; also,
they did not allow convenient tuning of experimental pa-
rameters. However, this kind of experiment can be
turned into a steady state, tunable system by continually
flowing fresh reactant solution down the cell from above,
and by making the cell slightly tapered. In a vertical slab
with a wedge opening downward, i.e., so that the width
decreases with height, this fIow has a stable steady state,
as long as one accepts the plausible assumption that the
convective velocity v, of the front relative to the Quid is
an increasing function U, (S) of the control parameter S.
In this case, the reaction front will move to the stable
vertical position where the local control parameter is
such that U, (S) matches the local average fiow velocity
v&. Changing the externally imposed fiow rate will cause
the front to move to a different vertical level, allowing ob-
servations to be made at a different value of S. Apart
from the pattern-forming instability discussed in this pa-
per, this equilibrium is stable, whereas the opposite case,
in which the wedge opens upwards, in unstable. A front
that is momentarily below its stable equilibrium position,
for example, experiences higher S and lower v& in a
downward-opening wedge; these effects combine to re-
store the front to its equilibrium position. In preliminary
experiments of this type, a vertically translatable horizon-
tal electrode has allowed us to initiate the reaction at any
desired vertical position in the wedge. These experiments
have not yet yielded useful results on the stability of the
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resulting reaction front.
Intriguing questions remain about the fate of autocata-

lytic reaction fronts carried into the nonlinear regime.
Above criticality (S)S,), the system must choose from a
band q;„(q (q, of unstable wave numbers. If a partic-
ular wavelength is chosen by the initial conditions or if a
band of wavelengths is chosen by the Quid itself in a verti-
cal slab (a) will the front eventually reach a steady sa-
turated periodic shape in which all points on the front
propagate with the same constant vertical speed, (b) will
stable or unstable fingers appear, or (c) will secondary in-
stabilities drive the system to some more favorable wave-
length such as, perhaps, the rather uninteresting max-
imum wavelength l allowed by the boundaries? Will the
Quid invert itself catastrophically, so that the lighter
reacted Quid eventually finds itself above the unreacted
Quid, and the system is absolutely unstable? If the answer
to the last question is yes, are there other geometries or
Aow configurations that might allow a steady saturated
periodic front shape and Aow pattern?

If steady periodic fronts can be realized in autocatalyt-
ic systems, many interesting questions about pattern for-
mation will emerge. What is the preferred wavelength as

a function of the driving parameter S? When would the
steady pattern become unstable and what secondary in-
stability would destabilize it? What is the route to chaos
in such a system?

In conclusion, limited understanding of the pattern-
forming behavior of autocatalytic reaction fronts has
prompted the present calculation of linear stability for a
vertical slab, which identifies the basis instability. How-
ever, many questions remain regarding the Aows resulting
from this basic instability. To answer these questions re-
quires further investigation.
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