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We have devised a kinetic lattice-gas model of an atomic liquid that incorporates the physical
features associated with the formation of cages around a particle at high density. The model has
simple equilibrium statistics, with a maximum of one particle per lattice site, and simple dynamical
rules, so that it is feasible to perform dynamical calculations of the fluctuations about equilibrium
over very long time scales. The cages inhibit the motion of the particles and cause the self-diffusion
coefficient to fall rapidly with increasing density. Simulation results indicate that as the density
p, defined as the number of particles per lattice site, approaches 0.881, the self-diffusion constant
behaves in a critical way as (0.881 — p)3-2. The time dependence of density-density correlation func-
tions is calculated from the simulation results, and relaxation times extracted from these functions
show a similar critical behavior. These results suggest that the model undergoes a dynamical tran-
sition from ergodic to nonergodic behavior. By investigating different system sizes we exclude the
possibility that the observed transition is just a finite-size effect related to the bootstrap percola-
tion problem. The mode-coupling theory (MCT) of ergodic-nonergodic transitions in the absence
of activated hopping processes is tested for this model by comparing the behavior of the density
correlation functions with the predictions of MCT. Surprisingly few of the MCT predictions hold
for the system, despite the fact that the model was devised to incorporate, in a schematic way, the
dynamical cage effects that the MCT is usually regarded as describing. Thus the MCT does not
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provide a correct description of the cage-induced ideal-glass transition of this model.
PACS number(s): 61.20.Ja, 64.70.Pf, 51.10.+y, 05.20.—y

I. INTRODUCTION

Over the last ten years there has been an impressive
development in our understanding of supercooled lig-
uids in the vicinity of the glass transition. Advances
were made through novel experimental techniques and
the development of new theories that describe such sys-
tems. The most outstanding example of these theories is
the so-called mode-coupling theory (MCT) proposed by
Bengtzelius, Gotze, and Sj6lander and, independently, by
Leutheusser [1] and developed further mainly by Gotze
and Sjégren [2-5]. Although originally developed to de-
scribe the dynamics of simple liquids it was found that
the applicability of the theory is much wider. It can, for
example, also be used to interpret the dynamical behav-
ior of materials as complex as polymers [5]. Despite this
broad applicability it is unfortunately still not possible
to say a priori whether or not the dynamical behavior
of a given system should be correctly described by MCT
or not. Therefore investigations to increase our under-
standing on this point are certainly most useful.

The version of MCT proposed by Bengtzelius et al.
and by Leutheusser takes into account only certain types
of terms of a more general theory whose origin is the
kinetic theory of simple liquids [6]. The terms that are
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included give closed equations of motion for the spatial
Fourier transform of the density-density autocorrelation
function. These equations are regarded as describing the
motion of particles in the cages formed by surrounding
particles [5,7]. This motion is clearly cooperative, since
a single particle can move an appreciable distance only
if its cage is disrupted, and the disruption of a cage can
occur only if the cage particles themselves can move. At
this level of approximation MCT predicts the possibility
of a structural arrest at high density or low tempera-
ture, i.e., when the cooperative relaxation of the cages
is impossible. Taken at face value, such an arrest would
be an ergodic-nonergodic transition or an idealized glass
transition.

The terms that are neglected in this simplest version
of the theory are those that couple the density-density
autocorrelation function to the particle current-current
autocorrelation function. These terms are regarded as
describing activated processes whose rates are very low
at low temperature but which nevertheless are capable
of relaxing the system to equilibrium for very long times.
If the coupling to the currents is taken into account the
theoretical picture that emerges becomes quite a bit more
complicated in that the sharp transition predicted by the
simpler theory becomes washed out, i.e., ergodicity is
restored even at low temperatures, and new time scales
arise [4]. However, it has been found that most of the
main features of the idealized glass transition are still
present and this justifies the comparison of the simple
theory with experiments and the results of the computer
simulations [8-10].

As noted above, the MCT has been compared with
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data on experimental systems that are considerably more
complex than the simple liquids for which the theory
was originally developed. The success of MCT in de-
scribing such data is confirmation of the very reasonable
idea that even for very complicated materials cages can
cause structural arrest and activated processes can re-
store ergodicity. Presumably the mathematical structure
of MCT is capable of providing a quantitative description
of these effects for more complicated materials as well as
for atomic liquids. MCT in fact predicts the existence
of several universality classes of dynamic transitions and
therefore provides a rationale for the possibility that very
different materials might have transitions with similar
mathematical properties.

In a recent paper we have compared the predictions of
MCT with computer simulation data for a kinetic lattice
model of dense fluids [10]. The model described the mo-
tion of particles on a lattice and included short-ranged
attractive and repulsive interactions between particles.
Because it was a lattice model with very simple dynam-
ics, we were able to equilibrate the system at lower tem-
peratures and calculate correlation functions for longer
times than would have been feasible for an analogous
continuum material. While many of the predictions of
the simple MCT were found to be valid for this system,
others were found not to be in agreement with the sim-
ulation results. It is difficult to tell whether the limited
success of the theory is evidence that the theory is fun-
damentally incorrect for this model or whether the lat-
tice model under consideration is one for which activated
processes must be taken into account for an adequate de-
scription. A similar uncertainty arises when the theory
is compared with experimental data.

We decided to study in more detail the question of
whether and how cage effects can cause structural arrest
at high densities and whether the simple mode-coupling
theory description of this arrest is correct. In order to
do so, we have devised a kinetic lattice model whose dy-
namics contains nothing more than the physics of the
cage effect with no possibility of activated hopping pro-
cesses. This is the topic of the present paper. Our goal
was to simulate the model to determine if at high den-
sity it would undergo an ergodic-nonergodic transition.
Moreover, the model can easily be modified to include
activated processes, and thus we hoped that this would
provide a useful and less ambiguous basis for testing both
the simple MCT and its extensions.

There have been several previous investigations of
lattice models to study ergodic-nonergodic transitions,
sometimes also called dynamical phase transitions, and
their connection to the glass transition. To the best of
our knowledge the first attempt to investigate such a
system is due to Fredrickson and Andersen, who pro-
posed the facilitated kinetic Ising model and developed
an approximate theory that predicted such a transition
for this model [11]. However, subsequent numerical simu-
lations showed that there is increasingly sluggish behav-
ior but no sharp transition as the temperature is low-
ered [12]. Ertel et al. investigated the dynamics of a
two dimensional hard square lattice gas [13]. Comput-
ing the self-diffusion coefficient they found a dynamical
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transition, but concluded that this singularity will van-
ish in the thermodynamic limit. Frobose and Jackle et
al. investigated this point further and found a strong
dependence of the diffusion constant on the system size
[14,15]. Jackle et al. also pointed out that there is a
connection between the dynamics of these kinds of sys-
tems and the so-called bootstrap percolation problem.
We will elaborate on this point in Sec. V. By means of
computer simulations Reiter et al. [16] then investigated
the dynamics of two kinetic Ising models whose corre-
sponding cellular automata show a transition even in the
thermodynamic limit [17]. However, these authors did
not compare their results with the predictions of MCT
and presented mainly qualitative results. Most recently
Jackle and Sappelt tried to test the applicability of MCT
to the models investigated in Ref. [16] and found that
one possible way to do the mode-coupling approxima-
tions leads to unphysical results [18]. In addition they
showed that an approximation scheme they called the
effective-medium approximation is able to reproduce the
transition in a qualitative way. However, quantitatively
this kind of approximation does not seem to be very ac-
curate and it remains to be seen whether this theory can
be improved.

The outline of the rest of the paper is as follows. In
Sec. II we give a short introduction to MCT and com-
pile the essential formulas for this work. In Sec. IIT we
introduce our model and give some of the details of our
simulations. Section IV is devoted to the presentation of
the results. In Sec. V we discuss these results and some
finite size effects of the system. Finally, Sec. VI contains
a summary of our findings and our conclusions on this
work.

II. MODE-COUPLING THEORY

In this section we give a short introduction to the es-
sentials of MCT and compile some of the predictions of
the theory, the derivations of which can be found in the
original papers. A much more extensive discussion of the
theory can be found in the the review articles by Gotze,
Gotze and Sjogren, and Schilling [19].

Mode-coupling theory is a mathematical framework
developed to describe the dynamical behavior of super-
cooled liquids. The theory makes detailed predictions
of the way correlation functions behave in the vicinity
of the glass transition. The main focus of MCT is the
correlator ®(q,t) obtained by normalizing the intermedi-
ate scattering function F'(q,t) = (6pq(t)dp—q(0)) by the
static structure factor S(q) = (§pqdp—_q). Here dpq(t) is
the fluctuation of the density for wave vector q at time
t and () denotes the average over the canonical ensem-
ble. Equations of motion, called mode-coupling equa-
tions, can be derived for ®(q,t) and, under certain ap-
proximations, solved. These equations depend paramet-
rically on S(q) and therefore on temperature and density.
It is found that for high temperatures (or low densities)
®(q,t) decays to zero in the long-time limit. Therefore
the system is said to be ergodic. However, if the tem-
perature is below a certain critical temperature 7. (or
the density above a critical density p.) this is no longer
true. In this case the infinite time limit of ®(q,t) is
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given by a nonzero constant. The system has therefore
undergone a structural arrest and hence is no longer er-
godic. Note that similar statements can be made for
the correlator ®,(q,t) that is given by substituting the
self part of the intermediate scattering function, F,(q,t),
for the intermediate scattering function F(q,t). In fact
MCT predicts much more generally that the statements
hold for all correlators ® xy between quantities X and Y
for which (Xépq) and (Ydpq) do not vanish. It has to
be emphasized that the transition presented above hap-
pens only if the activated hopping processes, mentioned
in the Introduction, are neglected. In the following we
will also restrict our discussion to the type of singularity
commonly called a B transition [19]. This is the type
of transition that is used to describe the liquid to glass
transition for fluids.

Before we present the predictions of MCT for the dy-
namical behavior of the correlators in the vicinity of
the glass transition it is useful to introduce two quan-
tities: the separation parameter ¢ and the so-called ex-
ponent parameter A. € is a dimensionless distance from
the critical point and is defined as ¢ = (T. — T)/T.
[or € = (p — pc)/pc]- The exponent parameter A is a
system dependent number and satisfies the inequalities
0 < A < 1. It can be calculated if the form of the equa-
tions of motion is known.

By a careful analysis of the time dependence of ®(q, )
and ®,(q,t), obtained from the solutions of the mode-
coupling equations in the limit of ¢ — 0, the following
properties of the system can be shown to hold. (Note that
in order to simplify the discussion we will state all the
results for the case in which the temperature is the ther-
modynamic variable which drives the transition. How-
ever, all the results remain unchanged if this variable is
the density.)

(i) The diffusion constant. The constant of diffusion D
shows for € < 0 (i.e., on the liquid side of the transition)
the critical behavior

D  |¢|7. (1)
The exponent v is given by
1 1
= — — 2
v 2a + 2b )

where a and b are the unique solutions of the equations

F(1-a)® TQ1+b)?* _ 3)
T'(1—2a) T(1+2b) )

Here I'(z) stands for the I function. Since a and b depend
on A, the exponent v will depend on A too and therefore
is not a universal quantity. It can be shown that 0 < a <
1/2 and b > 0. Therefore v > 1 holds as well.

(it) Long-time relazation behavior. For long times
the correlators ®xy(t) are well approximated by a
Kohlrausch-Williams-Watt (KWW) law, i.e.,

dxy(t) = Aexp[—(t/’r)ﬂ]. (4)

The stretching (or Kohlrausch) exponent 3 is indepen-
dent of temperature. Since the prefactor A shows only
a weak dependence on temperature the main tempera-
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ture dependence of ® xy stems from the relaxation time
7 which, like the diffusion constant, shows a power-law
behavior. The exponent of this power law is given again
by v [see Eq. (2)]. Since neither 8 nor A shows a pro-
nounced temperature dependence a plot of correlators
corresponding to different temperatures versus t/7(T)
will show that for long times all these curves collapse onto
a master curve. Therefore this phenomenon is called the
time-temperature superposition principle.

(iit) Intermediate-time relaration behavior. For times
between the microscopic times and the times for which
(4) holds, the so-called B-relaxation regime, the correla-
tors can be written in the following form:

®xy(t) = f+hy/ ]e|gi(f), with = tle|1/2a/t0.

(5)

Here =+ stands for the glass and liquid side of the transi-
tion, respectively, and ¢¢ is a microscopic time. The con-
stant f, called the nonergodicity parameter, is identified
as the effective Debye-Waller factor when ® xy = ® and
as the effective Lamb-Mossbauer factor when ® xy = ®,.
The amplitude factor h depends on the quantity inves-
tigated but not on temperature. The most important
feature of Eq. (5) is that the temperature enters the ex-
pression only by the square root of € and through the
rescaled time #. In other words, the master functions
g+ are independent of temperature and of the quantity
investigated. For { < 1 they are given by

g+ X fwa. (6)

For £ >> 1 the behavior on the liquid side (e < 0) and that
on the glass side (¢ > 0) are very different. For ¢ > 0 one
finds

g+() = 1/V1-X (M

i.e., the correlator does not decay to zero for long times,
and for e <0

g_(f) = —Bt, with B > 0. (8)
The power law given by Eq. (8) is called the von Schwei-
dler law and holds only for times such that hy/eg_ (%) is
small compared to one. It should be noted that constants
a and b appearing in Egs. (5), (6), and (8) are the same
as those in Eq. (2) which shows the intimate connection
proposed by MCT between the (3-relaxation regime and
the long-time behavior of the correlators.

III. MODEL AND DETAILS OF THE
SIMULATIONS

In this section we introduce our model and give some
of the details of our simulations.

The main goal of this work is to investigate the appli-
cability of the MCT of the idealized glass transition to
a system that shows the effect of cage formation at high
densities but that has no activated processes. We also
wanted to construct a lattice model for which the num-
ber of particles is locally conserved, in contrast to the
kinetic Ising models previously devised to study ergodic-
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nonergodic transitions, for which the z component of the
spin is not conserved.

Our system is a lattice gas of N classical particles. The
positions of the particles are discrete and are given by the
sets of vertices, or lattice sites, of a simple-cubic lattice,
i.e., the position of the ith particle (: € {1,...,N}) is
given by R; where R; € Z3. For convenience we have
assumed that the lattice spacing is one. Each particle
occupies exactly one vertex and each vertex can be oc-
cupied by at most one particle. Apart from this hard
core interaction there are no other interactions between
the particles. There are V (= L3) lattice sites, and the
system is a cubic array of such sites of length L. All
configurations of N particles on V vertices in which no
two particles occupy the same site have the same en-
ergy and the same weight in the equilibrium ensemble
of states. This feature simplifies the numerical simula-
tion significantly since no equilibration of the system is
needed. Thus one can generate an initial configuration
by distributing the N particles randomly onto the lattice,
and start the dynamics and the collection of the results
immediately. This feature allows us to investigate time
scales which are significantly larger than those attain-
able for systems that require equilibration. We imposed
periodic boundary conditions on the finite-sized system,
which play no role for the equilibrium properties of the
model but which will be important for the dynamics.

The dynamics of the particles is given by the following
algorithm. (1) Pick a particle at random (say particle
7). Then randomly pick one of the six nearest neighbor
sites of R;. Let the position of this site be R; + d,
where d is a unit vector. (2) Test whether the following
three conditions are fulfilled. (i) Position R; + d is not
occupied by another particle. (ii) Position R; has m
or fewer occupied nearest neighbor sites (i.e., particle j
has m or fewer nearest neighbor particles). (iii) Position
R, +d has m+1 or fewer occupied nearest neighbor sites
(i.e., particle j if moved to this site would have m or fewer
nearest neighbor particles). If these three conditions are
fulfilled move particle j from position R to position R;+
d, advance the clock by 1/Nth of a time unit and go
to (1). (3) If one or more of the conditions in (2) is
not fulfilled, leave the position of particle j unchanged,
advance the clock by 1/Nth of a time unit, and go to (1).

We now address the choice of m. For any choice of
m, this algorithm satisfies the detailed balance condition
for the equilibrium ensemble. [For this ensemble, all al-
lowed states have the same weight, and so the detailed
balance condition reduces to the following requirements:
(1) it should be impossible to make a transition from an
allowed state to a forbidden state; (2) if a transition from
one allowed state to another is possible, then the reverse
transition should have the same transition probability.
It is easily verified that these two requirements are sat-
isfied by this algorithm.] If the value of m is as large as
5 (i.e., if particles with as many as five neighbors were
able to move), then restrictions (ii) and (iii) would im-
pose no additional restrictions beyond that specified in
(i). The model would incorporate none of the physics of
a cage effect and would clearly be ergodic at all densities.
The dynamics of such a model has been investigated by
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Ajay and Palmer [20]. On the other hand, if m were as
small as 2, then the system would not be ergodic even
at low densities. (To see this, consider a configuration
in which eight particles are arranged in the form of a
cube. Such configurations have a nonzero weight at low
densities, but none of the particles would be capable of
moving since each has three nearest neighbors. This im-
mobility would persist for all times and the system would
not be ergodic.) We want to choose m to be as small as
possible, in order to ensure that the dynamics becomes
sluggish at high density, while still allowing the system to
be ergodic at low density. Accordingly we chose m to be
3. Although we do not have a proof that the dynamics at
low density is really ergodic for this value of m we have
not found any configurations at low densities that have a
nonzero measure and that lead to nonergodic behavior.
In addition, our simulations indicate that the system is
ergodic at low densities.

To conclude this section we give some of the details
of our simulations. The system sizes we investigated
were L = 10,14, and 20. We covered densities between
0.1 and 0.86, which corresponds to (for the largest sys-
tem) 800 particles at the lowest density and 6880 par-
ticles at the highest density. The length of the runs
was between 100 SPP (steps per particle) at low den-
sities and 5 x 106 SPP at high densities. We averaged
over typically 2000 initial configurations at low densities
and about 100 configurations at high densities. A time
of one SPP corresponds roughly to the time it takes for
an atom in a dense liquid to vibrate in its cage. If we
identify this with approximately 0.1 ps for an atomic lig-
uid, then the longest of our calculations corresponds to a
physical time of the order of 0.5 us, which is much longer
than can routinely be achieved in computer simulation of
continuum fluids, and this calculation was repeated 100
times with different initial conditions.

For densities up to about 0.82 the numerical imple-
mentation of the algorithm was exactly as we described
it at the beginning of this section. However, for high den-
sities such an implementation is not very efficient since
too many moves are rejected. We therefore used an al-
gorithm that is exactly equivalent to the one described
above but that is much more efficient at high densities.
In this new algorithm one selects from only those parti-
cles that are actually movable and advances the clock in a
compensatory manner. Similar ideas have been proposed
elsewhere (see, e.g., [12]). The computational overhead
for keeping track of which particles are movable is quite
large but independent of density. Hence this kind of algo-
rithm only becomes efficient at sufficiently high densities.
We found that this second algorithm is faster than the
first one for densities above 0.82.

IV. RESULTS

This section is devoted to the presentation of the re-
sults of our simulations. The first subsection deals with
the diffusion constant and the second subsection with
density-density correlation functions. Note that most of
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the figures presented here are for the largest system we
investigated (L = 20) since it was for this system size that
the effects presented here were most pronounced. How-
ever, all the effects have also been found for the smaller
systems. All results are reported in units of one lattice
spacing and in units of SPP.

A. Diffusion constant

In order to determine whether a given system has a dy-
namical transition it is useful to determine the diffusion
constant of the particles. We therefore determined the
self-diffusion constant by monitoring the mean-squared
(MS) displacement of the particles as a function of time.
In Fig. 1 we show this quantity in a double logarithmic
plot. Thus straight lines correspond to power-law behav-
ior. We plot the data for all densities and system sizes
investigated (see figure caption for details). Note that
for computational efficiency we calculated the MS dis-
placement (as well as the correlation functions discussed
later) for different time windows, each having a width of
two decades and sampling a different part of phase space.
The fact that curves stemming from different windows al-
most coincide at those times where the windows overlap
gives an estimate for the accuracy of the data.

For low densities (p < 0.3) the curves for the three
different system sizes are indistinguishable and have unit
slope, which corresponds to normal diffusion. For higher
densities the curves start out with a slope which is less
than one and the slopes become one only for long times.
For densities above 0.75 the size dependence of the curves
becomes noticeable. We find that the curves for the larger
L’s are higher than those for the smaller L’s. We will
comment on this observation in Sec. V. In order to deter-
mine the diffusion constant D we have fitted the asymp-
totic (i.e., long-time) behavior of the MS displacement
curves to a straight line with unit slope. D can then eas-
ily be read off from this straight line as its value at time
t=1.

MS Displacement

3

10° 10' 10* 10° 10* 10° lo"’t 107

FIG. 1. Mean-square displacement for all densities and
system sizes (L = 10, 14, 20) investigated. Densities from
top left to bottom right: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7,
0.75, 0.8, 0.82, 0.84, 0.85, 0.86. For a given density the lowest
curve is for L = 10 and the top curve for L = 20.

107 10°
0.881-p
FIG. 2. Diffusion constant D for L = 10, 14, and 20 versus

0.881 — p. The straight line is a power-law fit with exponent
3.1.

In Fig. 2 we plot the diffusion constant D versus
0.881—p. The constant 0.881 was determined by a power-
law fit to the data at high densities and the figure shows
that this fit is clearly convincing since it fits the data
well for over three decades of D. In doing the fit we
have concentrated on the data of the two larger systems.
For the exponent v of the power law we find 3.1, which
compares well with values found for other types of glassy
systems [9]. If we make separate fits to the three indi-
vidual data sets we find the critical densities to be 0.882,
0.882, and 0.881 for L = 10, 14, and 20, respectively.
These figures have an error of about 0.002 and are there-
fore compatible with a single value of the critical den-
sity. Thus we can conclude from this plot that the dy-
namics of the system shows a singular behavior at about
p = 0.881. We also tried to fit the data with the often
employed Vogel-Fulcher law, D « exp[B/(p. — p)]. Note
that if the range of p (or T, respectively) of the data are
not large enough it is often quite difficult to determine
whether the data are fitted better by a power law or by
a Vogel-Fulcher law. The reason for this is the so-called
“Bardeen identity” which says that for small ranges of p
a power law can be very well approximated by a Vogel-
Fulcher law[21]. However, for our case we found that our
data are precise enough and the range in p sufficiently
large, to exclude the possibility of a Vogel-Fulcher law.
Thus the singular behavior of D is in accordance with
the prediction of MCT.

B. Density-density correlation functions

We now turn our attention to time dependent correla-
tion functions. For systems with a continuous symmetry
of space it is usually customary to investigate the van
Hove correlation function G(r,t) [22]. For isotropic sys-
tems G(r,t) depends only on the magnitude of r and
therefore one can integrate over the angular dependence
of r. For a system with a discrete symmetry of space
this is not possible and we therefore define the following
autocorrelation function:
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Here r{*(t) denotes the a component of the position of
particle ¢ at time ¢{. Thus the sum on the right hand
side of Eq. (9) is the probability at time ¢ of finding a
J

L/2

Fsl(k,t) = —Gsl(Oa t) - (_l)kGal(L/27t) +2 Z Gsl(r’ t) COS gxT,

=0

and normalize it for ¢t = 0. Note that, due to the sum rule
Zfig G,1(r,t) = 0, we have F,;(0,t) = 0 for all times ¢.

In Fig. 3 we show the typical behavior of F,;(k,t) for
low, intermediate, and high densities. We emphasize that
all curves shown represent equilibrium averages. (The
fact that at high densities the curves do not decay to
zero in the time window of our calculations does not in-
dicate that the runs are of insufficient length to achieve
equilibrium at high densities. Equilibrium initial states
for the runs are trivial to obtain at all densities for this
model.) We recognize that the smaller the value of k
(i.e., the longer the wavelength), the slower the correla-
tors relax. This can be understood by remembering the
hydrodynamic relation [22]

q,.<£i1I§>>1Fs(k’t) o exp(—Dg}t) . (11)
We also observe that at high densities correlators for large
values of k cluster and lie on a master curve. This mas-
ter curve is well approximated by normalizing the space
Fourier transform of the function given by G,1(7,t)dr 0,
where § is the Kronecker delta. Thus at high densities
most of the relaxation behavior of the correlators can be
described by the relaxation behavior of G,1(0,1).

In Fig. 4 we have plotted the correlators for small,
intermediate and large values of k and for all densities
investigated. We recognize that the correlators do not
show the “two-step” relaxation behavior often found in
glassy materials even at high densities, i.e., the correla-
tors do not decay on a relatively short time scale to a
plateau value [whose height is given by the nonergod-
icity parameter f, see Eq. (5)], stay in the vicinity of
this plateau for some time, and then go over to the a-
relaxation regime. Instead, in our model the correlators
stay close to one for a time span that increases rapidly
with increasing density. This absence of a plateau is not
inconsistent with MCT, as can be seen from the following
argument. When a particle in a real fluid is temporar-
ily caged by its surroundings, it can nevertheless vibrate
or “rattle” in its cage. The rattling motion does not by
itself lead to diffusion but it will cause the correlator to
relax to its plateau value. In our model almost all caged
particles are completely immobile until their cages fall
apart. The absence of rattling means that the value of
the plateau is unity or very close to it. Thus the regime
of the a power law [see Eq. (6)] would be very difficult
or impossible to observe [3]. A similar behavior has been
found in the relaxation behavior for one type of particle

4369

particle in a plane that is r lattice spacings away from the
plane it started in at time zero. From this probability we
subtract 1/L, the long-time limit of this probability, so
that G,1(r,t) goes to zero for long times. From G,y (r,t)
we can compute its discrete space Fourier transform to
obtain the intermediate self-scattering-function Fy; (k,t),

where ¢i = 2%16 ) (10)

Fk.t)

1.0

Zos p=085
]

0.6 3 -

0.4 3 3
0.2 1

O'O ; LELALALALY BIILELE R, LRI LA, B Ll BN L e L | '_77*'*‘”"57

10° 10" 10* 10° 10* 10° 10° 107

1
FIG. 3. Intermediate self-scattering-function Fs;(k,t) for

k=1,2,...,10 for L = 20 and various densities. (a) p = 0.1,
(b) p=0.75, (c) p = 0.85.
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in an investigation of a two component lattice gas [10].

Figure 4 also shows that the functional form of the
correlators does not depend strongly on density, i.e., the
time-density superposition principle (TDSP) seems to
hold quite well. Thus it is reasonable to define a re-
laxation time 7 to be the time such that Fy;(k,7) = e~ 1.
Since the TDSP seems to hold quite well the results pre-
sented below will not have a significant dependence on
the exact nature of this definition.

In order to test how well the TDSP really holds we plot
in Fig. 5(a) Fs1(k,t) for all densities investigated and k =
1 versus the rescaled time t/7(p). We see that for short
times [t/7(p) < 1] the TDSP is clearly violated. For long
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FIG. 4. Intermediate self-scattering-function Fj;(k,t) for
L = 20 and all densities investigated (see caption of Fig. 1).
(a) k=1, (b) k=3, (c) k= 10.
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times the TDSP seems to hold reasonably well, which
shows that 7(p) is a good measure for the relaxation times
of the correlators. We will postpone the discussion of
the dependence of 7 on the density until the last part
of this subsection and concentrate now on the long-time
behavior of the correlators.

Figure 5(b) shows the long-time behavior of Fyi(k,t)
for k = 1 and all densities investigated. We see that for
low and intermediate densities (p < 0.8) the TDSP holds
extremely well. We found that the master curve is an ex-
ponential for all times. For higher densities the correla-
tors gradually deviate from this master curve. However,
even for the highest density the deviation from the mas-
ter curve is only about a factor of 2. The functional form
of the correlators at high density and long times will be
discussed later.

In the discussion of Fig. 4 we mentioned that the value
of the nonergodicity parameter must be very close to one
and that therefore the observation of the a power law is
difficult. However, we still should be able to detect the
von Schweidler law, i.e., the deviation of the correlator
from this plateau. We therefore tried to fit the short-
time behavior of the correlator with a power law of the
form F,1(k,t) = f — Bt®. In Fig. 6 we plot f — F,(k,t)
versus ¢t in a double logarithmic way. Thus in the time
region where the von Schweidler law holds the curves are
straight lines. We can see that at low densities this time
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FIG. 5. (a) Intermediate self-scattering-function Fs; (k,t)
for L = 20, k = 1 and all densities investigated (see caption
of Fig. 1) versus rescaled time t/7(p). (b) Same as in (a) for
long times.
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FIG. 6. Test for the presence of the von Schweidler law in

F,i(k,t) for k =1 and L = 20 and all densities investigated
(see caption of Fig. 1). Straight line sections of the curves
show where the law holds.

range is only about an order of magnitude and we there-
fore do not ascribe much significance to the fit. However,
when the density is increased this range quickly increases
to several orders of magnitude and the fit is thus much
more convincing. The values of f we find from the fits are
all very close to one (to within 1073) but no definitive
statement can be made about the dependence of f on
the density. From Fig. 6 we can recognize the clear trend
that the slopes of those parts of the curves where the
von Schweidler law holds decrease with increasing den-
sity. This means that exponent b is not independent of
density, which is in contradiction with MCT. From Fig. 6
we see that the von Schweidler law holds only for times
for which the correlator has not decayed below 0.8 [i.e.,
where 1 — F,1(1,t) < 0.2].

For long times the functional form of the correlator is
given by a KWW law. To demonstrate the quality of
such a fit, we plot in Fig. 7 — log,o[Fs1(k,t)/A(p)] versus
time ¢ in a double logarithmic way [A is the amplitude
of the KWW law, see Eq. (4)]. Thus straight lines cor-
respond to KWW behavior. We find that for small and
intermediate densities the slopes, which are given by the
KWW exponent (3, are one, i.e., the decay is exponential.

7

10" 10% 10° 10 10° lo"t 10

FIG. 7. Test for the presence of the KWW law in Fs; (k, t)
for k = 1 and L = 20 and all densities investigated (see
caption of Fig. 1). Straight line sections of the curves show
where the law holds.

This is in accordance with our discussion in connection
with Fig. 5. For higher densities (p > 0.75) the slopes
start to decrease monotonically. Thus 3 depends on den-
sity and the TDSP does not hold. Also note that the
power-law behavior of F,1(k,t) at short times (Fig. 6) is
not the power-law which is obtained by making a Taylor
expansion of the KWW function at short times. If this
would be the case the KWW fits would be valid also for
short times and not break down at high densities the way
it is observed in Fig. 7.

So far we have mainly discussed the relaxation behav-
ior of correlators for a small value of k. However, the
main focus of MCT are correlators which probe the sys-
tem on the length scale of typical interparticle distances,
i.e., for large values of k. We therefore also investigated
the behavior for such correlators and proceed now to
present our findings.

In Fig. 8(a) we show Fy1(k,t) for k = 10, L = 20 for all
densities investigated versus the rescaled time t/7(p). We
see that for low densities (curves on the left) the TDSP
is clearly violated. However, for high densities (p > 0.75)
the correlators start to cluster and form a master curve.
In order to show how well these correlators fall onto the
master curve we show them again in Fig. 8(b) on an
extended time scale. We see that the TDSP holds for

10,1t)

(k

FIG. 8. (a) Long-time behavior of the intermediate self-
scattering-function Fii(k,t) for £k = 10 and L = 20 and all
densities investigated (see caption of Fig. 1) versus rescaled
time t/7(p). (b) Same correlators as in (a) but only for p >
0.75. Also included is the result of a KWW fit for 0.3 <
t/7(p) < 25.
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about two orders of magnitude in time. Note that the
relaxation times 7(p) for this density range vary by a
factor of 500 and that therefore the existence of a master
curve is highly nontrivial. We have tried to fit the master
curve with a KWW law and the best fit is included in
the figure as well. For the time range of the fit we chose
0.3 < t/7(p) < 25 and found the Kohlrausch exponent
B to be 0.628. If we make KWW fits to the individual
curves we find that the quality of the fit is reasonable but
not very good. We demonstrate this in Fig. 9 where we
plot, analogously to Fig. 7, —log,o[Fs1(k,t)/A(p)] versus
time ¢t. We recognize that for high densities (p > 0.8) the
curves are parallel but not perfect straight lines even for
long times. Thus the TDSP holds but the functional form
is only approximately a KWW law. From this plot we
can, however, see that the low- and intermediate-density
behavior of the correlators is in fact given by a KWW
law. The corresponding exponent is one only for very low
densities and decreases monotonically when the density
is increased up to intermediate densities.

We also tested whether the short-time behavior of
these correlators can be fitted by a von Schweidler law
too and found that this functional form is not able to
fit the data well. Thus this prediction of MCT does not
seem to hold. Instead a fit with the function

Fo(k =10,t) = A — Blln(t/7)]* (12)

gave very satisfactory fits over several orders of magni-
tude of time for p > 0.65. However, since we do not have
a theory which suggests the use of this functional form
we cannot ascribe any physical significance to the fit.

Previous work has shown that the time Fourier trans-
form of correlation functions can be useful for detecting
certain types of relaxation behaviors (see, e.g., [10]). We
therefore computed the time Fourier transform for se-
lected correlators but, apart from the power law which
we already found in the time domain, no new features
were discovered.

The results presented so far in this section dealt with
the time correlation function as defined in Eq. (9). In
addition we have also investigated the autocorrelation
function G,2(r,t) which is defined as
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FIG. 9. Test for the presence of the KWW law in F,(k,t)
for kK = 10 and L = 20 and all densities investigated (see

caption of Fig. 1). Straight line sections of the curves show
where the law holds.

N
D> (S(xi(t)—ri(0)—réa)) -

a i=1

1
Gsz(’l', t) = ﬁ

(13)

Here €, stands for the unit vector of the lattice pointing
in direction a. Thus the sum on the right hand side is the
(unnormalized) probability of finding a particle at time ¢
on one of the axes defined by the location of the particle
at time zero and at a distance of r lattice spacings from
its location at time zero. Proceeding now analogously as
in the case of G41(r,t) we can define Fy2(k,t). Comparing
the relaxation behavior of G, (r,t) and G,2(r,t) we found
that the two correlators behave very similarly at high
densities and large values of k except that F,,(k,t) shows
a much weaker dependence on k than F,,(k,t). Thus for
these densities and wave vectors we have the same results
as in the case of Fy1(k,t).

Finally we consider the behavior of the relaxation time
T as a function of density. We tried to fit 7(p) with a
power law and in Fig. 10 we present the data for L = 20
on a log-log plot. Thus a power-law behavior would yield
a straight line. Figure 10(a) shows the relaxation times
obtained from Fj1(k,t) and Fig. 10(b) those for Fy2(k,t).
The different curves correspond to different values of k.
Note that the dependence of 7 on k is much weaker for
Fy3(k,t) than for F,q(k,t), which is in accord with the

7
7-2
p-0.884
FIG. 10. Relaxation times 7 for (a) F,i(k,t) and (b)

F,2(k,t) for L = 20 as a function of density. The different
curves correspond to different values of k. Straight lines are
power-law fits.
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previously stated fact that the dependence of F,3 on k is
much weaker than that of F,y.

When doing the fit we concentrated on the relaxation
times for large values of k. We found that for high den-
sities the 7(p) can be fitted well by a power-law behav-
ior (straight lines in Fig. 10). It is remarkable that the
critical densities we obtain from the fits (0.882 for 71 and
0.884 for 1) are almost identical for the two kinds of cor-
relators. Also the two critical exponents are very close
(4.9 for 7, and 5.1 for 72). This reflects the fact that
the long-time behavior of the two correlators is so simi-
lar. For 7; and L = 10 and 14 we obtained p. = 0.869
and 0.878, respectively, and critical exponents 4.1 and
4.6. Thus we find a small dependence on system size for
the critical density and the exponent. The observation
that the critical density for the relaxation times shows
a stronger system size dependence than the one found
for the diffusion constant might be due to the way we
define a relaxation time. Since the time density super-
position principle does not hold perfectly a different def-
inition might lead to a slightly different critical behavior
and to a different dependence on system size.

We also found that the relaxation time 7 for small val-
ues of k can be fitted well by a power-law behavior. The
critical densities are all very close to the ones we found
for large values of k (for both, 7, and ;). However, the
critical exponents are not the same for the two quanti-
ties. For 75 they are close to the ones we found for large
values of k£ and for 7; they are all around 3.2, i.e., very
close to the critical exponent we found for the diffusion
constant. Thus it seems that correlators which are asso-
ciated with conserved quantities (the diffusion constant
and F,; for small values of k) have the same value of the
critical exponent whereas correlators which do not have
this property (F,1 for large values of k and F,, for all
values of k) have a different kind of exponent. The same
observation was also made for a different kind of lattice
gas [10] thus showing that this behavior is not unique to
the model studied here.

In summary we can say that all these values for the
critical density are close to the size-independent value of
0.881 for the critical density for diffusion. These data
strongly suggest that the dynamical transition exists in
the thermodynamic limit at a density of about 0.88, well
below the maximum density of the system.

V. DISCUSSION OF FINITE-SIZE EFFECTS

In the preceding section, we presented evidence, from
simulations at densities of 0.86 and less, that indicated
the presence of a dynamical singularity for this model at
a critical density of about 0.88. Since the calculations
were necessarily done for small finite-sized systems we
should be concerned with whether the singularity will
be present in the thermodynamic limit. For the range
of system sizes studied we observed a small system size
dependence of the values of the diffusion constant as a
function of density, only a very slight size dependence
of the value of the critical density determined from the
density dependence of the relaxation time, and no size de-
pendence of the value of the critical density determined

from the density dependence of the diffusion coefficients.
Obviously it is impossible to prove from simulations alone
the existence of a dynamical singularity in the thermo-
dynamic limit. However, consider the following summary
of the important observations: (1) the two ways of esti-
mating the critical density led to consistent results with
either no, or only a slight, system size dependence; (2) the
critical (i.e., power-law) dependence of the diffusion con-
stant on density was observed for over three decades of
variation of its value; (3) the critical dependence of the
relaxation times on density was observed for almost four
decades of its variation; and (4) the critical dependence
was observed for a range of densities that extended to
within 2% of the critical density of 0.88. This type of
evidence would ordinarily be sufficient to establish the
credibility of the assertion that a dynamical singularity
of some sort is taking place in this system at densities
below the filled lattice density of 1. One cause for con-
cern, however, is that one can show that the dynamics of
this model shows finite-size effects at densities well below
1 even for systems that are much larger than those we
report on here.

To see this consider the possibility that a system sub-
ject to periodic boundary conditions might contain the
following structure—a linear array of particles that ex-
tends from one side of the system to the other, that makes
contact with its periodic image, and whose cross section
is a two by two array of particles. If the length of the
cubic system is L, then this structure would contain 4L
particles. Each of the particles in the structure would
have four nearest neighbor particles in the structure. As
a result, under the dynamics of the model, none of the
4L particles would ever be able to move. For this type
of immobility to occur, it is important that the struc-
ture spanning the entire system makes contact with its
own image. A similar structure of 4n particles for n < L
would not have such an immobility since the particles
at the ends of the structure would have less than four
neighboring particles in the structure, which could allow
them to move, thereby freeing particles further along the
structure for subsequent motion. One can imagine more
elaborate structures with the same immobility, contain-
ing, for example, two or more such sets of 4L immobile
particles, arrayed parallel to or perpendicular to one an-
other, with “bridges” of particles connecting them. A
bridge of 4n particles (i.e., four adjacent lines of particles
in a two by two array) each of whose ends made suffi-
cient contact with one of the set of particles that span
the system would also be completely immobile.

A set of particles with these characteristics will be
called a “backbone.” The possible presence of a back-
bone has two important consequences: The first is that
the relaxation behavior of a system at a given density
with a backbone differs from the behavior of a system at
the same density but without a backbone. The fact that
some particles are completely immobile means that they
contribute nothing to the mean-squared displacement of
particles and hence this will lead to a lowering of the cal-
culated diffusion constant. Moreover, the particles that
are mobile will be somewhat constrained in their mo-
tion by the presence of the static backbone, and this is
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also likely to decrease the diffusion constant. The second
consequence is that if, at a given density, an apprecia-
ble fraction of the states of the system have a backbone,
then the dynamics of the model is not ergodic. Because
the model obeys a detailed balance condition, a system
without a backbone could never develop one and a system
with a backbone could never destroy it.

Thus backbones can interfere with the relaxation prop-
erties of a system and cause dynamical artifacts and
anomalies. The question arises of whether the forma-
tion of such backbones can be the cause of the apparent
dynamical singularity of the system at a density of 0.88.
Closely related to this is the question of whether the pres-
ence of backbones is a finite-size effect and whether the
dynamical singularity at 0.88 is a finite-size effect.

The presence of a backbone in a state of the model sys-
tem can be detected by applying the following algorithm
to the state: Remove each particle that satisfies both
of the following conditions: (1) the particle has three
or fewer neighbors; and (2) adjacent to the particle is a
vacant site that has four or fewer neighboring particles.
We continue this process until all particles have been re-
moved or until all the remaining particles fail to satisfy
one or both of these conditions. The particles that re-
main are the backbone of the original state.

For various system sizes and densities, we have applied
this algorithm to a random sample of initial states to
determine the ensemble average of p, the probability that
a particle is a member of the backbone, as a function of
density and system size. The results are presented in
Fig. 11. These curves were obtained by averaging over
from 1000 (for L = 50) to 100000 (for L = 10) initial
configurations. We also determined P, the probability
that a system has a backbone, as a function of density
and system size and plot it in Fig. 12.

From these two figures, we can draw the following con-
clusions. (1) The presence of a backbone is clearly a
finite-size effect for densities of 0.88 and lower. Both p
and P decrease systematically as system size is increased
at fixed density, and for a density of 0.88 the backbone is
of negligible importance for systems as small as L = 40.
(2) For the largest system size we investigated (L = 20),
backbones could have no appreciable effect on the cal-
culated dynamical properties over the range of densities
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FIG. 11. Probability p that a particle is a member of the
backbone versus density p for different system sizes L.
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investigated (0.86 and lower). For example, at a den-
sity of 0.86, the fraction of L = 20 states that have a
backbone is 0.007, and the probability that a particle is
part of a backbone is 8 x 1075, (3) The three system
sizes we studied had significantly different average frac-
tions of particles in the backbone for the density range
indicated. This presumably accounts for the small sys-
tem size dependence to the diffusion constants as seen in
Fig. 2. Despite this, the density at the singularity, which
was inferred from the density dependence of the diffusion
constant and relaxation time, was remarkably insensitive
to the system size. The net effect of these observations
is to confirm that the dynamical anomaly at a density of
0.88 is not an artifact due to the presence of backbones.

The presence of a backbone for our problem is closely
related to the presence of a percolating cluster in what
is known as the “bootstrap percolation” problem. This
problem has been studied by various authors in various
connections [23,24] and the results have recently been re-
viewed by Adler [25]. The bootstrap percolation problem
considers a lattice whose sites are occupied with proba-
bility p. The algorithm for the version of the bootstrap
percolation problem that is closely related to our prob-
lem, i.e., for a three dimensional simple-cubic lattice, is
very similar to the one we defined above to identify the
backbone. It can be stated as follows: Given a state of
the system, remove each particle that has three or fewer
neighbors. We continue this process until all particles
have been removed or until all the remaining particles
fail to satisfy this condition. The particles that remain,
if any, form a cluster that percolates across the periodic
cell and makes contact with its own image.

The conditions for removing a particle in the bootstrap
percolation problem are similar to but less stringent than
those for our problem. As a result, for any starting state
the infinite cluster of the bootstrap problem will always
be a part of the backbone for our problem. By means of
computer simulations we have found that the two perco-
lation problems have similar properties but that percolat-
ing clusters become significant at a lower density for our
model than for the bootstrap problem (for a given system
size). For the bootstrap problem we can define a critical
density p&b)(L) as the density at which half the systems
have a percolating cluster. For a cubic lattice in three di-
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mensions, it has been found [24] that lim7,_, o p&b)(L) =1

but that the convergence of pgb)(L) to this value is ex-
tremely slow, i.e.,

1 - p®(L) = 0(1/In[In(L))). (14)

We would expect a similar behavior for our problem, con-
firming that the presence of a backbone is a finite-size
effect. However, although the convergence to the infinite
system limit for our model cannot be faster than the one
for the bootstrap model [Eq. (14)], our empirical results,
namely, that for the largest system the fractions of the
particles in the backbone is very small, show that the
presence of backbones cannot be an explanation of the
anomalous behavior we have observed.

In order to investigate the importance of the dynam-
ics of a single particle for the relaxation behavior of the
whole system, we computed' M, the mean number of di-
rections a particle can move, as a function of density for
L =10, 14, and 20. In Fig. 13 we plot M versus 1 — p
in a double logarithmic way. The plot shows that at
high densities we find a power-law behavior with a crit-
ical density of unity (solid line). Contrary to the results
presented in the two previous figures we do not find any
significant dependence of M on system size L. This can
be understood by realizing that M depends only on the
local environment of the particles and not on structures
which are so large that they span the whole system and
which therefore are sensitive to the system size. We also
recognize that M (p) is featureless. Apart from p =1 we
do not find any density which would indicate a drastic
change in the dynamics of the individual particles. This
shows that the singular behavior reported in the preced-
ing section cannot be attributed to a singular behavior
of the motion of the individual particles since it is ob-
served at densities below 1. Thus the singularity must
be a cooperative effect.

VI. SUMMARY AND CONCLUSIONS

The model investigated in this work is a simple lat-
tice gas with, except for a hard core, no interactions be-
tween the particles. The nontrivial part of the system is
its dynamics. This dynamics is constructed so that the
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FIG. 13. Mean number of directions a particle can move,

M, versus 1 — p for L = 10, 14, and 20. The straight line is a
power-law fit with critical density 1.

motion of a particle from one site to an adjacent site is
prevented if the adjacent site is already occupied or if
one of the two sites is surrounded by too many neighbor-
ing particles. These restrictions on particle motion are
such that (i) a particle can become temporarily trapped
by a cage of neighbors; (ii) the system is ergodic at low
density; and (iii) the system becomes increasingly slug-
gish at higher density. Thus this model has the physical
features associated with the “cage effect” in high-density
liquids. Moreover, there is nothing in the dynamics that
is suggestive of activated processes. The model has the
very advantageous feature for computer simulations that
it is trivial to generate equilibrium states to be used as
starting points for runs to calculate time correlation func-
tions. A random placement of particles on the lattice at
the desired density, with no two particles on the same
site, is a typical equilibrium configuration. No equilibra-
tion is necessary. This greatly facilitates the investigation
of equilibrium properties of the system at high densities.

Despite its simplicity the system shows a remarkably
complex relaxation behavior that qualitatively matches
the relaxation behavior found in real glassy materials.
This and the above mentioned properties make it there-
fore a highly interesting model for testing the applica-
bility of the version of MCT in which activated hopping
processes are neglected.

We found that the diffusion constant seems to go to
zero at a density well below that of the filled lattice and
that this behavior can be described well by a power law.
Hence, this prediction of MCT seems to be fulfilled for
our model. We found that the critical density does not
depend on the size of the system, which gives evidence
that the vanishing of the diffusion constant has nothing
to do with the presence of the nonergodic backbone dis-
cussed in Sec. V.

We have investigated the dynamical behavior of two
types of relaxation functions: Fj;(k,t) and Fy2(k,t). Our
main findings are the following: (i) For small values of k
the short-time behavior of Fy;(k,t) shows a von Schwei-
dler law time dependence. However, the exponents de-
pend on density, which is in contradiction with MCT.
Also, we do not find the von Schweidler behavior for
large values of k in F,1(k,t) nor for any value of k in
Fga(k,t). (ii) The time-density superposition principle
does not seem to hold for Fyq(k,t) for small values of k
and high densities. However, it seems to work well for
large values of k£ and high densities and also for F,3(k,t)
for all values of k at high densities. (iii) The form of the
master curves of F,y(k,t) at high densities and large val-
ues of k and of F,2(k,t) for high densities and all values
of k are only approximately described by a KWW law
since small but systematic deviations are observed. (iv)
The relaxation times 7 show a power-law divergence at
high densities.

From our findings we can see that only surprisingly
few predictions of MCT hold for our system. Among the
deviations from the predicted behavior, the most strik-
ing are the absence of the von Schweidler law in F,,(k,t)
and F,z(k,t) for large values of k and the non-KWW be-
havior for these correlators. The fact that the dynamics
of our system seems to contain quite a few features that
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makes it a physically reasonable model for a glass made
us expect that MCT would fare better than it actually
does. Note that the highest densities we investigated cor-
respond to an |e| of about 0.02. Thus we performed the
simulations in a density region in which we expected the
predictions of MCT to hold, and it is improbable that
a too large value of |¢| is the reason for the partial fail-
ure of MCT to describe our results. Also, the presence
of nonequilibrium phenomena, always a potential source
for problems in numerical simulations of glassy materials,
can be completely ruled out. Thus we have to conclude
that MCT does not seem to be able to describe this kind
of model. This is surprising since our investigation of a
related model showed much closer, although not perfect,
agreement with the predictions of theory [10]. At the
moment it is not clear to us what the essential proper-
ties of the dynamics are that are needed in order for the
relaxation behavior of the system to be consistent with
the predictions of MCT.

The apparent vanishing of the diffusion coefficient oc-
curs at a density of 0.881. Therefore it would be very in-
teresting to study the dynamics at densities of 0.881 and
higher to provide additional tests of the existence of the
transition and to characterize the behavior in the noner-
godic regime. Because of the finite-size effects discussed
above, simulations at a density of 0.881 would have to be
performed on much larger systems than those we have
investigated. Inspection of Fig. 11 shows that L = 40,
with approximately 56 000 particles, would probably be
big enough. The investigation of even slightly higher
densities would require much larger systems. Moreover,
the time ranges needed to obtain useful information from
such studies at these densities would be much larger than
those we have simulated in the present work.

Finally we note that with minor modifications, this

model could be converted to one that includes moves that
restore ergodicity and thereby play the role ascribed to
activated processes in the mode-coupling theory. This
could be done by randomly choosing between two differ-
ent kinds of dynamics at each time step. The first kind is
the one presented in this work. The second kind is that
one chooses a particle and a direction at random and tries
to move the chosen particle by one lattice spacing in the
chosen direction. If the target vertex is occupied nothing
is moved (but we advance the clock) and if it is empty
we move the particle to it (and advance the clock). It is
clear that this second kind of dynamics is ergodic. Let
us define the probability that we have chosen this second
kind of dynamics as §. Thus 1 —§ is the probability that
we chose the first kind of dynamics. If § is nonzero the
dynamics of the system will be ergodic for all densities.
However, if § is very small the effect of the second type
of dynamics on the overall dynamics will be noticeable
only for very long-times. The short- and intermediate-
time behavior will be the same as reported in this work.
Thus by varying § one would be able to study the effects
of the hopping processes as a function of their frequency
and investigate how the presence of hopping processes
leads to the smearing out of the sharp ergodic to noner-
godic transition that is found in the absence of activated
hopping processes.
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