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Maps of the spatial distributions of the relaxation times are obtained from Monte Carlo simulations of
the facilitated kinetic Ising model. The 3 relaxation, acting over short and intermediate time scales, is
observed to occur in localized pockets. The slow a relaxation is governed by the fraction of these pock-
ets which are free to move. This physical picture is able to account for the non-Arrhenius temperature
dependence of the time scales of the a process, the scaling of the relaxation function in the [ region, and
the value of the relaxation function at the crossover time.

PACS number(s): 61.20.Ja, 64.70.Pf

I. INTRODUCTION

In this paper we examine the spatial correlations of the
relaxation-time distribution obtained from computer
simulations of a model glass. The model, a version of the
kinetic Ising model described below, is shown to exhibit a
number of the characteristic features of relaxation of a
“fragile” liquid [1]. These include a non-Arrhenius tem-
perature dependence of the relaxation time and a two-
step decay of the spin correlations with time. If a glass is
defined in terms of its phenomenology, then this model,
simple as it is, is a glass and the description of the rela-
tionship between spatial fluctuations and the form of the
relaxation function is of general interest. Much of the re-
cent experimental [2] and simulation [3] studies of relaxa-
tion in glasses has been designed around the predictions
of the recently developed mode-coupling theory [4]. We
present this work as a complementary approach, based
on a treatment of the complex dynamics in real space
rather than the Fourier space used in Ref. [4]. The major
results reported here are (i) an explicit determination of
the spatial features of the relaxation-time distribution in a
glassy system, and (ii) the demonstration that this physi-
cal picture permits a unified quantitative analysis of the
intermediate-(3) and long-time (a) domains of the relaxa-
tion function. While there are yet no direct experimental
measurements of such spatial fluctuations of the relaxa-
tion rates, a recent ‘“‘reduced” four-dimensional (4D) ex-
change NMR experiment [5] on poly(vinyl acetate) has
indicted that some sort of heterogeneity exists for time
scales at least up to the average relaxation time.

II. THE MODEL AND ITS PHENOMENOLOGY

The model used in this work, a version of the kinetic
Ising model, has been described elsewhere [6,7]. Briefly,
the facilitated kinetic Ising (fkI) model consists of a quan-
tity, the “spin,” distributed discretely over the vertices of
a two-dimensional (2D) square lattice. At each site the
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spin can take one of two values, o, = —1 (down) or 1 (up).
The spins do not interact so that, in the presence of a
field A, the energy is simply

N
E= 3 oh. (1)
k=1

The cooperativity in this model is of a kinetic nature and
is introduced in the master equation which governs the
stochastic dynamics. The transition probabilities for spin
flips depend strongly on the state of the neighboring
spins. Specifically, the probability that spin i will flip
from o; to —o; is given by
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«m;(m;—1)exp[h(o,—1)/kgT], (2)

where m; is the number of the four nearest-neighbor
spins which are up. The consequence of Eq. (2) is that a
spin cannot flip unless two or more of its neighbors are
up, resulting in kinetics which are strongly constrained
by the local configurational fluctuations. The transition
to a glass arises as the reduced temperature T*
(=kgT /h) is lowered so that the equilibrium concentra-
tion of up spins, ¢ =1/[1+exp(2/T*)], decreases, lead-
ing to a rapid slowing down of relaxation. The fkI model
was simulated using a Monte Carlo algorithm described
previously [6,7]. Relaxation functions were obtained as
the average of 30 runs on a 50X 50 lattice with periodic
boundary conditions. A unit of time corresponds to 2500
spin-flip attempts. The relaxation function used here,
F(t), is defined as the fraction of spins which remain
unflipped after a time ¢ and is related to the distribution
of first flip times P (¢) by the relation P(¢)= —dF (t)/dt.
The facilitated kinetic Ising model represents one of
the simplest models in which relaxation kinetics are
governed by strong local kinetic constraints. If there is
some form of general universality in the origin of glassy
dynamics, then it is possible that such a simple model
may be sufficient to capture the important physics. Ques-
tions of universality aside, the fkI model exhibits a num-
ber of the important phenomena characteristic of glassy
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FIG. 1. The relaxation function F(z) plotted against log,(¢)

for 1/T*=0.2,0.4, 0.7, 0.8, 0.9, 1.0, and 1.2 (corresponding to
T*=5.00,2.50, 1.43, 1.25, 1.11, 1.00, and 0.83, respectively).

relaxation (these are described below). Understanding
how such behavior can arise in even a simple model as a
result of microscopic fluctuations and local constraints
without the intrusion of uncontrolled assumptions
remains an important problem.

The relaxation functions F(t) are presented in Fig. 1
for reduced temperatures T* between 0.83 and 5.00. The
stretching of the time scale with decreasing temperature,
evident in the relaxation functions, is quantified in terms
of a relaxation time 7, [defined as the area under F(¢)],
which is shown in Fig. 2. As can be seen, 7, exhibits a
strong non-Arrhenius temperature dependence similar to
many glass formers characterized by relatively weak
molecular interactions. Replotting the relaxation func-
tion F(t) against a time scaled by the relaxation time 7,
in Fig. 3 reveals that at long times the relaxation function
has a temperature-independent form. Similar observa-
tions have been made previously of real [8] and simu-
lated [3] glasses and are considered characteristic of
the a relaxation. An empirical functional form,
A exp[ —(t /7, )¥], which has been found to fit a wide
variety of relaxation data [8], provides a reasonable fit to
F () at long times (see Fig. 3). Independent of any choice
of fitting function, the breakdown of the scaling relation
at short times indicates that some sort of crossover

occurs to a different physical process in the
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FIG. 2. logo(r.) is presented as a function of 1/T*, clearly
exhibiting a non-Arrhenius temperature dependence.
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FIG. 3. The relaxation function F(t) vs logo(t /7, ) for the
same temperature as shown in Fig. 1. Note the appearance of a
common curve at long times. The solid line is a fitted stretched
exponential function, 0.85 exp[ — (¢ /7, )>*®].

intermediate-time region. In the discussion that follows,
t* will be used to denote the crossover time.

III. VISUALIZING THE COLLECTIVE RELAXATION

We can explore the processes giving rise to relaxation
at any time scale by looking at the maps of the spatial
distribution of the first flip time 7 of each spin for a given
run. Maps depicting the distribution of 7 over the
50X 50 lattice are presented in Figs. 4 and 5 for a low
(T*=0.83) and a high (T*=1.67) temperature, respec-
tively. Shading is used to indicate the magnitude of the
first flip time at a given lattice point, with white and light
gray denoting regions with 7<t* and dark gray and
black indicating a 7> ¢*. These maps provide an extraor-
dinarily detailed picture of the relaxation processes in
glasses. A study of their scaling properties has been
presented elsewhere [9]. At a low temperature (Fig. 4),

3
5!
2
L}
&
M
£

EEER Rk

FIG. 4. A map of the distribution of first flip times 7 among
the sites on a 50X 50 lattice at a low temperature, 7*=0.83.
The magnitude of 7 is represented as follows: log,y(7)<2.0
(white), 2.0<logio(7)<3.76 [=log,o(t*)] (light gray),
3.76 <logo(7) <6 (dark gray) and 6 <log,,(7) (black). Note the
isolated rectangles of fast spins indicating trapped pockets.
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FIG. 5. A map of the distribution of first flip times 7 among
the sites on a 50X 50 lattice at a high temperature, T*=1.67.
The magnitude of 7 is represented as follows: logo(7)<0.8
(white), 0.8<log)o(7)<1.85 [=log,o(t*)] (light gray),
1.85 <logo(7) < 2.8 (dark gray), and 2.8 <log,(7) (black).

relaxation begins in localized pockets scattered through
the sample (white regions). At later times (shaded light
gray) up to the crossover time ¢*, the relaxation around a
fraction of these pockets has run up against surrounding
“walls” of down spins which prevent further relaxation
by that site. These trapped pockets can be seen on the
map as isolated rectangular regions of short relaxation
times bounded by regions of substantially longer time
scales. A small fraction of pockets elude this contain-
ment and go on to relax the bulk of the sample (the dark
gray and black regions). It is the “frozen” domains of
locked spins, awaiting the action of a distant uncon-
strained pocket, which give rise to the observed long-time
relaxation behavior. In contrast, at the higher tempera-
ture (Fig. 5), the pockets occur with a higher density,
overlapping one another and so greatly reducing the pos-
sibility of a pocket becoming trapped. As a result, almost
all of the high-temperature sample is relaxed within the
short-time domain.

The crossover time t* is essentially the time it takes
the system to “‘decide” what fraction of relaxing regions
are trapped. We have found that the values of ¢ *, deter-
mined as the lower time limit of the applicability of the
long-time scaling of F(t), coincide with the distinct mini-
ma in a plot of y(¢)=d {In[ —In(F)]}/d[In(z)] vs In(z)
shown in Fig. 6. (The genesis of this admittedly obscure
function y(¢) is that if F(t)=exp[—(¢/7,)"] then y(z)
would be constant and equal to y.) While we have yet to
arrive at a particularly useful interpretation of this obser-
vation, it is noteworthy on two counts. First, the striking
asymmetry of y(¢) about the minimum at ¢* presents us
with a graphic expression of the difference in relaxation
mechanism between the intermediate- and long-time
domains. On a more prosaic level, identifying the cross-
over time as the position of the minimum in y(¢) allows
us to clear definition of ¢*.
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FIG. 6. The function y(#)=d(In{—In[F(¢)]})/d(Int) vs
log,o(t) for a range of T*. A distinct minimum is observed for
each temperature and its position is found to coincide with the
crossover time ¢ *.

This is the physical picture of the process of glassy re-
laxation in this system, an inhomogeneous process in
which (a) pockets, regions in which the configurations
satisfy the nonlocal (and nonlinear) kinetic constraints,
relax rapidly; (b) the population of the pockets contribut-
ing to relaxation is reduced as the process proceeds due
to trapping (another consequence of the interplay be-
tween fluctuations and kinetic constraints)—this decima-
tion of the number of effective pockets increases marked-
ly with decreasing temperature; and (c) the surviving un-
constrained pockets, increasing rare fluctuations in colder
samples, relax the remainder of the sample by way of a
complex diffusional process. This picture shares much in
common with earlier explanations of the S process in
terms of localized pockets [10] and of the a process in-
volving the action of diffusing defects [11,12]. In addi-
tion to unifying these explanations, this work extends
these ideas in two important ways. First, the pockets are
defined using the localized kinetics rather than the local-
ized structure, providing a general criterion of direct
relevance to relaxation. Second, this definition, in con-
junction with the simplicity of the propagator, provides
an explicit process (trapping) by which the density of
pockets responsible for long-time relaxation can be ob-
tained.

IV. FROM MECHANISM TO PREDICTIONS

This picture permits a number of quantitative predic-
tions.

(i) The time scale for the short-time relaxation 7, by
definition, involves no cooperativity (as pockets are
defined by the local satisfaction of the kinetic constraints)
and so should be the time scale of the elementary event, a
single flip, and thus 7, is expected to be proportional to
exp(2/T*).

(ii) The amplitude of the short-time decay should be
proportional to the density of pockets. This density, in
turn, is assumed to be proportional to f (1), the probabil-
ity of finding a flippable spin. By a simple summing of
the probabilities of the various local configurations which
permit flipping we find that f(1)=6c%(1—c)?
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FIG. 7. An example of a “cage” in the fkI model. The en-
closing wall of down spins cannot be relaxed as a result of the
spin configuration within the shaded region as all the “wall”
spins (with the exception of the outer corner spins) have three
down neighbors and so cannot flip. The relaxation of such a re-
gion must come from outside the cage.

+4c¢3(1—c)+c* (see Ref. [7] for details).

(iii) The fraction of the system which has been relaxed
by the short-time process, i.e., 1—F(¢*), should be just
the fraction of the total area covered by the pockets of
rapidly relaxing spins. Consider the following simple ar-
gument. The change in 1 —F(¢*) with f (1) (proportional
to the density of pockets) is assumed to be

d[1—F(t*)]
df(1)

where, on the right-hand side, b corresponds to the aver-
age area of a pocket (assumed to be independent of T*)
while the presence of F(¢*) accounts for the fraction of
the pocket which overlaps existing pockets. The predic-
tion, then, is that F(t*)=exp[ —bf(1)].

Finally, (iv), the long-time behavior is dominated by
the fraction of the pockets which have avoided being
trapped. Trapping results when a region of lattice sites is
surrounded by a rectangular wall of down spins two lay-
ers thick. (In such a wall, an example of which is shown
in Fig. 7, a spin will have three neighbors which are down
and so be unable to flip.) The probability p,,. that a
given spin does not lie inside such confines of any size has
been shown [7] to be pg,.. =exp{(1—c)*/In[(1—c)®]}.
The density C of regions responsible for global relaxation

=bF(t*), (3)
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FIG. 8. A plot of the amplitude-scaled relaxation function

[1—F(2)]/f(1) [with f£(1) being the fraction of flippable sites]
vs the scaled time ¢ exp(—2/T*). The data from different tem-
peratures fall upon a common curve at short and intermediate
times, supporting the predicted scaling described in the text.
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FIG. 9. The plot of the log of the relaxation amplitude
In[F(¢*)] at the crossover time vs f (1), the density of flippable
sites, is well described by a straight line. This is in agreement
with the overlap model expressed in Eq. (3). The parameter b in
this equation is found to be =6.

is then the fraction of flippable sites, f (1), which avoid
entrapment, i.e., C = f (1)p g As C is directly related to
the longest length scale in the system (i.e., the average
distance between mobile pockets), it seems reasonable to
propose that it determines the longest time scale in the
system 7, .

Now we test these predictions. Starting with the long-
time or a process [and prediction (iv)], 7, is found to be
very well described over six orders of magnitude by a
simple power-law dependence on the density C of mobile
pockets, 7, « C 38, The connection between this result
and that of the defect diffusion model has been discussed
elsewhere [7]. To check the predictions for the short-
time behavior, 1—F(¢), the fraction of spins which have
flipped by time 7 is divided by f (1) [using prediction (ii)],
and plotted against the log of a reduced time
tx exp(—2/T*) [from prediction (i)] in Fig. 8. The
curves at different temperatures are observed to collapse
onto a common curve over the short-time domain,
demonstrating the validity of the proposed time and am-
plitude scaling. To test for the predicted exponential
dependence of F(t*) on the pocket density [prediction
(iii)], In[F(¢*)] is plotted against f(1) in Fig. 9. The
data lie close to a straight line, in good agreement with
the prediction of Eq. (3).

V. CONCLUSIONS AND DISCUSSION

In conclusion, we have presented an explicit physical
picture of the collective mechanism responsible for the
characteristic relaxation behavior of a model glass over
intermediate and long times. The success of the various
predictions provides strong support for this unified pic-
ture of the a and S relaxation. A number of specific
consequences of the observed mechanism are worth not-
ing. (i) The non-Arrhenius temperature dependence of 7,
arises from the reduction of the number of effective pock-
ets by trapping. If no significant reduction occurs within
the temperature window set by the accessible time scales,
the relaxation time will exhibit a simple Arrhenius depen-
dence. (ii) The role of the cooperative effects in the short-
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and long-time regions is distinctly different. In the form-
er it sets the amplitude of the relaxation function, while
in the latter it determines the time scale.

While the quantitative analysis of the spatial fluctua-
tions in the relaxation rates is specific to the fkI model,
we can still extract a number of predictions which might
be of more general application. In terms of the density of
“pockets,” now generalized to localized regions of rapid
structural relaxation, our results suggest that the average
relaxation time 7, scales with the density of the mobile
pockets as a power law, while, at shorter times, the am-
plitude of the relaxation function is proportional to the
total “pocket” density. Testing these ideas on a real glass
requires information about the spatial extent of kinetic
fluctuations. It is hoped that these ideas might help focus
the experimental challenge posed by this aspect of com-
plex glass dynamics.

The recognition that the fluctuations which govern dy-
namics take the form of discrete objects, in this case
pockets and walls, appears to be a feature common to
other kinetic phenomena involving fluctuations in non-
linear fields [13]. Examples include vortices and plumes
in descriptions of turbulent fluids [14] and defects in
solid-state relaxation [15]. One point which emerges
clearly from this study is that the long-time relaxation is
governed by fluctuations whose density drops rapidly
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with decreasing temperature. The special theoretical
problems posed by kinetic phenomena dominated by rare
events (e.g., nucleation and crack propagation) have typi-
cally been handled by including the important fluctua-
tions by hand. In the case of the glass-forming liquid,
however, these fluctuations arise from the subtle inter-
play of dynamic constraints and configurational fluctua-
tions and have yet to be characterized sufficiently for this
approach.

We note that the application of relaxation-time maps
to the simulations of more realistic models of molecular
liquids is straightforward. In going from a model of
discrete variables to one with continuous variables, some
sort of threshold must be chosen in order to define a local
first-passage time. Work is currently underway on the
spatial structure of the slow-rotational and translational
relaxation in molecular-dynamic simulations of a dense
2D molecular liquid [16].
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